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Extracting pattern from scattered data - applicability of artificial
neural networks to the interpretation of bearing capacity data

by John D. McKinley1

There has recently been considerable interest in the application of artificial neural networks in

civil engineering, frequently to classification problems. Examples include recommending a

vertical formwork  system given specified information about the building characteristics and

plant availability (Kamarthi et al., 1992) and diagnosing damage of prestressed concrete piles

given the presence or absence of specified symptoms (Yeh et al., 1993). Other examples can be

found in the recent ASCE Journal of Computing in Civil Engineering special edition on

artificial neural networks. Frequently the input parameters to the analysis take discrete values.

However, the layered feed-forward back-propagation model commonly employed is based on

continuous transfer functions, which indicates that it can be employed where the input and

output parameters take continuous values, and therefore to problems where multivariate

regression analysis would be applicable. The purpose of this note is to compare the

performance of an artificial neural network with that of conventional regression analysis in

characterising  ideal&d  bearing capacity data.

ARTIFICIAL NEURAL NETWORKS

Detailed descriptions of the philosophy, design and operation of various artificial neural

networks can be found in Rumelhart et al. (1986) and in Eberthart and Dobbins (1992). There

is insufficient space here for a full presentation, but an appreciation of the basic features of the

layered feed-forward back-propagation model is necessary, since this is the model used in this

note. A brief summary can be found in Appendix I.

Is is possible, though tedious, to write down for a given design of such an artificial neural

network (ANN) a single equation giving the value at any one output node as a function of the

values at the input nodes and the connection weights. This equation will be large for any

non-trivial networks, but the reader should realise that the ANN training algorithm is nothing

more than an iterative, trial-and-error method for estimating the parameters in this equation. In

essence, ANNs  of the type described here fit this overall equation to the training data using a

form of regression analysis.
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BEARING CAPACITY OF ASTRIP FOUNDATION

Idealised problem
In order to compare the performance of an ANN with that of conventional regression analysis

in extracting pattern from scattered data and to evaluate the effect of the level of uncertainty, the

author has chosen an idealised problem with a known, exact solution: the drained bearing

capacity of a shallow strip foundation on weightless sand. Figure 4 shows the geometry of the

problem, a foundation of width B  resting on dry sand of apparent cohesion c and friction

angle $‘.

Various expressions to estimate the ultimate bearing capacity 4, exist; the one used in this

study is that suggested by Whitlow  (1990):

4, = cN,  + &Nq (1)

where Nq  = exp( z tan $‘) tan’ (2)

and NC  = (N, - 1)cot  @’

where o:, is the overburden pressure.

(3)

Artificially generated test data
The artificial test data was generated from equations (l), (2) and (3) using values for the

input variables randomly distributed in the following ranges:

O<cc50  kPa (4)

0 < @’  < 4o” (5)

0 < o& c 40 kPa V-5)

which gives q, values in the range O-6333 kPa.  The random number generator used returns a

random number evenly distributed over the specified range.

Scatter or uncertainty was introduced by applying a further random component 5 to the

ultimate bearing capacity such that:

4 u.1 =4,(1+5)

where q,,,  is the test ultimate bearing capacity, 4 lies in the following range:

-5,  < 5 < 5rJ.

(7)

(8)

and &,  is the range of scatter. No scatter was introduced in the input variables, so the training

data simulates the case where the soil parameters and overburden are known precisely, but

there is uncertainty in the ultimate bearing capacity determined experimentally.

The maximum value of &,  used in this study was O-5,  equivalent to a 50% ‘error’ in the

overall measurement, giving possible qu,, values in the range O-10000 kPa although there



were few q,,,  values greater than 5000 kPa.  The q,,,  values where scaled into the range O-l by

dividing by 10000; the input variables c, 4’ and ai, where similarly scaled using the

maximum values indicated in equations (4),  (5) and (6) respectively.

In order to evaluate the sensitivity of the ANN’s performance to the number of training pairs

nlrcrin  and to the amount of scatter, several sets of training data were generated. Table 1 specifies
these sets of training data. In test series SF, the training data sets were generated as just

described. In test series SE a new input variable E was introduced which takes random values

over the range O-l but which has no effect on q,,,; in field data E would be a variable which is
believed to affect the bearing capacity but in fact does not, so this series evaluates the effect of

including irrelevant variables. Test RE2500.50 used the same training data as test SE2500.50

but with the ANN initialised to a new set of random weights, to examine the repeatability of the

ANN results.

