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ABSTRACT: Simple closed form expressions are presented for the problem of ground 

settlement effect on the axial response of a vertical pile. The solutions are based on 

Winkler model, and allow evaluation of soil-pile interaction under a variety of green 

field ground settlement profile. An example on soil-pile interaction subject to tunnel 

induced ground settlements is given to demonstrate the use of the proposed solutions.  

 

INTRODUCTION 

This note presents several closed form solutions that describe the axial behaviour of a 

pile subject to vertical ground movements such as by nearby tunnel construction. The 

Winkler assumption is utilized to derive the closed form solutions and hence they may 

only be regarded as a rough estimation of the real problem. However, as the solutions 

can be computed using a hand held calculator or a spreadsheet program, they are 

considered to be valuable for the initial evaluation before conducting more time 

consuming numerical analyses. They can also be used to as benchmark for validation 

of a numerical code based on Winkler model.  

 

The solutions presented in this note are for a pile in homogenous soil. Vertical ground 

movements may result from numerous sources (e.g. tunnelling induced ground 

deformation, heave by excavation, consolidation settlement, etc.). Each of these 

problems is associated with a particular profile of ground settlements and a specific 

solution may be found. For example, Poulos and Davis (1980) derived a continuum 

elastic solution for the case of soil settlement that decreases linearly with depth. 

Loganathan et al. (2001) proposed a solution for piles behaviour due to tunnelling 

induced ground deformation using boundary element analysis. Although these 

solutions are very valuable, they are associated with a specific ground settlement 

pattern and cannot be used for other cases.  

 

The closed form solutions presented in this note utilise general shape functions for the 

green field ground settlements (i.e. the vertical displacements that would occur in the 

absence of the pile). These general shape functions may be fitted to the anticipated 

settlement profile, which may be obtained from field measurements, analytical 

solutions, or empirical relations. Methods of fitting shape functions are not covered in 

this note.  

 

FORMULATION 

The formulation is based on the following four assumptions: [1] the soil is 

homogenous, [2] the soil response at any depth is a function of settlement solely at 

that depth (based on generalized Winkler assumption), [3] no relative slippage occurs 

between the pile and the soil, and [4] the pile is elastic with constant axial stiffness.    

The following derivation begins by assuming that there is no base resistance. 

However, later in this note, the solutions are extended to include this effect. 
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The differential equation for the Winkler problem of the axial response of a vertical 

pile is as follows: 
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where EA is the axial rigidity of the pile, y(z) is the vertical settlement at depth z, k is 

the subgrade modulus, [ki]=F/L
2 

 (F=force, L=Length).  If the pile is loaded locally by 

a force P at a certain depth, ζ, (see Fig. 1), it will experience the following 

displacements at depth z:  
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where EAk /=λ .  

 

The governing Winkler equation including the ground settlement effect is: 
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where ygf(z) is the green field settlement with depth. The effect of green field 

deformation may be related to a distributed load on the pile, equal 

to dzzykdp gf )(⋅= . 

P

L

z

y

 
Fig. 1 external loading on pile system 

 

By using the superposition principle of the Winkler assumption, the complete axial 

behaviour of the pile may be obtained as: 
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where functions f1 and f2 are defined in Eq. 2. This integral can be solved analytically 

for some green field shape functions given in the following section.  
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The above formulation assumes that the pile is not restrained at its head. In reality, 

unless the superstructure is statically determined, this would not be the case. 

However, if the superstructure is relatively flexible, or that all piles are identical and 

suffer the same ground movement, this assumption can be considered valid. 

 

 

CLOSED FORM SOLUTIONS 

 

POLYNOMIAL GREEN FIELD GROUND DISPLACEMENT: 

Polynomial fits are very popular; the tools for fitting a polynomial to a given data set 

are common. A green field ground settlement profile with depth can be approximated 

by polynomials up to power q: 
q
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An analytical solution of the integral in Eq. 4 using Eq. 5 is possible. Due to the 

linearity of the problem, the solution may be obtained by superposition of solution for 

each power in the polynomial series.  



















