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INTRODUCTION

There has recently been considerable interest in the application of artificia neura networks in
cvil engineering, frequently to cdasdfication problems. Examples incdude recommending a
veticd formwork sysem given specified information about the building characteristics and
plant avalability (Kamarthi et al., 1992) and diagnosing damage of prestressed concrete piles
given the presence or absence of specified symptoms (Yeh et al., 1993). Other examples can be
found in the recent ASCE Journal of Computing in Civil Engineering specid edition on
atificid neurd networks. Frequently the input parameters to the analyss teke discrete vaues.
However, the layered feed-forward back-propagation model commonly employed is based on
continuous trandfer functions, which indicates that it can be employed where the input and
output parameters take continuous vaues, and therefore to problems where multivariate
regresson andysis would be applicable The purpose of this note is to compare the
performance of an atificid neura network with that of conventiond regresson andyss in
characterising idealised bearing capacity data.

ARTI FI CI AL NEURAL  NETWORKS

Detalled descriptions of the philosophy, design and operation of various atificid neurd
networks can be found in Rumdhart et al. (1986) and in Eberthart and Dobbins (1992). There
is insufficient space here for a full presentation, but an gppreciation of the basic features of the
layered feed-forward back-propagation mode is necessary, since this is the modd used in this
note. A brief summary can be found in Appendix I.

Is is possble, though tedious, to write down for a given design of such an atificia neurd
network (ANN) a single equation giving the vaue & any one output node as a function of the
vaues a the input nodes and the connection weights. This equation will be large for any
non-trivid networks, but the reader should redise that the ANN training agorithm is nothing
more than an iterative, trid-and-error method for estimating the parameters in this equation. In
essence, ANNSs of the type described here fit this overdl equation to the training data using a
form of regresson andyss.
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BEARING caPACITY OF A STRIP FOUNDATI ON
| dealised problem

In order to compare the performance of an ANN with that of conventiona regresson analysis
in extracting pattern from scattered data and to evauate the effect of the level of uncertainty, the
author has chosen an idedised problem with a known, exact solution: the drained bearing
capacity of a shalow grip foundation on weightless sand. Figure 4 shows the geometry of the
problem, a foundation of width B resting on dry sand of gpparent cohesion ¢ and friction
angle ¢'.

Various expressons to estimate the ultimate bearing capacity g, exist; the one used in this
study is that suggested by Whitlow (1990):

q. :CNC+O-:0Nq (1)
where N, =exp( 7 tan ¢') tan2(45°+%,) 2)
and N, = (N, - 1)cot ¢’ (3)

where o, is the overburden pressure,

Artificially generated test data
The atificid test data was generated from equations (1), (2) and (3) usng vaues for the
input varigbles randomly distributed in the following ranges

0<c<50 kPa (4)
0< ¢’ <40° (5)
0 < 07, < 40 kPa (6)

which gives ¢, vaues in the range O-6333 kPa. The random number generator used returns a
random number evenly distributed over the specified range.

Scatter or uncertainty was introduced by applying a further random component & to the
ultimate bearing capacity such that:

4yy =qu(1+§) (7)
where g, , is the test ultimate bearing capacity, ¢ lies in the following range:
&, < E<E, ®)

and &, is the range of scatter. No scatter was introduced in the input variables, so the training
data smulates the case where the soil parameters and overburden are known precisely, but
there is uncertainty in the ultimate bearing capacity determined experimentaly.

The maximum vaue of &, used in this sudy was 0-5, equivaent to a 50% ‘error’ in the
overdl messurement, giving possible g,, vaues in the range O-10000 kPa dthough there




werefew g,, vaues greater than 5000 kPa, The ¢, , vaues where scded into the range O-l by
dividing by 10000, the input varidbles c, ¢ and o/ where dmilaly scded usng the
maximum vaues indicated in equations (4), (5) and (6) respectively.