ANALYSIS OF ARTIFICIAL BEARING CAPACITY DATA

The training data sets were applied separately to a series of identical ANNs,  one per set. For

test series SF the ANN had three input nodes (representing the three input variables c, @‘,  and

c$,),  four hidden nodes, and one output node (representing the bearing capacity), while for

test series SE the ANN had four input nodes (as before, plus E), five hidden nodes and one

output node. There is no generally accepted algorithm for determining how many hidden nodes

to use, but values for nj = n,  + n,  are typical. Following some initial experimentation, bias was

applied to the input nodes. This unusual approach was found to shift the mean operating point

of the input nodes towards the range where the nodal output is most sensitive to changes in the
input values, although the effect is slight. Consideration of the ANN equations show that there

are twenty-four adjustable parameters for the (3,4,1}  design and thirty-five adjustable

parameters for the { 4,5,1)  design, both of which are smaller than the number of data points in

all tests except those in series SF0020 and SE0020. These series are under-specified, and the

ANNs  trained on these data sets should perform poorly, as would any model generated by

regression analysis where there are more adjustable parameters than there are known data

points.

The tolerance value for the mean sum-squared error was set at 0X)001,  giving a mean error in

the scaled bearing capacity of 0.01. This is equivalent to an error of 31100  kPa  in any one data

point. From the results of the initial experimentation, the learning coefficient and momentum

factor were both set to 0.5..
In addition, conventional regression analysis was done of the training data sets. TWO fitting

schemes to estimate the ultimate bearing capacity were considered, an exact scheme and a

simple scheme. For test series SF these were:

(9)



and 4, =a,c+a,o:,+a,o:,tan~’

respectively, while for test series SE they were:

4, = a,cNC  + CZ,O~~N~  + a,E

(10)

(11)

and 4, =a,c+q,,a:,  +a,,<:,  tan@‘+a,,E (12)

respectively, where a,. . .Q are dimensionless constants determined by least squares
adjustment. The exact scheme has the same form as equation (1). The simple scheme is a linear

combination of components similar to that used by Kramer (1977) to determine the carrying

capacity of grouted ground anchors by regression analysis of field data. Fitting the exact

scheme, equations (9) or (1 l), could recover the exact solution, while equations (10) or (12)

would be a reasonable simple relationship to use if the actual solution were unknown.

In order to evaluate the performance of the ANN and the equations generated by regression

analysis, a further data set was produced. This evaluation set consisted of 250 data points with

values for c, #‘, & and E (for test series SE) generated randomly in the same way as for the

training data. The ultimate bearing capacities predicted by the trained ANNs  and by the results

of the regression analysis were compared to the true value from equation (l),  and two error

terms calculated: the actual error, x,, , and the relative error, xl*,,  calculated from:

and

x act = 4u.p  -484 (13)

4
Xrcl  = u’p

-  4,I I4,
(14)

respectively, where qu,, is the predicted ultimate bearing capacity.

R ESULTS

In some cases the tolerance error values for ANN training could not be reached. Instead, the

ANN’s training error gradually reduced to some apparent minimum value but further training

caused the ANN to settle in a stable state where the weights did not change significantly but the

training error was very high. This generally occurred only for those training sets with high

degrees of scatter, for which the tolerance criterion was relaxed and the weights corresponding

to this apparent minimum error were accepted.

The means  of x,, and xIel, Za,, and zrel respectively, were calculated for each data set.

These are tabulated in Table 1. Figure 5 shows plots of the bearing capacity predicted by each

of the three schemes against the theoretical bearing capacity for test SF2500.00, while figures

6, 7, and 8 show the resulting plots for tests SF2500.50, SF0020.50 and SE0020.50

respectively.



The basic pattern is quite clear. The plotted results show that the predicted values lie in a band

whose width increases as the bearing capacity increases, indicating that jire, is a meaningful

measure of the scatter in the predictions, and that both the ANN and the exact scheme generate

predicted values which are scattered around the true value over the whole range while the

simple scheme tends to predict lower than actual bearing capacities towards the upper and

lower ends. In some cases, the simple scheme predicts negative bearing capacities.

The tabulated results indicate that the absolute error xW, is generally small for all three
schemes except when there are a small number of training pairs, or large amounts of scatter in

the training data. Both the actual error and the relative error tend to increase as the sample size

decreases and as the degree of scatter increases, which is to be expected. None of the schemes

appears to be disastrously affected by the introduction of irrelevant input variables.

Comparison of test RE2500.50 with SE2500.50 shows that there could be a significant

variation in the performance of a particular ANN design even for a single set of training data,

for different initial weights. This indicates that it will be worthwhile to repeat the training

several times and to then select the ANN with the best performance over a set of evaluation

data.

