
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONTINUUM SOLUTION OF LATERAL 
LOADING OF LARGE PILE GROUPS 

CUED/D-SOILS/TR 334 (July 2004) 
By 

A. Klar, A.D. Spasojevic and K. Soga 
 



Klar, A. Spasojevic, A.D. and Soga, K. “Continuum Solution of Lateral Loading of Large Pile Groups,” 

Technical Report of the University of Cambridge CUED/D-SOILS/TR 334                  Page   1 

1. Introduction 
Direct rigorous 3D solutions of large pile group using either finite element methods or 
boundary element method are still computationally costly. Unless the superposition 
approach (e.g. Poulos, 1971; Randolph, 1981) is used, the memory requirement and 
calculation time are great. As a result, investigations of large pile groups are rare. A limit 
case of a large pile group is an infinite pile group for which the calculation effort may be 
even less demanding than for a single pile. This is due to the fact that each pile behaves 
identically to all other piles, allowing for creation of unit cell. This unit cell can easily be 
solved using periodic boundaries which essentially couple the degrees of freedom of the 
unit cell boundaries. Using such a technique Klar et al. (2004) studied the seismic 
behavior of infinite pile groups and noticed that pile spacing has limited affects on the 
stiffness of the foundation system. This behavior might be a direct result of an 
overcompensating effect that inherently exists in the problem: For a defined pile group 
foundation area, as the piles are spaced closer the soil-pile stiffness is reduced due to 
interaction, however, the number of piles increases and therefore balance this reduction. 
This report deals with that problem by utilized an iterative procedure similar to that 
suggested by Chow (1987) for solution of large pile groups under static loading in elastic 
continuum with flow failure mechanism around the pile.     
The report consist of 4 sections, starting with representation of the formulation which 
includes discussion of its efficiency, followed by verification and validation sections 
which examine both elastic and plastic cases of single pile and pile groups, and ending 
with a section handling the large pile group problem. Interesting observations regarding 
the nature of loading in the elasto-plastic problem of the pile are referred to in the 
validation section. 
 
2. Formulation  
Solution of soil structure interaction in elastic continuum is rigorously obtained by use of 
Green’s functions. The Green’s functions are used to construct the flexibility matrix for 
the soil, which is then inversed and incorporated in the stiffness approach as follows: 
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where [S] is the structure stiffness matrix, [�s] is the soil flexibility matrix, {u} is the 
displacement vector and {P} is the external loading vector, and Gi,j is the Green’s 
function which defines the elastic soil continuum displacement at point i due to unit 
loading at point  j. In general, solving linear problems with full matrix requires O(N3) 
arithmetic operations, where N*N  is the dimensions of the matrix involved in the 
calculation. It is not that the above equation cannot be solved iteratively with O(N2) 
operation using matrix splitting methods, but the inverse itself of the flexibility matrix 
requires O(N3) arithmetic operations.  In addition memory allocation of N*N is also 
required. The suggested method treats the problem with computational complexity of 
O(N2) and memory allocation of N as follows: 
Using Green’s functions for the displacement of soil continuum results in: 
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where {f} is the force acting on the soil medium. The displacement can be further 
decomposed: 
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where {uCL} is defined herein as local displacement which is the displacement at a point 
due to its loading solely,  and {uCA} is additional displacement at that point due to forces 
acting at different points. Remembering that the force acting on the soil is the reaction for 
the structure, one can define the soil reaction on the structure from the above equation:  
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Where {F} is the soil reaction acting on the structure. The structure itself is loaded by 
external loads and by the reaction from the soil: 

}{}{}]{[ FPuS ��          Eq. 5 
Considering that {u}={uC} due to compatibility of displacement the following equation 
can be written by introducing Eq. 3 and 4 to Eq. 5: 
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       Eq. 6 

where [K*] is a local stiffness matrix, and is diagonal. Rewriting the above equation 
results in: 

}]{[}{}]{[}]{[ ** CAuKPuKuS ���        Eq. 7 

Remembering that }]{[}{ * fsu CA �� , where }for  ,for  0{][ ,,
* jiGjis jiji 
��� , Eq. 7 

can be rewritten as follows: 
� � � � }]{][[}]{[}{ *** fsKPuKuS ����       Eq. 8 
From Eq. 5 it is known that }]{[}{}{}{ uSPFf ���� , therefore Eq. 8 can be rewritten 
as: 

