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ABSTRACT’:  The peak strengths observed in shear box tests of silty clay can be interpreted either as
evidence that clay mineral particles contribute a cohesive bond, or that silt particles contribute
interlocking, in addition to the frictional strength due to effective mean normal stress between the soil
particles. Soft ground appears to behave as a ductile plastic continuum. Assuming that it satisfies the
associated flow rule of the theory of plasticity, and that plastic volume change and friction between
particles are both involved in the strength of soft ground, it is possible to derive a theoretical yield
locus for an ideal soil called Cam-clay. This ideal soil exhibits behaviour often attributed to clay, even
though it is simply an aggregate of interlocking frictional particles.

1. TAYLOR’SINTERLOCKING
In his analysis of shear box tests of dry sands D.W. Taylor1 proposed that two factors made

contributions to strength, of soil. C)ne  factor was the frictional resistance between particles as they
slipped during shear distortion of soil. A second factor he called interlocking; this factor required
work to be done to cause volume increase during shear distortion. As an example, consider a test on
dense sand Figure l(a). At peak slTength, while the relative displacement of the two halves of the
shear box increases by an amount dx , Figure l(b), there is an increase in sample thickness and a
separation of the two halves of the box  by an amount dy . The quantity dy/dx indicates the rate of
dilation of sand in the shear zone. It is a measure of the interlocking. When dy/dx  reaches a
maximum the strength reaches a peak. As dx increases and dy/dx tends to zero, the two halves of
the dense sand body in the shear box eventually slip relative to each other at a constant stress p CT  .  A
very thin layer of loosened sand on the slip plane has then reached a critical state, and there is no more
interlocking.

We can calculate the rate at which work is done at peak strength as

zdx  = podx  + ody; (1)

work in friction and dilation .

We can divide through by CT dx and obtain an equation

T/O = p + dyldx  ; (2)

s t r e n g t h  = friction. + interlocking .

The coefficient of friction p in Taylor’s example was p = 0.475 ; the calculation of interlocking at
peak strength was dy/dx = 0.17 ; the peak strength was Z/CT  = 0.645 . These results would not have
changed if the entire shear box-had been immersed in water and it had been a drained shear box test on
saturated sand.

2. INTERPRETATION OF DATA OF PEAK STRENGTH OF SOIL
Drained shear box tests can be performed on water-saturated, immersed specimens of any soil.

A number of tests can be done on :specimens of the same soil, each at a different normal effective
pressure 0’.  The data of peak drained strengths can be plotted as a line, Figure 2(a)

z = c + o’tan@. (3)
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It is possible to interpret this line as being evidence that the soil particles adhere to each other and that
c is cohesion. Alternatively, the sa:me  set of data can be seen as evidence that the soil has a constant
coefficient of friction, but that there is a variable amount of interlocking, Figure 2(b).

At any given specific volume v (the volume of space occupied by a unit volume of solid soil
particles) there is a critical effective pressure 6 at which the soil will deform in shear without
dilation, and so

hence c = (p-tan~)cJ~. (4)

For specimens tested under an effective pressure o’  c CJ~  , the dilatancy could be expressed as

2 = s - (p - t=dG

= (j.L - tan $)
(
JL
CT’

- 1 (5)

The dilatancy then satisfies the alternative explanation of peak strengths as being due to interlocking
and not due to cohesion. There are difficulties both with this equation for dilatancy, and with the test
data, as effective pressure cr’ tends towards zero . At low effective pressure, data of direct shear box
tests are unreliable. A body of newly remoulded silty clay is held together by the surface tension that
creates a positive effective stress between silt particles. This positive effective stress is equal to the
negative suction in the pore water within the clay body. If the body is immersed in water the surface
tension and the suction eventually will no longer hold the particles together. Bodies of water-
saturated, reconstituted, clay soil which are immersed in water become very soft.

