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ABSTRACT 

An elastic continuum solution and a Winkler solution of the problem of tunneling effects 

on existing pipelines are given. A comparison is made between the rigorous elastic 

continuum solution and a closed form Winkler solution with Vesic subgrade modulus. 

Although applying the Vesic expression results in the same moments and displacements 

under external loading in a Winkler system and the elastic continuum, it is found that its 

use is not necessarily adequate for the problem of tunneling effects on pipelines and may 

not be conservative due to possible underestimation of bending moment. An alternative 

expression for the subgrade modulus is provided, resulting in similar maximum bending 

moments in the Winkler and elastic continuum systems.  

 

Key words: Pipelines, Soil-pipe interaction, Winkler model, Elastic Continuum Solution, 
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INTRODUCTION 

One of the challenges facing engineers in the 21st century is the operation and maintenance 

of aging infrastructure such as pipelines. The current note addresses the effect of tunneling 

on existing buried pipelines. Fig. 1 shows a schematic diagram of the problem, in which a 

new tunnel is excavated under an existing pipe. The tunnel excavation generates soil 

settlement around the pipe causing it to deform. The pipe suffers additional bending 

moment. The magnitude of pipe deformation and the changes in bending moment depend 

on the distribution of soil settlement by tunneling at the pipeline level and the relative 

stiffness between the pipe and the surrounding soil. 

The conventional approach for obtaining a solution for this problem utilizes 

Winkler based models such as proposed by Attewell et al. (1986). In such case, an 

appropriate subgrade modulus (spring coefficient) needs to be assumed both for linear 

elastic and nonlinear analyses. In linear elastic analysis the subgrade modulus is usually 

determined by means of the Vesic (1961) expression (suggested for the current problem by 

Attewell et al., 1986). Vesic’s expression essentially allows a beam on a Winkler 

foundation to exhibit similar displacements and moments to that of a beam on an elastic 

half space when loaded with the same load.   

The aim of this note is to discuss the validity of the implementation of Vesic’s 

expression to the current problem by comparing to the rigorous elastic continuum solution. 

This aim is achieved by comparing a Winkler system and an elastic continuum system 

under the same key assumptions as follows: 

[1] A continuous elastic homogenous pipeline line is buried in homogenous soil, [2] The 

pipe is always in contact with the soil, [3] The pipe does not affect the tunnel, [4] The soil 

response to loading, at pipe level, is not aware of the tunnel (in the elastic continuum 

system this relaxing assumption allows us the use of Mindlin’s (1936) Green function for 

vertical load in a semi-infinite half space), [5] The pipeline is continuous, and [6] The 

green field soil displacement at the ‘pipe’ level is described by a Gaussian curve (Peck, 

1969) given as 
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where Smax is the maximum settlement, x is the horizontal distance from the tunnel 

centerline, and i is the distance to the inflection point of the green field trough settlement 

profile. 

As mentioned, if a Vesic-Winkler system is loaded with the same load as the elastic 

continuum system it will exhibit similar bending moment to that of the elastic continuum 

system.  In the current problem, the tunneling effect may be represented as loads on the 

system related to the soil green field displacements at the pipe level, Sv(x).  These loads 

will generally be different in the Vesic-Winkler and the elastic continuum systems; hence, 

the use of Vesic’s expression for this problem will generally result in different bending 

moments in Winkler system compared to those in the elastic continuum system. The 

magnitude of the difference is presented in this note.   

 

 
Fig. 1 Schematic representation of the problem  

 

ELASTIC CONTINUUM SOLUTION 

The pipe behavior may be represented by the following equation: 

}{}]{[ FuS =           Eq. 2 

where [S] is the stiffness matrix of the pipe composed of standard beam elements, {u} is 

the pipe displacements, and {F} is a force vector representing the soil loading acting on the 

beam elements. The pipe is buried within the soil and additional external loads to that of 

the soil do not generally exist, although they can be added if necessary, e.g. building 

structure loading. 