� � � � }]{][[}{]][][[][][ ***** PsKPuSsKKS �� ����      Eq. 9 
which is a mixed flexibility-stiffness approach equation for the interaction problem. The 
solution of Eq. 9 is identical to that of Eq. 1. Later on, an iterative solution for Eq. 7 is 
suggested. This iterative procedure is both memory and time efficient when large systems 
are considered.  
At this point let us extend the above formulation to include local plasticity. In the current 
framework, local plasticity is regarded as any plasticity which is not distributed to the 
continuum and is limited to the point of loading. Example for such problems is interface 
problems where two elastic bodies are interacting through an elastic plastic interface. 
In the current formulation it is assumed that the pile can deflect differently than the 
elastic continuum since it is connected to it by an interface; therefore a compatibility 
equation is required:  
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where {uI} is the interface displacement.  According to the above equation, positive 
interface displacement is associated with a decrease in relative displacement between the 
pile and the elastic continuum. Let us decompose the interface displacement into elastic 
and plastic components (denoted by e and p respectively):  

}{}{}{}{ IpIeC uuuu ���         Eq. 10 
In order for the system to produce a correct elastic behavior under small loading, the 
elastic component of interface displacement must be zero, at least for small displacement. 
In the current analysis we shall consider a rigid plastic interface which means }0{}{ �Ieu . 
Eq. 3 still holds for the current plastic case as it just describe the continuum behavior 
which is assumed to remain elastic at all time. Eq. 4 simply describes equilibrium, hence 
it is also still valid. By combining Eqs. 3,4,5,10, and considering that  0}{ �Ieu  one can 
obtain the following relation: 
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The solution must be such that it does not violate the yield criteria. 
In general, plastic solution should be solved incrementally, allowing for redistribution of 
forces with loading path. However, if {f} monotonically increase through the incremental 
loading, the solution may be obtain using single increment. In that case, one can use 
secant stiffness for solution:  
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Where [Ksec] is the secant stiffness and is function of the relative displacement {u-uCA}. 
This equation may also represent problems of nonlinear elastic interface, where the 
pattern in which {f} develops throughout the loading does not affect the results. In the 
following section iterative procedures are given for the elastic, nonlinear elastic, and 
plastic problems.  
 
2.1 Iterative solution 
For the elastic system the following iterative procedure may be used: 
Set 0}{ �CAu  

Loop while ��� ]1}{[ CIMAX  
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13 



Klar, A. Spasojevic, A.D. and Soga, K. “Continuum Solution of Lateral Loading of Large Pile Groups,” 

Technical Report of the University of Cambridge CUED/D-SOILS/TR 334                  Page   4 

Where � is a controlling parameter equal or greater then 0, and CI is a compatibility 
index. If all components of CI are equal to unit the solution converged and is unique, 
hence the condition for convergence is satisfies when the error is smaller than �. 
In a similar fashion the iterative procedure for the nonlinear elastic behavior is:  
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End Loop 
 

Eq. 
14 

Where pi is the force corresponding to relative displacement u-uCA for point i, � is an 
infinitesimal positive number. 
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For the elasto-plastic system, an iterative procedure for each incremental loading is 
required: 
 
Procedure for solution of an increment (denoted as INC) 

Set 0}{ �Ipdu  
Loop 

Set 0}{ �CAu  
  Loop  
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If ��][ errIPMAX Exit Loop 

 
End Loop 

Eq. 
15 

 
The above procedure for the elasto-plastic cases contains two loops, internal and external. 
The internal loop supplies the solution of the system where the plastic displacement is 
known, while the external loop examines whether it should be changed in order not to 
violate the yield criteria.  
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The above procedure first assume that the solution is elastic, by initiating  0}{ �Ipdu . 
The solution is then examined against the yield criteria, and if it is violated, an estimation 
for the plastic displacement is established. This plastic displacement is smaller than the 
final one, since it is based on a stiffer system than the accurate one. It can be shown that: 

ioveriii
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oldi

Ip dfGdudu }{}{}{ ,��        Eq. 16 

where }{ overdf is the over estimation of the force; i.e. the amount of force exceeding the 
yield criteria. The procedure is such that it monotonically increases the plastic 
displacement until convergence is reached.   
The internal loop may be solved directly, however, this will requires formation of full 
matrices that will lead the solution to be of O(N3) operations. A faster solution may be 
obtained by combining the two loops into a single one, as shown in Eq. 17. The single 
loop procedure without condition Eq.17(i) might result in a slight overestimation of the 
plastic displacement, which in turn results in a force being underestimated and the yield 
criteria apparently not violated. This results in an inaccurate convergence. Condition 
Eq.17(i) prevents such unwanted scenario by decreasing the calculated plastic 
displacement by a factor � (�<1) for that case. The two procedures (i.e Eq.15 and Eq. 
16), results in identical solution.  
Procedure for solution of an increment (denoted as INC) 