In order to evduete the sengtivity of the ANN’s performance to the number of training pars
n,., and to the amount of scatter, severd sats of traning data were generated. Table 1 gpecifies
these sets of training data In test saries SF, the traning data sets were gengrated as judt
described. In tett saries SE a new input variable E was introduced which takes random vaues
over the range O-l but which has no effect on g,,,; in fidd data E would be a vaidde which is
believed to affect the bearing cgpacity but in fact does not, S0 this series evaduaes the effect of
induding irrdevant variables Test RE2500.50 used the same training data as test SE2500.50
but with the ANN initidised to a new st of random weights, to examine the repeatability of the
ANN results

ANALYSIS OF ARTIFICI AL BEARI NG CAPACITY DATA

The training data sets were goplied separatdy to a sries of identicd ANNs, one per set. For
test sries S the ANN had three input nodes (representing the three input variablesc, ¢, ad
0,,), four hidden nodes, and one output node (representing the bearing cgpadity), while for
tes series SE the ANN had four input nodes (as before, plus E), five hidden nodes and one
output node. There is no generdly accepted dgorithm for determining how many hidden nodes
to use, but vaues for n; = n, + n, ae typical. Following some initid experimentation, biss was
goplied to the input nodes This unusud gpproach was found to shift the mean operaing point
of the input nodes towards the range where the nodd output is mog sandtive to changes in the
input vaues, dthough the effect is dight. Condderation of the ANN eguations show thet there
ae twenty-four adjusable parameters for the (3,4,1) dedgn ad thirty-five adjugable
parameters for the { 4,5,1) desgn, both of which are amdler then the number of data paints in
al tests except those in series SF0020 and SE0020. These series are under-specified, and the
ANNs traned on these data sets should perform poorly, as would any modd generated by
regresson andyss where there ae more adjustable parameters than there are known data
points

The tolerance vaue for the mean sum-squared error was st & (-0001, giving a meen @ror in
the scded bearing capacity of 0.01. This is equivdent to an eror of +100 kPa in any one daa
point. From the reaults of the initid experimentation, the leamning coeffident and momentum
factor were both st to 0-5.

In'addition, convertiond regresson andyds was done of the training data sts. Two fitting
schemes to edimate the ultimate bearing capadity were conddered, an exact scheme and a
sample scheme. For test series S- these were:

4, =acN, +a,0,N ©)

vo' ' q




and q, =a,c+4a,0,, + 4,0, tan ¢’ (10)
respectively, while for test series SE they were:

qu = aGCNc + a’lo-:oNq + aSE (11)
ad q, =a,c+a,0, +a,0., tan¢’ +a,E (12)

respectively, where a. . .q, ae dimensonless condants determined by least squares
adjusment. The exact scheme has the same form as equation (1). The smple scheme is a linear

combination of components smilar to that used by Kramer (1977) to determine the carrying
capacity of grouted ground anchors by regresson andyss of fidd data Fitting the exact
scheme, equations (9) or (1 1), could recover the exact solution, while equations (10) or (12)
would be a reasonable smple reationship to use if the actua solution were unknown.

In order to evauate the performance of the ANN and the equations generated by regression
andysis, a further data set was produced. This evauation set conssted of 250 data points with
vaues for ¢, ¢’, o/, and E (for test series SE) generated randomly in the same way as for the
training data. The ultimate bearing capacities predicted by the trained ANNs and by the results
of the regresson analysis were compared to the true vaue from equation (1), and two error
terms calculated: the actua error, ., , and the relative error, y,,, caculated from:

Xact = qu,p _qu (13)
ad
P (14)
q.

respectively, where g, , is the predicted ultimate bearing capacity.

RESULTS

In some cases the tolerance error values for ANN training could not be reached. Instead, the
ANN'’s training error gradudly reduced to some agpparent minimum value but further training
caused the ANN to setle in a stable State where the weights did not change sgnificantly but the
traning eror was very high. This generdlly occurred only for those training sets with high
degrees of scatter, for which the tolerance criterion was relaxed and the weights corresponding
to this gpparent minimum error were accepted.

The means of x,, and %,,, X, ad %, respectively, were caculated for each data .
These are tabulated in Table 1. Figure 5 shows plots of the bearing capacity predicted by each
of the three schemes against the theoretical bearing capacity for test SF2500.00, while figures
6, 7, and 8 show the resulting plots for tests SF2500.50, SF0020.50 and SE0020.50
respectively.




The basic pattern is quite clear. The plotted results show that the predicted vaues lie in a band
whose width increases as the bearing capacity increases, indicating that 7 is a meaningful
mesasure of the scatter in the predictions, and that both the ANN and the exact scheme generate
predicted values which are scattered around the true vaue over the whole range while the
smple scheme tends to predict lower than actud bearing capacities towards the upper and
lower ends. In some cases, the smple scheme predicts negative bearing capacities.