A study of the strength of overconsolidated clay specimens in direct shear box tests, in
Terzaghi’s laboratory in Vienna, was undertaken by Hvorslev2. He was able to observe and control the
water content in the shear zone and the stress components on the slip planes before failure, but he was
not able to observe dilatancy and change of water content in the very thin failure plane after failure.
Terzaghi interpreted Hvorslev’s data as evidence of “true cohesion” which bonded clay particles
together. He did not consider the possibility of an interpretation involving interlocking.

In an attempt to advance testin,g  techniques Roscoe, in Cambridge, England, developed a simple
shear apparatus in which his successive students attempted to study the changes in conditions in the
shear zone both in sand and in clay soils. In 1958 a study of the yielding of soil based on some
Cambridge data of the simple shear <apparatus tests, and on much more extensive data of triaxial tests
at Imperial College, London, led to publication of the critical state concept (Roscoe, Schofield, and
Wraths).  If v is the specific volume under an effective normal pressure o’ , then for any one
particular soil the critical states satisfy an equation

v + h In cr’ = constant

where (v, 0’)  is a combination of values of specific volume.and  effective pressure that define one of
the critical states and h is a soil parameter. Roscoe hoped that it would be possible to observe
changes of specific volume during uniform shear distortion after failure at peak strength in his simple
shear apparatus, as the critical states were approached at large strain. This did not prove possible. The
triaxial apparatus proved to be better for study of the yielding of soil, and in the following sections of
this paper the discussion will be confined to data of triaxial tests on cylindrical samples of soil.

3. ELASTIC STATES AND CRITICAL STATES OF TRIAXIAL TEST SPECIMENS
A cylinder of water-saturated sand in a triaxial cell, Figure 3, carries total axial stress era , total

radial stress or  , and has a pore water pressure u . Since the effective stresses are cs’  = (CT  - u) we
can define the mean normal effective. stress as
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p’ = g (0, + 20,)  - 11 = (0; + 20:)/3,

and the triaxial deviator stress as

q = (CYa - 01) = (0; -- s’)  . 1 (6)

For a given water-saturated aggregate of interlocking soil particles with q = 0 it is found that as p’
slowly varies there is a non-linear “ml,lastic” compression and swelling of the aggregate during which
data will approximately fit an equation

v + Kin p’  = constant = vk . (7)

Here K is a soil parameter, and v,< represents one particular aggregate of particles during drained
compression and swelling without relative slip of soil particles. When there is plastic irrecoverable
slip within the aggregate of particles then there is a consequent change of v, .

Even when a triaxial test begins with a soil specimen in an elastic state, as q increases
eventually there is plastic yielding of the soil as the test progresses and the strains increase. Data of
triaxial tests indicate that at large strains, saturated soil specimens come into “critical states” defined
by  P;:  = P’(V)  , qc = q(v) , where

v + hlnpi  = r,

qc = Mp;. I (8)

If we define a parameter vk = v + 3c In p’ then there is a region in which vk < r , called the “dry”
side of critical state; this is the region in which soil fails with peak strength on a slip surface as
described above. The region in which VA  > r is called the “wet” side of critical states, and is the
region in which soil yields as a ductile plastic continuum.
subject of this paper applies to soil in this latter region.

The “Cam-clay” equation which is the

4. THE ASSOCIATED FLOW RULE OF THE THEORY OF PLASTICITY
In general, engineering students are taught to derive a plastic yield locus by considering limiting

equilibrium, and are not taught to consider the dissipation of work and the plastic flow that is
associated with plastic yielding. To explain the concept of “associated plastic flow” a simple example
will be given. The problem considered is the plane bearing capacity of a plate which supports a
combination of a vertical load, V , and a moment, M . For the sake of simplicity, the plastic body on
which the plate rests will be a level surface covered with many plastic compression elements. They
remain rigid under any pressure less than f , and they compress vertically with plastic slip when the
pressure reaches and is held at f .

Students are taught to derive a yield function and a locus from consideration of limiting statical
equilibrium in the following manner. In Figure 4 the plate of width 2b rotates clockwise through an
angle de , about a centre of rotation that is a distance 2a from the left-hand edge of the plate. The
foundation reaction is a uniform limiting pressure f below the portion of the plate that is indented into
the surface. From equilibrium, for clockwise rotation

V = (2b - 2a)f, and M = (b - a)2af,

and for anti clockwise rotation

V = 2af, and M = - (2b - 2a) af .