−
−

−+

−
−−

+






 −
−+−−−

−
=

=

∑∑

∑∑

∑∑

∑

=

−

=

=

−

=

−

==

−

=

n

k

k
LL

n

k

k
n

n

k

k
zLn

n

k

k
zL

nn

n

k

k
znn

n

k

k
z

nnn

q

n

n

k

L
ee

k

L

k

z
ee

k

z
ee

L

zn
a

k

z
e

k

z
e

L

zLn
aa

azy

00

00

00

0

!

)(

!

)(
)1(

!

)(
)1(

!

)(

]sinh[

]cosh[

2

!

!

)(
)1()1(

!

)(
1

]sinh[

)](cosh[

2

!
)(

;)()(

λλ

λλ

λλ
λ

λλ
λλ

λ
φ

φ

λλ

λλλλ

λλ           Eq. 6 

The above equation may not be suitable for use with a hand held calculator, and it is 

perhaps more appropriate to use a spread sheet. In many cases, however, high order 

polynomials are not required; therefore a simple closed form solution using a low 

order polynomial is presented next. 

 

3
RD

 ORDER POLYNOMIAL 

Consider that a green field ground settlement profile with depth can be described 

using a third order polynomial: 
3
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The solution of Eq. 4 using Eq. 7 may be expressed as: 
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          Eq. 8 

 

Note that solutions for polynomials of order smaller than three are included in the 

above expression; that is, these can be obtained directly by omitting terms involving 

the unnecessary polynomial coefficients. 
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The pile displacement profile given in Eq. 8 is of the shape: 

)(λgyy gf +=                Eq. 9 

Therefore, function g(λ) may be looked upon as a correction function for the case 

assuming the pile follows the green field settlements. It is also evident from the terms 

involved in g(λ), that the pile simply follows the ground displacement as λ 

approaches infinite. That is, as EA decreases, the pile must follow the green field soil 

settlement because the pile has no rigidity to alter it.  

 

Since the strains in the pile are of interest for axial force evaluation, the derivative of 

the pile displacements can be computed as: 
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               Eq.10 

 

 

COSINE FUNCTION  

In some cases green field ground settlements may fitted with a cosine function. In 

addition, if a Fourier analysis is conducted on the ground settlement data, the cosine 

may be used as a fundamental solution for pile response at a given wave length. 

Assuming that the green field ground settlement profile with depth is represented by 

the following: 

)cos()( bzAzygf −= ω                          Eq. 11 

The corresponding solution becomes: 
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And the derivative is: 
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EXPONENTIAL FUNCTION 

If the green field ground settlement profile is represented by: 

( ) [ ]gfy z Aexp bz=                 Eq. 14 

The corresponding solution becomes: 
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And the derivative is: 
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INCLUDING THE EFFECT OF TIP RESISTANCE 

By recognizing that the resistance force acting on the bottom tip of the pile is equal to 

[ ])()( LyLyKP gfBb −=  (where KB is the stiffness of the base in [F/L]), one can use 

superposition to formulate an equation which includes the base resistance effect. The 

resultant displacement at the bottom of the pile is equal to: 
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where y
no base

 is the solution obtained assuming no base resistance (i.e. Eqs. 6, 8, 12 

and 15 with z = L). Once the displacement at the tip of the pile is determined by Eq. 

17, a complete profile of displacement and strain is feasible. This is achieved by 

superimposing the previously given solution for zero base resistance with Eq. 2 for 

which [ ])()( LyLyKP gfB −= , and ζ=L are substituted. 

Although it was stated earlier that the proposed solutions are for homogenous soil, it 

is also valid for piles which their tip is in a different layer, since KB may be related to 

this layer.  

 

EXAMPLE 

To illustrate the use of the proposed procedure, let us consider a problem of tunnelling 

near a pile as shown in Fig. 2. A 5 m diameter tunnel is constructed at a depth of 10 m. 