The tabulated results indicate that the absolute error %, is generdly smdl for dl three
schemes except when there are a smdl number of training pairs, or large amounts of scatter in
the training data. Both the actua error and the relative error tend to increase as the sample size
decreases and as the degree of scatter increases, which is to be expected. None of the schemes
gppears to be disastroudy affected by the introduction of irrelevant input variables.

Comparison of test RE2500.50 with SE2500.50 shows that there could be a significant
vaidaion in the performance of a partticular ANN design even for a angle set of training data,
for different initid weights This indicates that it will be worthwhile to repeat the training
severd times and to then sdect the ANN with the best performance over a set of evaduation
data.

Generdly, the exact scheme has the lowest ¥, while the ANN has the highest, and the exact
scheme has the lowest ¥, while the smple scheme has the highest. Thet is dl three schemes
predict approximately the correct bearing capacity on average, but in terms of the error in a
single prediction the exact scheme sgnificantly outperforms the ANN, and the ANN in turn
sgnificantly outperforms the smple scheme.

Curioudy, dl three schemes predict lower than actud bearing capacities at the upper end in
test SE0020.50. This was common to the tests in series SE, and is reflected in the generdly
negetive ¥, vaues caculated. Also curious is the fact that dl three schemes tended to give
lower relative errors in test series SE than in the corresponding tests in series S, which may
reflect differences in the digtribution of the origind input variables.

CONCLUSI ONS

The reaults of this study indicate that artificia neurd networks can successfully characterise
the underlying patterns in scattered and uncertain data such as might be obtained from bearing
capacity tests. For the artificia data used, the ANNs performed less wdl than conventiond
regresson anayss where the badc rdationship was known, but much better than a smple
regression scheme where the basic rdationship was not known. In the latter Stuation, the civil
engiheer should consder the ANN technique a useful tool for extracting pettern from large
volumes of exiging data for the purposes of predicting the results of future, smilar setups.
Suitable applications would be predictions of pile settlement or grouted ground anchor
capacities (McKinley, 1993). Some experimentation in network design and training parameters
will be necessary.




APPENDIX |
Design and structure of artificial neural networks

An atificid neural network (ANN) is a Sgna processing unit, mapping a set of input data on
to a set of output data. The bass of the ANN is the node, which receives a number of inputs,
implements some transfer function and generates an output. The node represented in Figure 1
has five variable inputs plus a bias input, which is congtant, and each input has an associated
weighting factor w.

Nodes are organised into a network structure as shown in Figure 2, with three layers-an
input layer of n, nodes, a hidden layer of n; nodes and an output layer of n, nodes. There is
one input node per input variable and one output node per output variable. Conventiondly, the
st of input data to the ANN and the corresponding set of output data from the ANN are
together referred to as a ‘pair’. Each node in a given layer receives input from dl of the nodes
in the previous layer, including the bias input, and each connection between nodes has an
associated weight. In this particular ANN bias is dso gpplied to the input nodes.

The networks in this note employed a linear transfer function for the input nodes, where the

nodd output is the sum of the nodd input and the bias, and a Sgmoidd trandfer function for
hidden and output nodes, defined by equation (15):

1
1+ exp(- Y., weights X inputs)

output = (15)
Figure 3 illudrates the rdationship between the noda output and the weighted sum of the nodd
inputs, where the bias is treated as a constant input. The nodd output tends towards one as the
weighted sum becomes large and positive, towards zero as the weighted sum becomes large
and negative, and is bounded between zero and one. Clearly, the noda output is most sendtive
to variaions in the nodd input vaues where the weighted sum is smdl.

Initialisation and training

The weights associated with the nodal connections encode the mapping between the input
data and the output data. These weights are determined by presenting the ANN with numerous
examples where both the output and the input are known, and adjusting the weights until the
ANN successfully maps the input data on to the output data for these training pairs. This
process is caled ‘traning’. The training agorithm is described in Rumehart et al. (1986), and
in principle the procedure is as follows: present the ANN with the input data set of a par and
cdculate the noda error as the desired output vaue minus the computed output value, for each
output node; propagate this nodal error back through the network by decreasing those weights
which tend to increase the noda error and increasing those weights which tend to decrease the
nodal error, a process caled ‘gradient descent’; caculate the sum of the squares of the noda




errors for the pair; repeeat this process for dl training pars and calculate the mean vaue of the
sum-squared error; the god of the training process is to reduce this mean sum-squared error
over dl training pairs to below some acceptable tolerance value set by the ANN designer, o if
the error is larger than the tolerance vaue iterate the process with the new, updated weights.