Set 0}{ �Ipdu 0}{ �CAu  

Loop while ��� ]1}{[],[[ CIMAXIPMAXMAX err  
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In the current formulation the piles are composed of standards beam elements. The 
interaction with the soil is conducted only at the beam elements connecting nodes; The 
limit pressure considered in the current analysis is of clayey soil, and is equal to 9Cu 
(Broms, 1964), and accordingly the limit force at the node 18Cur0d, where d is the 
effective length associated with node. 
The Green’s function used in the current analysis is the Mindlin (1936) horizontal point 
load solution. However, since Mindlin solution does satisfies a value at the point of 
loading, the reference displacement value for that point was taken as the average 
displacement along the circumference of the pile. This is identical to assuming interaction 
by barrel loads.  It should be realized that due to the fact that the beam or beam elements 
are one dimensional, while in reality the pile is 3D, there will be a problem of 
compatibility for any pattern of loading. This problem of compatibility is well known, 
and is important mostly in dynamic loading of high frequency (e.g. Rajapakse and Shah, 
1989).  
 
2.2 Computational efficiency of the iterative procedure 
For the linear system, unlike for the nonlinear system, an iterative procedure is not 
required for solution. However, the advantage of the iterative procedure (i.e. Eq. 13) over 
the direct analysis is obvious for large systems constructed of many nodal points. The 
iterative procedure is associated with diagonal matrix, which require both less 
computational time and memory allocation. If, for example, a pile group is considered, 
each pile can be solve independently in each iteration, while in the direct procedure the 
system must be solved as a single unit.  
As mentioned earlier, solving linear problems with full matrix requires O(N3) 
mathematical operations, where N*N  the dimensions of the matrix involved in the 
calculation, while for each iteration of the iterative procedure only O(N2) operations are 
required. Fig. 1 shows solution time in both methods for pile group loaded horizontally 
(i.e. two degrees for freedom for each node). The numerical analyses were performed on 
a PC with an AMD Athlon1.8Ghz Processor. Solution of the linear system was conducted 
using Gaussian elimination with partial pivoting. As can be seen, the power functions fit 
well the theoretical model. In order for the iterative procedure to be more efficient than 
the direct method the number of nodes involved in the computation must be greater then 
about 200 the number of iterations. If we consider a pile group of Np*Np piles with 20 
beam elements per pile, then the iterative method is more efficient if ITNN p 10� , 
where ITN is the number of iteration for solution. Table 1 shows the ratio of time for 
solution between the iterative and the direct methods as a function of the number of 
iterations and pile group size (considering 20 elements per pile).  The shaded cells in 
Table 1 are cases in which the iterative solution is not more efficient than the direct 
method.  
 
 
 
 
 
 
 



Klar, A. Spasojevic, A.D. and Soga, K. “Continuum Solution of Lateral Loading of Large Pile Groups,” 

Technical Report of the University of Cambridge CUED/D-SOILS/TR 334                  Page   8 

Table 1. Time ratio for solution 
Number of     

      Iteration 
Group 
Size 

2 4 6 8 10 12 13 14 16 18 20 

2*2 5.556 11.111 16.667 22.222 27.778 33.333 36.111 38.889 44.444 50.000 55.556 

4*4 1.389 2.778 4.167 5.556 6.944 8.333 9.028 9.722 11.111 12.500 13.889 

6*6 0.617 1.235 1.852 2.469 3.086 3.704 4.012 4.321 4.938 5.556 6.173 

8*8 0.347 0.694 1.042 1.389 1.736 2.083 2.257 2.431 2.778 3.125 3.472 

10*10 0.222 0.444 0.667 0.889 1.111 1.333 1.444 1.556 1.778 2.000 2.222 

12*12 0.154 0.309 0.463 0.617 0.772 0.926 1.003 1.080 1.235 1.389 1.543 

14*14 0.113 0.227 0.340 0.454 0.567 0.680 0.737 0.794 0.907 1.020 1.134 

16*16 0.087 0.174 0.260 0.347 0.434 0.521 0.564 0.608 0.694 0.781 0.868 

18*18 0.069 0.137 0.206 0.274 0.343 0.412 0.446 0.480 0.549 0.617 0.686 

20*20 0.056 0.111 0.167 0.222 0.278 0.333 0.361 0.389 0.444 0.500 0.556 
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Fig. 1 Time for solution 