A 20 m long pile of 0.5 m diameter exists 6m away from the tunnel centreline. The 

additional movements that occur in the pile due to the tunnelling are of interest.  

We adopt Sagaseta (1987) solution for soil movement due to tunnelling. Fig. 2 shows 

the green field settlement profile with a tunnel volume loss of 2.5% for the given 

tunnel geometry). A small heave is observed at depths below 14m. Above this, 

ground settles with a maximum settlement of about 13mm at a depth of 5m. 

The shaft behaviour of the pile is expressed by the Randolph and Wroth (1978) model, 

of which the load transfer function is )/)1(5.2log(/2 0rLGk νπ −= , where G is the 

shear modulus, ν is Poisson's ratio,  L and r0 are the length and radius of the pile. In 

this example, the shear modulus G is 30MPa and the ground deformation occurs is in 

undrained condition (ν = 0.5). The EA value of the pile is 5.9 x 10
9
 kN (i.e. a concrete 

pile). 

The problem is solved first by assuming zero base resistance. Fig. 3a shows the 

settlement profile obtained from Sagaseta’s solution (solid line) and the best fit using 

the 3
rd

 order polynomial function (dotted line); the coefficients of the 3
rd

 order 

polynomial are also given. Fig. 3b presents the resultant pile displacements (solid 

line) from this fit (dotted line) using Eq. 8. Finally, the additional strain/axial force 

due to the tunnelling can be computed using the strain profile derived from Eq. 10 and 

the force profile is shown as a dotted line in Fig. 3c (note that force F in the figure is 

positive in tension). These forces are additional to the ones originated from the 

superstructure load. The forces along the pile due to the superstructure may be 

obtained directly from use of Eq. 2 by positioning the local force at the top of the pile. 

In Fig. 3c, the "accurate" values (solid line) are based on Sagaseta’s ground 

displacement and not on the 3
rd

 order polynomial fit. They were obtained by high 

accuracy numerical solution of Eq.3. For this particular problem, the difference 

between the accurate and 3
rd

 order polynomial fit is 3% at the maximum strain value. 

With regard to pile displacement, the difference was much smaller, around 0.3%.  
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Fig. 4 shows the axial force distribution when the base resistance is taken into 

account. The base stiffness was evaluated as )1(4 0 υ−= GrK B (Randolph and Wroth, 

1978). When the base resistance is included, similar difference between the accurate 

and the 3
rd

 order polynomial fit is observed as before. Nonetheless the agreement is 

very good considering the amount of effort required to establish the values with the 

current method.  

It should be noted that in this specific problem, the tunnelling process induces not 

only vertical components of soil deformation, but also horizontal. These will result in 

lateral loading of the pile, and will affect it flexural behaviour, resulting in changes in 

bending moment values. Flexural behaviour is not covered in the current note.  

5m

G=30000kPa, =0.5

P

3.5m

Green field settlement for 

tunnel volume loss of 2.5%
3.5m

5m

15m

20m

 
Fig. 2 Schematics of the example problem 
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Fig. 3 Results for the example problem  
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Fig. 4 Results including base resistance 

 

CONCLUSIONS 

Closed form mathematical expressions that allow evaluation of the axial response of a 

pile under the effect of vertical ground movements are given. They are based on 

Winkler type soil model and therefore can be used in the initial evaluation of the 

problem before performing more time consuming numerical analysis of soil-pile 

interaction. The solutions are derived using three different curve fitting functions for 

the green field ground settlement profile. Each function results in a simple closed 

form solution that can easily be computed by a hand held calculator or be 

implemented into a spread sheet program. Using the superposition principle, the 
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functions may also be used together. An example problem of tunnelling effects on 

pile was used to demonstrate the use of the present solutions.  

The solutions presented in this note refer only to the effect on the axial response due 

to vertical ground movements. In problems where the green field ground deformation 

has substantial horizontal component, a bending behaviour of the pile will supplement 

to the axial one. The current solutions do not cover this issue and further investigation 

is needed to include this effect. 
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