Klar et al. “Soil-Pipe-Tunnel Interaction: Comparison between Winkler and Elastic Continuum Solutions,” 

Technical Report of the University of Cambridge CUED/D-SOILS/TR 332 (May 2004)                 Page   4

The soil continuum displacement, uC, can be represented using a Green function: 
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where {f} is the pipe force acting on the soil medium, Gi,j is the green function which 

defines the elastic soil continuum displacement at point i due to unit loading at point  j  

The summation in Eq.3 can also be written as follows: 
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where {uCL} is the defined herein as local displacement which is the displacement at a 

point due to its loading solely, and {uCA} is additional displacement at that point due to 

forces acting at different points. Due to assumption [3] only degrees of freedom of the pipe 

need to be considered and i index can therefore be related only to the pipe. Nevertheless, 

{uCA} still involves quantities that result from the tunnel (i.e. j index is still related to the 

tunnel degree of freedom). However, since it was assumed that the pipe does not affect the 

tunnel these quantities (i.e. forces) can be decoupled as follows: 
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where {uCAP} is the additional displacement due to forces resulting from soil pipe 

interaction and  {uCAT} the additional displacement due to the existence of the tunnel. This 

decomposition is valid as long as assumption [3] holds.  

Remembering that the force acting on the soil is the reaction for the pipe, one can define 

the soil reaction on the pipe from the above equation:  
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The compatibility relation of }{}{}{}{}{ CATCAPCLC uuuuu ++== is required, and by 

introducing this and Eq. 6 into Eq. 2 the following relation is obtained: 
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where [K*] is a local stiffness matrix, and is diagonal.  
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Eq. 5 shows that }]{[}{ * fsuCAP λ=  (where jiijji Gs ,,
* )1(][ δλ −=  ;δij is Kronecker delta), 

and with }]{[}{}{ uSFf −=−=  Eq. 7 becomes 

}]{[}]]{][][[][][[ **** CATuKuSsKKS =++ λ      Eq. 8 

which is solved numerically to obtain the elastic continuum solution. {uCAT} is the green 

field displacement.  

It is to note that omitting ]][][[ ** SsK λ  in the above equation results in a Winkler-like 

model, where the soil reaction acting on the pipe is not affected by the soil response at 

different locations along the pipe. The term ]][][[ ** SsK λ  can thus be regarded as an 

additional term that takes account of continuum effects. This, however, does not mean that 

the solution obtained by omitting this term is the Winkler solution since the components of 

][ *K  are different from those which will be constructed using the Vesic (1961) subgrade 

modulus.   

In this study, the Mindlin (1936) solution (Green function) for a point load is used to 

construct the components of Eq. 8. However, since Mindlin’s solution does not satisfy 

displacement at the point of loading, a reference displacement value for that point was 

considered to be the average displacement around the circumference of the pipe. This is 

identical to assuming a barrel load around the pipe.  Actually any displacement at a point 

due to uniform load is equal to the average displacement, over the same area (or volume) 

as that of the uniform load, due to an equivalent concentrated load at that point as 

illustrated in Fig 2.  This is due to the reciprocity property of the Green function which 

states that the response at x’ due to a delta function at x is equal to the response at x due to 

a delta function at x’. 
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Fig. 2: Explanation of the barrel load identity  

 

 

To enable a general solution corresponding to different soil and pipe characteristics the 

results were normalized. The proposed normalization covers all independent parameters 

and was used to describe bending moment. Fig. 3 shows the computed normalized 

maximum sagging bending moments occurring at the tunnel centerline in relation to a 

rigidity factor R, defined as R=EI/Esr0i3 (EI is the bending stiffness of the pipe, Es is 

Young’s modulus of the soil, and r0 is the radius of the pipe). The normalized bending 

moment is defined as Mi2/EISmax.  It should be noted that all elastic analysis values 

presented in this note assumes Poisson’s ratio ν of 0.25, which is an acceptable value for 

soil under drained conditions.  Nevertheless, it was found that the response is not sensitive 

to the value of Poisson’s ratio using the current normalization with Es (e.g. difference in 

bending moments of less than 1.5% between ν=0.25 to ν=0.5, for the complete range 

plotted).  

Fig. 3 also shows the influence of pipe embedment depth, Z, from which it is clear that the 

embedment depth per se has little significance (for later comparison with the Winkler 

solution Z/r0=7 is chosen). Furthermore, the results, in the range plotted, were found to be 

practically independent of the ratio i/r0 when R was chosen as a non-dimensional 

controlling parameter. Fig. 4 provides bending moments along a pipe for different R values 

and shows that the normalized bending moment decreases with increasing R.  This 
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highlights the significance of R as can be seen from the difference to the case where the 

pipe is forced to follow the green field settlement profile (i.e. forcing behavior similar to 

R=0). 