 
Fig. 2 shows the number of iteration required for solution under different values of � (e.g. 
Eq. 13), corresponding to the elastic large pile groups cases given in a later section. A 
solution was considered when the nodal point error � was smaller than 0.01.  For all tried 
cases an optimal � could be found (i.e. a minimum number of iterations). In addition, the 
results for different values of � deviated from each other by less than 1%, indicating that 
the nodal point error is satisfactory condition for convergence to a unique solution. The 
following observation can be noted: [1] For a certain pile spacing the greater the number 
of piles is (or B/r0) the larger the value of optimum � (where B is the width of the pile 
group, and r0 is the radius of a pile in a group). [2] For a certain amount of piles, the 
closer they are the larger the value of optimum � and also the number of iterations for 
solution. Another clear observation is that when � is greater than the optimum one, the 
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number of iterations for solution increases more or less linearly with �. One should 
remember that all of the above values were obtained for maximum nodal error �=0.01. A 
less rigorous demand will decrease significant the number of iterations. Increasing the 
tolerance to  �=0.05 can decrease the number of iterations by more than half, 
consequently leading to less than half the calculation time, making the iterative scheme 
even more appealing. For example, the case of B/r0=150, S/r0=7.5 (20*20 pile group) 
,where S is the spacing between the piles, was solved with �=25 and reached �=0.05 in 
20 iteration, for which the deviation in pile group stiffness from the �=0.01 solution was 
only 0.85%. A �=0.18 was obtained after 10 iterations and the stiffness deviation from 
the �=0.01 solution was only 5%. Considering Table 1 for time saving, it seems 
reasonable in some cases to substitute accuracy for computational efficiency.  
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Fig. 2 Influence of ���� on iteration procedure, ����=0.01. 

 
 
3. Validation 
To validate the operation of the written code, several problems were considered, both for 
single pile and pile groups.   
3.1 Single pile – Elastic response 
Fig. 3 shows flexibility coefficient from different analysis methods of elastic material. 
The coefficients involved in the pile head defalcation are as follows: 
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where U is � are the horizontal translation and rotation of the pile’s head, P and M are 
the horizontal force and moment acting on the head of the pile, r0 is the pile radius and Es 
is the Young’s modulus of the soil. The analyses results, shown in Fig. 2, are for pile with 
slenderness ratio of L/r0=60 and is composed of 30 beam elements. The iterative 
procedure is compared with 3 different results: Poulos elastic solution, Kuhlemeyer 
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(1979) rigorous finite element analysis, and Klar and Frydman (2002) relaxed finite 
different analysis, in which the continuum motion in the vertical direction is prevented. 
As can be seen the agreement is excellent. It should be noted that some of Poulos's results 
are considered to be in error due to numerical discretization effects (e.g. Kuhlemeyer, 
1979).   
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Fig. 3 Elastic solution 

 
3.2 Single pile – Plastic response  
To extend the solution to the plastic case let us use both the secant stiffness method and 
the plasticity solution. It should be realized that generally these two systems are not 
identical. Only if {df} in Eqs.15 or 17 holds a consistent sign throughout the incremental 
loading the secant method (i.e. Eq. 14) and the plastic solution (i.e. Eqs. 15 or 17) will be 
identical, even when the plastic solution is obtained using single increment of loading. It 
will be shown later that this is not always the case for the soil-pile interaction problem. 
To normalize the plastic solutions let us consider a limit yield load derived from limit 
equilibrium conditions. The pile in the current calculation is elastic, hence it can not fail 
under bending moment, and as a result the limit load will correspond to the soil limit 
reaction. Fig. 4 shows the mechanism of failure assumed for the limit load of a free head 
pile, Py. This mechanism is similar to Broms (1964) mechanism of short pile, excluding 
the omission of the soil reaction near the surface. Note, Broms definition of short piles 
and long piles is different than that related to deformation analysis. Broms defines short 
piles as piles that do not fail under bending moment, while long piles in deformation 
analysis are piles that their length does not affect their response.  
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Fig. 4 Assumed mechanism for limit load 