Introducing V, = 2bf and eliminating a from these equation gives a yield function

I (9)
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hence a yield locus can be drawn which consists of two segments of parabolic curves, Figure 5.
Just as in Figure 1 there were two components of displacement (dx, dy, relative displacement of

the two halves of the shear box) so in Figure 4 there are two components of displacement ds, de, of
the plate. The settlement ds of the vertical load V , and the rotation of de of the moment M , are
related by an equation

ds = (b - 2a) de . (11)

The work done in yielding can be calculated as the vector product of the loads times the
displacements. This should equal the work dissipated in the plastic indentation of the foundation,
which can be calculated to be the product of the limiting pressure f times the swept volume of the
indentation. This calculation can be shown to be correct, for example for a clockwise rotation, since

Vds + Md0 .= (2b - 2a.) f [(b - 2a) + a] d0

= [(2b - 2a) de. (2b - 2a)/2] f = [swept volume] : f.

This check calculation confirms that the load and displacement parameters are “work conjugate”,
In Figure 5 the axes are marked with dimensionless parameters (V/V,) and (M/bV,)  , and also

with displacement parameters (ds/b)  c:d0)  . The figure demonstrates the “associated flow rule” of the
theory of plasticity It shows the vectors of plastic flow increments to be orthogonal to the yield locus.
Four examples of associated flow vectors are shown in Figure 5 and in each case there is a link
between the combined load vector and the flow vector, as follows:

(A) a clockwise rotation de about ,the  centre of the plate, with zero v&Cal  settlement ds  = 0 , is
induced by a combination of load V = bf = XV, , and moment M = + fb2/2 ;

(B) a clockwise rotation de about the left edge of the plate, with vertical settlement ds = + bde , is
one possible displacement mechanism that can occur under the maximum vertical load
V = 2bf = V, ; there is uncertainty about the rotation because

(C) an anti-clockwise rotation
ds =

- de  about the right edge of the plate, also with vertical settlement
+ bde , is another possible displacement mechanism, and any outward directed vector

between B and C represents a possible displacement mechanism, under V = V, ;

(D) an anti-clockwise rotation - de  about a point at a distance 3b/2 from the right edge of the plate
with a vertical rise, (a negative settlement) ds = - bde/2  , is induced by a combination of
vertical load V = fb/2 , and moment M = - 3fb2/8 .

In each case the yield locus not only  defines the combinations of loads that will cause yielding. The
yield locus also defines the plastic flow that will be associated with a particular combination of loads.
There is uncertainty about the rotation when V = V, .

For any flow that is free from vorticity there is a poteniial  function such that the normals to that
function define the flow vectors. For plastic yielding the yield locus serves as the potential function.

5. YIELDING OF SOIL ON THE “WET” SIDE OF CRITICAL STATES
Soil on the “wet” side of criticdl states is observed to yield as a ductile plastic continuum. We

seek a potential function for plastic flow of soil in those states.
For the triaxial test specimen, Figure 3, the generalised load and load increment vectors are

(q, p’) and @q, 6~‘)  . The resulting plastic deformations are a change of specific volume (evident in a
back pressured burette), and an axial strain
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is&,  = 6H/H .