 
Fig. 3 Maximum sagging moments  

 

 

 

 
Fig. 4  Normalized bending moment along the pipe, Z/r0=7 

 

In the following section a closed form solution for the Winkler problem under the same 

assumptions described earlier is obtained. This solution is later compared to the above 

elastic continuum solution. 
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CLOSED FORM SOLUTION OF THE WINKER PROBLEM 

The work by Attewelll et al. (1986) is often used to analyze tunnel-pipe interaction. They 

obtained a numerical solution for the Winkler problem under the aforementioned 

assumptions and used the following differential equation to represent the pipeline behavior:  

)(44 44
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       Eq. 9 

where 4

4EI
K=λ  , EI is the bending stiffness of the pipe and K is the subgrade modulus, Sp 

is the vertical pipe displacement and Sv is the green field soil settlement (i.e the soil 

settlement at the pipe level if it would not exist). An alternative mechanical system to Eq. 9 

is shown in Fig. 5. 
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Fig. 5 Mechanical representation of Eq. 9 

 

For an infinite Winkler beam, a concentrated load P creates a bending moment M of the 

following magnitude at a distance t from the location of the load (after, Hetenyi 1946): 

[ ])sin()cos()exp(
4

ttt
P

M λλλ
λ

−−=       Eq. 10 

The continuous loading due to the soil trough settlement can be replaced by an infinite 

number of infinitesimal concentrated loads dP(x), the magnitudes of which depend on the 

distance from the tunnel centre, x: 

dxxKSxdP v )()( =          Eq. 11 
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The maximum bending moment in the pipe occurs above the tunnel centerline and is 

referred to as the maximum sagging moment. Using Eq (10), each of the mentioned 

concentrated loads contributes the following amount to the bending moment at x=0: 
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)( xxx
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−−=      Eq. 12 

The influence of all infinitesimal concentrated loads is therefore: 
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Rewriting Eq. 13, a normalized maximum sagging moment can be defined: 
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A closed form solution for the above equation is feasible and is equal to: 
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Alternatively, the above equation is equivalent to:  
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where C(u) and S(u) are Fresnel Integrals.  The limit of the above equation when λi tends 

to zero is πξ 23 , which is exactly the solution obtained under the assumption of a single 

concentrated load of magnitude P=KVL, where VL is the volume loss at the pipe level, 

equal to iSmax2π . That means that as the pipe rigidity increases it feels the soil loading 

increasingly as a localized loading. 

Fig. 6 shows a comparison of the above solution with the numerical values derived by 

Attewell et al. (1986) to fit their suggested solution. General agreement exists between the 

numerical values and the current closed form solution.  
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Fig. 6 comparison between closed form solution and previous solution 

 

 

THE VALIDITY OF VESIC’S SUBGRADE MODULUS FOR PIPE-SOIL-TUNNEL INTERACTION 

The solution for the Winkler system (Eqs 15 or 16) requires the knowledge of subgrade 

modulus K. Attewell et al. (1986) suggest the use of the Vesic (1961) equation for the 

subgrade modulus, which is given by 
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where B is the width of a beam (in our case 2r0). This equation refers to a beam resting on 

the surface of an infinite half space.  

The physical meaning of this subgrade modulus is as follows. If this subgrade modulus is 

used to define the maximum moment in an infinite Winkler beam under a concentrated 

load, the moment is computed as: 
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where 2b=B.  

As a reference, the Biot (1937) solution for the same conditions (i.e. concentrated load on 

an infinite beam) but for elastic continuum is: 
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The two expressions are practically the same, and Eq. (19) provides the physical meaning 

of the Vesic (1961) equation which is simply an analog, essentially allowing a beam on 
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Winkler foundation to exhibit similar displacements and moments to that of a beam on an 

elastic foundation when loaded with concentrated loads.  

Due to the fact that the above analog refers to a beam resting on the surface of an infinite 

half space, Attewell et al. (1986) suggested taking twice the value of the Vesic expression 

since the pipe is buried in the soil, ∞= KK 2 .  