 
Fig. 5 shows normalized displacement curve obtained both by the iterative secant method 
and the plastic method. The secant stiffness was defined to fit an elastic plastic curve. 
The head displacement of the pile is normalized by the elastic displacement for the limit 
load, and the force at the head of the pile by the limit load. If the solution was elastic the 
response would have been a straight line with inclination of 1.  
As can be seen excellent agreement between the two methods exists. Strictly speaking, 
the results of the two methods could not be identical (at least at large loads) as some 
points along the pile experience cyclic loading, although the loading of the pile head is 
monotonic. This implicit cyclic behavior is a direct result of the changing deflection 
shape of the pile. Fig. 6 shows schematically the mechanism involved. As the pile is 
additionally loaded the deflection changes such that some points are unloaded, if these 
point were in plastic state before unloading the secant method will fail to simulate the 
process. This behavior is only associated with plastic systems, since in elastic systems the 
deflection shape is constant disregard of the magnitude of loading. Fig. 7 shows the force 
acting on the pile at normalized depth of z/L=0.6 and 0.633 as a function of the pile head 
displacement. As can be seen, the soil around the pile is first yielding due to loading in a 
certain direction and then is unloaded and reloaded in the other direction. Fig. 8 shows 
the corresponding force displacement curves of the local behavior. As can be seen, a 
cyclic behavior is observed. The secant method cannot create such displacement and the 
force displacement curve will always be lines on the backbone curve.  
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Fig. 5 Free head pile force displacement curve, L/r0=60 
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Fig. 6 Unloading of point A 
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Fig. 7 Loading along the pile as function of head displacement 
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Fig. 8 Force displacement curves for points along the pile 

 
 
 

The advantage of the plastic method is not only in the accurate representation of the 
phenomenon illustrated in Fig. 6, but its ability to model cyclic behavior without any 
modification. Fig. 9 shows a cyclic loading of the pile, as can be seen Eqs. 15 or 17 are 
sufficient to create the hysteretic loops. If one would like to incorporate softening as a 
number of cycles he can easily do so by reducing the limit load with cycles.  
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Fig. 9 Cyclic loading simulation  
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3.3 Comparison with common practice methods 
API current practice employs the use of nonlinear Winkler model. For static loading in 
soft clays Matlock’s (1970) p-y curve is suggested:  

y
o

p
r

y
p

3/1

505
5.0 ��

�

�
��
�

�
�

�
         Eq. 19 

Where p is the pressure per unit length acting on the pile and y is the pile displacement, 
�50 is the strain corresponds to one-half of the maximum principal stress difference, and   
py is the limit pressure, calculated as the minimum between wedge type failure 
mechanism and a flow around mechanism }5.0'26,18{ 000 zCuzrCurCurMinp y ���  . 
Since in the current analysis only the “flow around” mechanism is considered we shall 
limit Matlock’s p-y curve to that mode of failure. Note, the presented method can account 
for any prescribed limit load; hence the two different mechanism can still be included. 
However, in this case the logical reasoning (i.e. local plastic failure) does not apply and 
the model is less rigorous.  For sake of comparison between the methods let us assume 
that the soil is elasto-plastic, correspondingly �50 is equal to Cu/Es. Fig. 10 shows 
comparison of API model with the continuum solution. As can be seen, once the 
continuum solution ceases to be completely elastic (i.e. breaks from the straight line) the 
agreement is excellent. However, for point before that state the API model results in a 
stiffer system. It is not suggested that in reality this is not the case. However, 
theoretically, Matlock’s p-y curve must over predict the stiffness at small displacement as 