On a practica leve, there are other condderations. Firdly, the weights are not generaly
updated after each training pair but instead the changes are accumulated separately during each
iteration and applied after dl of the training pairs have been presented. Secondly, instead of
updating the weights by the whole amount calculated, the change made is a proportion of this
amount plus a proportion of the change made in the previous iteration. These proportions are
the learning coefficient and the momentum factor respectively, will both be in the range O,
and their use has been found to lead to faster, less oscillatory training (Rumehart et al., 1986).
Thirdly, in order to feed the first set of input data forward the weights need to have initid
values and the training agorithm bresks down if these are zero, 0 they are initidised to
random vaues in the range -1 to +1. Other, tighter ranges are sometimes used. Fourthly,
because the nodd outputs must be between 0 and 1, it is necessary to pre-scale the output
vaues into this range and it is usud to pre-scae the input vaues smilarly.

NOTATION
a,...q, dmensonless condants determined by regresson andyss

B width of drip footing

C apparent cohesion

E input variable which has no effect on the bearing capacity
N,, N, beaing capacity factors

Myin number of training pars

n; number of nodes in ANN input layer

n; number of nodes in ANN hidden layer

n, number of nodes in ANN output layer

q, true ultimate bearing capacity

bup predicted ultimate bearing capacity

‘o test ultimate bearing capacity

w weighting factor of a connection between nodes
4 scatter factor applied to artificid data

& range of scetter in artificial deta

b';o overburden pressure

¢’ friction angle

Kact actud error in the prediction of g,

Xoci mean of the actud error in the prediction of ¢,

Lret reldtive error in the prediction of g,




X meen of the relaive error in the prediction of g,
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Test

Mirain So Zot kP2 | Tt %
ANN Exact|Simple | ANN | Exact | Simple

SF2500.00 | 2500 | 0-00 19-2 0-0 54 26.5 | 00 111-1
SF2500.05 | 2500 | 005 | 31-3 2.1 37 | 267 | 04 | 1107
SF2500.10 | 2500 | 0-10 -8.9 -1-6 4.3 23.2 | 02 110-7
SF2500.25 2500 0.25 -35.2 1-9 6-4 236 0-7 111.3
SF2500.50 2500 0-50 80-9 59 11.0 36.1 2-1 1134
SF0500.00 500 0-00 28.6 0-0 17.7 28.2 0-0 1064
SF0500.05 500 | 0-05 40-1 1-4 18-4 28.6 | 02 106.8
SF0500.10 500 | 0-10 7.2 -4.6 14-2 246 | o-7 1054
SF0500.25 500 0.25 -2.6 8.7 226 23.1 1-1 107-8
SF0500.50 500 | 0-50 87.4 48-5 50-1 334 | 75 119.0
SF0100.00 100 | 0-00 61.1 0-0 301 31.0 | o-0 107-1
SF0100.05 100 0-05 70.7 -0-3 29.7 314 0-6 107-1
SF0100.10 100 | 0-10 41-2 -6.3 25.3 29-8 1-0 106-4
SF0100.25 100 | 0.25 60-5 6-0 31-6 30-8 | 0-8 109-1
SF0100.50 100 | 050 | 277-0 45.4 79.9 92.5 6.4 118-3
SF0020.00 20 0-00 131.8 0-0 72.3 38.6 0-0 149-1
SF0020.05 20 | 0.05 | 122.8 12-6 83.9 37-5 1-6 152.6
SF0020.10 20 0-10 125-3 -2.4 70.1 37-3 19 149-7
SF0020.25 20 | 025 -18.2 4.1 64.4 23.9 0-6 154.3
SF0020.50 20 0-50 29.7 383 80-6 34.6 5:1 1653
SE2500.50 | 2500 | 050 | -78.4 -15-5 -1.1 139 | 59 74-3
SE0500.50 500 0.50 -78.3 -16.1 18.5 17.0 5-4 78.9
SE0100.50 100 | 0-50 |-108-1 -8.2 150 26.5 37 78.7
SE0020.50 20 | 050 41-5 |-110-8 60.5 398 | 12.7 72.3
RE2500.50 2500 0-50 -92.0 - - 25.4 - -

Table 1 Training data sets. specifications and results
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Figure 5 Predicted bearing capacities for data set SF2500.00
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Figure 6 Predicted bearing capacities for data set SF2500.50
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Figure 7 Predicted bearing capacities for data set SF0020.50
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