The basis for creation of any analog is that it should have the same input. Vesic (1961) 

derived Eq 17 as an analog on the basis that the two systems (i.e. Winkler and elastic 

continuum) are loaded by the same external loads. However, in the case of the effect of 

tunneling on existing pipelines the basis for creating an analog should be an identical input 

of green field settlement profile. As shown in Fig. 5, the tunnel effect may be represented 

by a force distribution along the pipe which relates to the green field settlement. Only if 

this force distribution in both systems (i.e. Winkler and continuum) is equal, the use of 

Vesic’s expression will result in identical bending moments in the two systems. This force 

distribution, f(x), at the level of the pipe, is equal to that which will cause a green field 

settlement in a pipe-less system. In a Winkler system this force distribution is equal 

f(x)=KSv, while in the continuum solution, presented in matrix form, it is }{][}{ 1 Svsf −= λ , 

where λs is the flexibility matrix of the soil  jiji Gs ,,][ =λ  (note, this is different than 

][ *sλ ). These two force distributions are not generally the same, and hence the Vesic 

expression might not necessarily be adequate for the current problem. 

For comparison purposes two non-dimensional controlling parameters ( 4
0/ EsrEI  and i/r0) 

are considered and varied. In the elastic continuum solution ( ) 4
0

3
0 // EsrEIirR = and is a 

function of these two parameters. For the Winkler closed form solution, it can be shown 

that when using ∞= KK 2  and ν=0.25, ( ) ( )0

27.04
0 //813.0 riEsrEIi

−=λ , which can then be 

substituted into Eqs (15) or (16) to compute the maximum bending moment. Fig. 7 shows 

the comparison between the normalized bending moment resulting from the continuum 

elastic analysis and the Winkler solution using Vesic’s expression.   
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Fig. 7 Comparison between continuum solution and Winkler solution using the Vesic analog 

 

For i/r0=10 the agreement between the two solutions is quite good, and from a practical 

point of view they are identical. However, as i/r0 decreases, the difference increases, 

resulting in significant differences in values. This suggests that the Vesic analog is not 

necessarily adequate for all cases, and if the soil is assumed to be linear elastic, the 

Winkler solution may not be conservative (i.e. underestimation of bending moments).  In 

the following section a revised subgrade reaction modulus for use in the Winkler system is 

suggested based on the analogy of identical green field settlement input.  

 

AN ALTERNATIVE ANALOG FOR WINKLER SOLUTION 

Since the maximum bending moment is often a parameter that controls the possible pipe 

damage due to tunneling underneath, it was chosen as the entity for the comparison 

between the Winkler and the elastic continuum systems. A subgrade reaction modulus that 

will result in similar bending moments in the Winkler and the elastic continuum systems is 

proposed here.    

In the Winkler system the normalized bending moment is a function of λi as shown in Fig. 

6, whereas in the elastic continuum it was found to be a function of R. Strictly speaking, 

there is an influence of depth Z/r0, but it is relatively small as described previously. It was 

found that in order for the functions to fit closely, 4 /3 Ri ≅λ . Rearrangement of this 

equation leads the subgrade modulus to be equal to: 

i
Esr

K 012
=           Eq. 20 
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The coefficient of subgrade reaction, defined as k=K/D (where D=pipe diameter), is 

therefore equal to k=6Es/i.  Fig. 8 shows the comparison between the Winkler solution 

with the subgrade modulus of Eq. 20 and the continuum solution as before. Good 

agreement exists between the two. Hence, it is proposed to use Eq. 15 or 16 with Eq. 20 to 

compute the maximum sagging bending moment of a pipe subjected to tunneling 

underneath. It should however be noted that the current analysis is based on an assumption 

that the soil is linear elastic. In reality soil nonlinearity will be involved and this requires 

further investigation. Nevertheless, for small displacement where elastic behavior prevails 

the elastic continuum solution is still valid. 
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Fig. 8 Comparison between continuum solution and Winkler solution under the new analog 

 

CONCLUSIONS 

A problem of tunneling effects on existing pipelines was solved using a rigorous elastic 

continuum method using Mindlin’s Green function and a more simplistic Winkler system. 

The elastic continuum solution was compared to the Winkler solution with a subgrade 

modulus based on Vesic equation, which was employed by Attewell et al. (1986). It was 

found that Vesic’s expression, which was originally derived to give the same moments and 

displacements under a concentrated load in a Winkler system as in elastic continuum, is not 

necessarily adequate for the problem of tunneling effects on pipelines and may not be 

conservative. An alternative expression for the subgrade modulus is proposed for Winkler 

system and this gives the maximum bending moments similar to the elastic continuum 

systems.  
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