!"## yp / when 0"y . If, however, the API model represents the true soil-pile 
behavior, then the current analysis indicates that a choice of Es, for the continuum 
solution, according to �50  will result in a more flexible system for small loads and a well 
one for large loads.  
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Fig. 10 Comparison with API method 
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3.4 Pile-soil-pile interaction 
Before referring to the large pile group solution, let us consider the most simple case of 
pile group – two piles. In addition of allowing validation of the correctness of the code 
for modeling pile-soil-pile interaction, this case is important since it relates to the super 
position method, in which the interaction between every two piles in a group is 
superimpose for the group response. In the superposition method interaction factor are 
used to obtain the behavior of the group, }]{[}{ Pu $�� (where � is the flexibility of a 
single pile). The interaction factor $i,j is defined as the additional displacement to pile i 
due to unit loading on pile j, $i,i is always equal to 1. Since it is so popular, it will be used 
for comparison also in the following section dealing with large pile groups. 
Fig. 11 shows comparison between the Randolph’s (1981) interaction factors, Poulos 
(1971), and values obtained using the current method. As can be seen the current method 
results with interaction factor similar to those of Poulos (1971). Randolph’s interaction 
factors agree well for large pile spacing but slightly over predict interaction of closely 
spaced piles.  
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Fig. 11 Comparison of interaction factors for fixed head piles, ����=0.5 (piles are lined with the direction 

of loading). 
 
4. Large pile Groups 
4.1 Elastic behavior 
In the present section we shall view the response of a large pile group based on 
superposition method and the method presented in the previous sections.   
Let us consider a case of symmetric pile group, N*N, with a rigid cap of size B*B. A load 
per unit area, or average horizontal stress, may be defined as PA=PG/B2.  PG is the force 
acting on the cap and is equal also to N times the average load on a 
pile, 	 �� aviG NPPP , where N is the number of piles. Assuming the symmetric 
configuration shown in Fig. 12 N=(B/S)2

 , where S is the spacing between the piles, and 
as a result 2/ SPP avA � .  If the pile group cap is rigid, the head displacements of all piles 
are equal to the cap displacement UG which is:  

AGG PBPU 2%�%�          Eq. 20 
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where % is the pile group flexibility. If no interaction occurs between the 
piles 	 �� �� // GGG NUUP , where � is single fixed head pile flexibility. An 
efficiency factor may be considered: 

%
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��
&

NNU
P

U
U

P
withP

G

G

constPG

G

ConstUG

G

GG

1
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)ninteractio  (   Eq. 21 

Note that the solution without interaction is still affected by the spacing between the piles 
as it defines the number of piles supporting the cap. Relations between % and & can be 
developed as a function of the ratios B/r0 and S/r0: 
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       Eq. 22 

Note that for static loading & is bounded by 1�& , as a result %/� has a lower bound. It 
will be shown later that %/� becomes insensitive to the spacing between the piles as the 
pile group becomes larger. The argument for that might be explained from the above 
equation; as the pile are spaced closer the efficiency of each pile is reduced, however the 
total response is balanced by the increased number of pile such that N& is more or less 
constant.   

 
Fig. 12 Notation and geometry of symmetric pile group  

 
One of the common techniques for solution of pile groups is the superposition method 
(e.g. Poulos, 1971; Randolph, 1981). One should realize that this method is not rigorous 
since it does not consider superposition of loads on a single system, but instead 
superimpose pile responses; i.e. whenever two piles are interacting they are not “aware” 
of the existence other piles. 
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For rigid cap pile group the stiffness is 		
�

�
N

i
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1
,/ ��  , where �i,j are the 

component of the inverse interaction factors matrix $'(As a result: 
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Let us adopt Randolph’s (1981) popular superposition factor for fixed pile head: 
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Where + is the angle between the line joining the pile centers and the direction of 
loading, and pile and R is the distance between the piles.  
Since the superposition method is still popular and more computationally efficient, it will 
be used to for comparison. Fig. 13 shows normalized pile group flexibility %/� for 
B/r0=20,40,60,80,100,150 and for pile spacing S/r0 up to 30 both for the superposition 
method (e.g. SP) and the rigorous one. Few trends can be immediately recognized: [1] 
For a certain pile spacing, the larger the pile group is the stiffer it is, [2] For a certain pile 
group dimension, B/r0, the smaller the spacing between the piles is the stiffer it is. 
However, [3] the larger the pile group dimension, B/r0, is the change of stiffness with 
spacing is less noticeable. 
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Fig. 13 Normalized pile group flexibility, Ep/Es=1000 L/r0=60  