Generally, the exact scheme has the lowest zW, while the ANN has the highest, and the exact

scheme has the lowest & while the simple scheme has the highest. That is, all three schemes

predict approximately the correct bearing capacity on average, but in terms of the error in a

single prediction the exact scheme significantly outperforms the ANN, and the ANN in turn

significantly outperforms the simple scheme.

Curiously, all three schemes predict lower than actual bearing capacities at the upper end in

test SE0020.50. This was common to the tests in series SE, and is reflected in the generally

negative xW1 values calculated. Also curious is the fact that all three schemes tended to give

lower relative errors in test series SE than in the corresponding tests in series SF, which may

reflect differences in the distribution of the original input variables.

CONCLUSIONS

The results of this study indicate that artificial neural networks can successfully characterise

the underlying patterns in scattered and uncertain data such as might be obtained from bearing

capacity tests. For the artificial data used, the ANNs  performed less well than conventional

regression analysis where the basic relationship was known, but much better than a simple

regression scheme where the basic relationship was not known. In the latter situation, the civil.
engineer should consider the ANN technique a useful tool for extracting pattern from large

volumes of existing data for the purposes of predicting the results of future, similar setups.

Suitable applications would be predictions of pile settlement or grouted ground anchor

capacities (McKinley, 1993). Some experimentation in network design and training parameters

will be necessary.



APPENDIX I

Design and structure of artificial neural networks

An artificial neural network (ANN) is a signal processing unit, mapping a set of input data on

to a set of output data. The basis of the ANN is the node, which receives a number of inputs,

implements some transfer function and generates an output. The node represented in Figure 1

has five variable inputs plus a bias input, which is constant, and each input has an associated

weighting factor w.

Nodes are organised into a network structure as shown in Figure 2, with three layers-an

input layer of n, nodes, a hidden layer of nj  nodes and an output layer of n, nodes. There is

one input node per input variable and one output node per output variable. Conventionally, the

set of input data to the ANN and the corresponding set of output data from the ANN are

together referred to as a ‘pair’. Each node in a given layer receives input from all of the nodes

in the previous layer, including the bias input, and each connection between nodes has an

associated weight. In this particular ANN bias is also applied to the input nodes.

The networks in this note employed a linear transfer function for the input nodes, where the

nodal output is the sum of the nodal input and the bias, and a sigmoidal transfer function for

hidden and output nodes, defined by equation (15):

1
output =

1 + exp(-x  weights x inputs)
(15)

Figure 3 illustrates the relationship between the nodal output and the weighted sum of the nodal

inputs, where the bias is treated as a constant input. The nodal output tends towards one as the

weighted sum becomes large and positive, towards zero as the weighted sum becomes large

and negative, and is bounded between zero and one. Clearly, the nodal output is most sensitive

to variations in the nodal input values where the weighted sum is small.

Initialisation and training
The weights associated with the nodal connections encode the mapping between the input

data and the output data. These weights are determined by presenting the ANN with numerous

examples where both the output and the input are known, and adjusting the weights until the

ANN successfully maps the input data on to the output data for these training pairs. This

process is called ‘training’. The training algorithm is described in Rumelhart et aZ.  (1986),  and

in principle the procedure is as follows: present the ANN with the input data set of a pair and

calculate the nodal error as the desired output value minus the computed output value, for each

output node; propagate this nodal error back through the network by decreasing those weights

which tend to increase the nodal error and increasing those weights which tend to decrease the

nodal error, a process called ‘gradient descent’; calculate the sum of the squares of the nodal



errors for the pair; repeat this process for all training pairs and calculate the mean value of the

sum-squared error; the goal of the training process is to reduce this mean sum-squared  en-or

over all training pairs to below some acceptable tolerance value set by the ANN designer, so if

the error is larger than the tolerance value iterate the process with the new, updated weights.

On a practical level, there are other considerations. Firstly, the weights are not generally

updated after each training pair but instead the changes are accumulated separately during each

iteration and applied after all of the training pairs have been presented. Secondly, instead of

updating the weights by the whole amount calculated, the change made is a proportion of this

amount plus a proportion of the change made in the previous iteration. These proportions are

the learning coefficient and the momentum factor respectively, will both be in the range O-l,

and their use has been found to lead to faster, less oscillatory training (Rumelhart et al., 1986).

Thirdly, in order to feed the first set of input data forward the weights need to have initial

values and the training algorithm breaks down if these are zero, so they are initialised to

random values in the range -1 to +l. Other, tighter ranges are sometimes used. Fourthly,

because the nodal outputs must be between 0 and 1, it is necessary to pre-scale the output

values into this range and it is usual to pre-scale the input values similarly.