 
The third trend suggests that if B/r0 approaches infinite the pile spacing should not have 
effect at all. If B/r0 approaches infinite the pile group is also infinite and for that case 
each pile in the group behaves identically to all other piles. For that case flexibility of the 
system can be evaluated by a simpler expression than that shown in Eq. 23: 
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Where, $ is the interaction factor of all other piles with a certain pile. Considering pile 
numbering as in Fig. 13, and Randolph’s interaction factors, Eq. 25 is equal to 
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The series in the above equation does not converge, hence %/�(has no limit for infinite 
pile group. However, for the value of (B/r0)(%/�), there is a limit when !")/( 0rB :  
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As can be seen the limit value of (B/r0)(%/�) is not a function of piles spacing. No 
correction for closely spaced piles was considered; however, since the solution is not 
dependent on spacing, it still holds for interaction factors values for which no correction 
was required. One should realize that this result is based on the superposition assumption 
and Randolph’s interaction factor, and is not necessarily the true behavior of infinite pile 
group. 
There is additional limit that can be analytically calculated. If the pile group is extremely 
large and is placed in a semi infinite continuum, then the result should also correspond to 
horizontal loading of a rigid rectangular on the surface since the ratio l/B approaches 
zero. Barkan (1962) gave approximation for the horizontal loading of rigid rectangle on 
the surface:    

Q
EsBLx

h
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21�
�          Eq. 28 

Where 3h is the displacement and Q is the horizontal load, B and L are the dimension of 
the rectangle, �x is a factor depending on the both B/L and � and for B/L=1 and �=0.5 its 
value is 0.704. By manipulating the above relation one can achieve the following limit for 
the pile group.  
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Randolph (1981) expression for the stiffness of a fixed head single pile is: 
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Introducing it to Eq. 29 results in: 
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Remarkably we achieve a close value to that obtained from the infinite series of 
interaction factors. Disregarding the values, these limits suggests that the ratio (B/r0)(%/�) 
should reach a limit when as the pile group behave more and more as a large group. Fig. 
15 shows the values of Fig. 13 multiplied by B/r0.  
 

 
Fig. 14 Numbering of piles 
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Fig. 15 Normalized pile group flexibility, Ep/Es=1000 L/r0=60  

 
As can be clearly seen from Fig. 15 as the size of the pile group increase the flexibility or 
stiffness is less sensitive to the pile spacing. It seems that this insensitivity is more 
pronounce in the superposition method using Randolph’s interaction factors for small pile 
spacing. Nevertheless, as the pile group becomes larger the rigorous method also shows 
this pattern of behavior. It should be noted that the values obtained for the superposition 
method are still smaller than the limit value from the above equations. This is probably 
because a correction method is involved and that the pile group is not large enough to 
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reach the limit. The trend, however, fit the expected and for increasing pile groups size 
the values tends to the limit value.  Using Eq. 29 to establish the limit value using � of a 
single pile from the rigorous calculation results in (B/r0)(%/�*(of 7.85. This value seems 
to correspond well with a limit value for infinite group on Fig. 15.  From a comparison 
between the rigorous method and the superposition it seems that as the pile group spacing 
decreases the deviation between the two becomes larger. Since it was noticed that 
Randolph’s interaction factors over predict interaction at close spacing, even with the 
correction factor, it is hard to evaluate the contribution of the superposition assumption to 
this deviation.  
The above results refer to certain geometry. However, if one would like to use B=S(N0.5-
1) instead of B=SN0.5 (i.e. that the cap has identical area to that enclosed by the centers of 
the edge piles),  he needs to relate to B/r0 in the figures as B/r0+S/r0. Note, for large pile 
group this additional value is insignificant.  
 
 
4.2 Effect of local failure  
The formulation allows for local failure to occur. In order insure such a mode of failure 
the piles must not be closely spaced. Fig. 16 shows the nonlinear behavior of a pile group 
under different pile spacing. The horizontal axis is the average load normalized by a 
single pile capcity. Note that since the pile is fixed at its head, the failure load of a single 
pile is different than that defined earlier. Again, assuming that the pile is elastic and 
cannot fail in bending moment result in Py=18r0CuL. The vertical axis represents the 
nonlinear flexibility normalized by the elastic flexibility associated with small loads. As 
can be seen, nonlinearity starts to appear after the normalized average load exceeds 
approximately the value of 0.15. However, the larger the pile group is (and also the closer 
the piles) less pronounced is the nonlinearity.   
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Fig. 16 Normalized nonlinear pile group behavior 