NOTATION

al”42
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nj

4

(I,

4 U.P

4 U,l

W

5

dimensionless constants determined by regression analysis

width of strip footing

apparent cohesion

input variable which has no effect on the bearing capacity

bearing capacity factors

number of training pairs

number of nodes in ANN input layer

number of nodes in ANN hidden layer

number of nodes in ANN output layer

true ultimate bearing capacity

predicted ultimate bearing capacity

test ultimate bearing capacity

weighting factor of a connection between nodes

scatter factor applied to artificial data

range of scatter in artificial data

overburden pressure

friction angle

actual error in the prediction of q,

mean of the actual error in the prediction of q,

relative error in the prediction of q,



Zrd mean of the relative error in the prediction of q,
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Test

SF2500.00

SF2500.05

SF2500.10

SF2500.25

SF2500.50

SFO500.00
SFO500.05

SF0500.10

SF0500.25

SFO500.50

SFO100.00
SF0100.05

SFOlOO.  10

SFO100.25

SF0100.50

SF0020.00
SFOO20.05

SF0020.10

SFOO20.25

SFOO20.50

SE2500.50

SE0500.50

SE0100.50

SE0020.50

RE2500.50

nrmin xc, :kPa T
I

2500
2500

2500

2500

2500

5 0 0

5 0 0
5 0 0

5 0 0

5 0 0

1 0 0
100

1 0 0

1 0 0

1 0 0

2 0
2 0

2 0

2 0

2 0

2500

5 0 0

1 0 0

2 0

2500

Exact Simple ANN

o-0 5.4 26.5
-2-l 3.7 26.7

-1.6 4.3 23.2

l-9 6.4 23.6
5.9 11.0 36.1
o-0 17.7 28.2

l-4 18.4 28.6
-4.6 14.2 24.6

8.7 22.6 23.1

48.5 50-l 33.4

o-0 30.1 31.0
-0.3 29.7 31.4

-6.3 25.3 29.8

6-O 31.6 30.8

45.4 79.9 92.5

o-0 72.3 38.6

12.6 83.9 37.5
-2.4 70.1 37.3

4.1 64.4 23.9

38.3 80.6 34.6

-15.5 -1.1 13.9

-16.1 18.5 17.0

-8.2 15.0 26.5

-110.8 60.5 39.8
- - 25.4

Table 1 Training data sets: specifications and results

0.00
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0.10

0.25

0.50
o-00

0.05

0.10
0.25

o-50

o-00
0.05

0.10

0.25

0.50

o-00

0.05
o-10

O-25

0.50

0.50

0.50

0.50

0.50

0.50

ANN

19.2

31.3

-8.9

-35.2

80.9
28.6

40.1

7.2
-2.6

87.4

61.1
70.7

41.2

60.5

277-O

131.8
122.8

125.3

-18.2

29.7

-78.4

-78.3

-108.1
41.5

-92.0

Exact

o-0

0.4
o-2

o-7

2-l

o-0
0.2

o-7
1-l

7.5

o-o
O-6

1-o

O-8
6.4

o-o

l-6
1.9

0.6

5.1

5.9

5.4

3.7

12.7
-

Simple

111.1

110.7

110.7
111.3

113.4

106.4
106.8

105.4
107.8

119.0

107.1
107-l

106.4
109-l

118.3

149-l

152.6
149.7

154.3

165.3

74.3

78.9

78.7
72.3
-
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Figure 1 Basic element of an artificial neural network
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Figure 2 Back-propagation network structure (after Eberthart and Dobbins, 1992)
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Figure 3 Sigmoidal transfer function

Figure 4 Geometry of the shallow strip foundation
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Figure 5 Predicted bearing capacities for  data set SF2500.00



6 0 0 0

A 5000.-’
M
g 4000

.g

3
3000

s
.o 2 0 0 0

3
a 1000

0

0 2000 4 0 0 0 6 0 0 0

Theoretical bearing capacity

(a) Artificial neural network

6 0 0 0 I I I I

A 5000-
.z
ij
Q 4 0 0 0 -

2

$ 2 0 0 0

3
h 1000

4-T-l-4
0 2000 4 0 0 0 6 0 0 0

Theoretical bearing capacity

(b) Exact regression equation



6000

5000

L-. 4000.d
ii
g 30002s 2000

3 1000.e

E 0

-2000 g

0 2000 4000 6000
ThemXicdl  bearing  capacity

(c) Simple regression equation

Figure 6 Predicted bearing capacities for data set SF2500.50
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Figure 7 Predicted bearing capacities for data set SF0020.50
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Predicted bearing capacities for data set SE0020.50