 
As the soil surrounding the piles starts to fail the displacement is more and more 
associated with local plasticity and less with the elasticity which includes also interaction 
between the piles. The behavior is more pronounced in the large pile groups since the pile 
to pile interaction comprise a greater part in their elastic behavior. 
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Fig. 17 shows the ratio %/�, where in this case � is the nonlinear flexibility of a single 
pile under the average load (i.e. PG/N). As can be seen from Eq. 25, %/� can be defined as 
the average interaction factor. As the normalized average load increases the interaction is 
reduced, and the pile group behavior becomes more and more sensitive to the pile 
spacing. For example, the pile group with S/r0=12 is only about 20% more flexible than 
that of S/r0=7.5 for small loading, while for large loading it is more than 2.5 times 
greater. In practice, although not rigorous, interaction factor and the superposition 
method are used sometimes to obtain the nonlinear behavior of the pile groups. It is clear 
that in that case, an overestimation of pile group flexibility results.  
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Fig. 17 Normalized  interaction behavior, L/r0=60, Ep/Es=1000 

 
 
5. Summary and conclusions 
Large pile groups under static horizontal loading were solved. The solution employed an 
iterative procedure which reduce both computation time and memory allocation. 
Investigation of pile spacing and pile group size was conducted and the following trends 
were found: [1] For a certain pile spacing, the larger the pile group is, the stiffer it is, [2] 
For a certain pile group dimension, B/r0, the smaller the spacing between the piles, the 
stiffer it is. However, [3] the larger the pile group dimension, B/r0, is, the change of 
stiffness with spacing is less noticeable. The last trend was supported by referring to 
infinite pile group and solving it using the superposition method which resulted with the 
spacing term diminished. The investigation extended to include local failure around the 
pile. Obviously, this sort of failure corresponds more to distant piles rather than closely 
spaced piles. It was found that the greater the number of piles in a group, the less it is 
sensitive to failure; as the soil surrounding the piles starts to fail the displacement is more 
and more associated with local plasticity and less with the elasticity which includes 
significant interaction between the piles.     
In addition to the above observations, it was found in the process of validating the code 
that under elasto-plastic state, the soil along the pile may experience cyclic loading 
although the pile itself is monotonically loaded.  



Klar, A. Spasojevic, A.D. and Soga, K. “Continuum Solution of Lateral Loading of Large Pile Groups,” 

Technical Report of the University of Cambridge CUED/D-SOILS/TR 334                  Page   24 

6. References 
 
Barkan, D.D. (1962) “Dynamics of bases and foundations,” McGraw Hill, New York.  
 
Broms, B.B. (1964) “Lateral Resistance of Piles in Cohesive Soils,” Journal of the Soil 
Mechanics and Foundations Division, ASCE, Vol. 90(2) pp.27-63 
 
Chow Y.K.  (1987) “Iterative Analysis of Pile-Soil-Pile Interaction,” Geotechnique 37(3) 
pp.321-333 
 
Klar, A. and Frydman, S. (2002) “Three-Dimensional Analysis of Lateral Pile Response 
using Two-Dimensional Explicitly Numerical Scheme,” J. Geotechnical and Geo 
environment Engineering, ASCE Vol. 128(GT9) pp. 775-784 
 
Klar, A., Frydman, S. and Baker, R. (2004) “Seismic Analysis of Infinite Pile Group in 
Liquefiable Soil,” Soil Dynamics and Earthquake Engineering. In press. 
Kuhlemeyer, R. (1979) ‘‘Static and dynamic laterally loaded floating piles.’’ J. Geotech. 
Eng., 105(2), 289–304. 
 
Matlock, H. (1970) “Correlations for Design of Laterally Loaded Piles in Soft Clay,” 
Paper No. OTC 1204, Proceeding, Second Annual Offshore Technology Conference, 
Houston, Texas, Vol. 1 pp. 577-594 
 
Mindlin R.D., (1936) “Force at a Point in the Interior of a Semi-Infinite Solid,” Journal of 
Applied Physics, Vol. 7, No. 5 pp-195-202  
 
Poulos, H.G. (1971) “Behavior of Laterally Loaded Piles: I – Single Piles,” Journal of the 
Soil Mechanics and Foundation Division, Vol. 97. No. 5 pp.711-731 
 
Rajapakse, R. K. N. D., and Shah, A. H. (1989) ‘‘Impedance curves for an elastic pile.’’ 
Soil Dyn. Earthquake Eng., 8(3), 145–152. 
 
Randolph, M.F. (1981) “The Response of Flexible Piles to Lateral Loading,” 
Geotechnique Vol. 31(2) pp. 247-259 
 