During isotropic compression with 6r:, = 8~ , the volumetric strain is

(13)

6v/v = cskv = (ha + 21%)  = 36&, (14)

so that SE,  = g 6~ . During general deformation we can separate the volumetric strain from the

distortional strain if we subtract J$ &, from SE,  . We therefore define triaxial shear strain as

SE, =  liEa - j$ SE” =  35 (6&a  - s&J. (15)

We can confirm  that the plastic strain increment vector (8c,, 8~“)  is work conjugate with the load
vector (q, p’) by calculating

-

6W = p’ 8E, + q SE,

In 1962 I derived a theoretical yield locus for ideal soil “wetter than critical” as follows. It
appeared likely, and I assumed it to be the case, that the dissipation of work during a general
deformation of soil in states wetter than critical was

p’ 6E”  + q 8&, = 6W = Mp’&, (17)

where M was a general&d  coefficient of friction (capital p).  This dissipation function can be
regarded simply as generalisation of equation (1). It should be noted that both Taylor’s equation (1)
and my dissipation function equation (17) assume that when there is some combination of volume
change (dy or 6~“)  and of shear distortion (dx or SE,)  it is the shear strain thatdetermines the
dissipation rate. The dilation or volume change is a geometrical consequence of interlocking, and
does not need to appear explicitly in the dissipation function. Subsequently Burland introduced
modified assumptions but in this paper I will not consider modified Cam-clay.

The original idea was very simple. The yield locus must be such that each associated plastic
flow vector (&,,  &,)  would be orthogonal to the tangent to the yield locus, hence locally

&,I&,  = - dq/dp’. (18)

In the manner followed in equation (2), equation (17) can be divided by p’ljE, to obtain an equation

8Ev  3 = M
zs+pt  ’

(1%

into which equation (18) can be substituted to give

4,dq =M*
P’ dP’

(20)

This equation is integrable. Introducing the stress ratio q/p’ = q , and
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gives dq/M +  dp’/p’  = 0. The locus has a horizontal tangent at B ,
I

h e n c e  $=A= 1 -ln$
MP (21)

This is the desired equation. From equation (21) we can draw the yield locus BF in Figure 6(i) for
soil in “states wetter than critical”. .In 1963 when this equation was first published4 I called the ideal
soil “wet-clay”. Later, in the lecture notes that I issued to final year Cambridge undergraduates in
January 1966, I substituted the name “Cam-clay” for the original “wet-clay”. Roscoe and Burlan@
used the name “modified Cam-clay” and in the subsequent literature6 it has proved helpful to introduce
the words “original Cam-clay” to distinguish between the original and the modified assumptions.

It follows from the original equation (21) that as the effective pressure p’ increases so the stress
ratio rl at which the soil yields will fall. When the effective pressure reaches a value

p’ = 2.73 p; (22)

there will be plastic volume change with q = 0 . Although there is no shear stress there can be
chaotic shear distortion. When the ideal soil is subjected to isotropic plastic compression and reaches
point F in Figure 6(i) it is in a state somewhat similar to the end point of the yield locus shown in
Figure 5, where the associated flow vector can be anywhere between B and C . Within a triaxial test
specimen of Cam-clay there can be some zones that slip in one direction and other zones that slip in a
different direction.

While there is uncertainty about the shear distortion when original Cam-clay reaches the point
F , there is no uncertainty about vk or vk . In Figures 6(i) and (ii) the points B, C, D are on the
critical state line, equation (8). The points A’, B’, G’, F’ are on a swelling and recompression line,
equation (7). At F , q = 0 and 111 (p’lp;)  = 1 , so in Figure 6 (iii) the length B”F” = 1 . At F”
the slope of the line F”H”  is (h -- K) so H”B” =. (h - K)  . This spacing between the line of
isotropic plastic compression and the critical state line is a prediction that follows directly from the
assumptions on which the original Cam-clay equation is based.

6. UNDRAINED AND DRAINED TE!ZT  PATHS
In Figure 6(ii) the critical state line B’C’D’ has equation

vk = v + h In p’ = vK + (h - tc) In p’ = F

and the isotropic plastic compression line H’F’has  equation

Vk = VK + (h  - K) h p’ = r + (h - K) .

Between these two lines a third line G’E’ represents all states of Cam-clay for which rl has a
particular value shown by the slope of the line GE in Figure 6(i). The spacing between B”C” and
G”E” can be seen in Figure 6(iii) and in equation (21). For any fixed value of r\

In (p’/pt) = B”G” = (1 - q/M)  , (23)

hence B’J” =  (h - K)(l - Tj/hQ =  ED’. (24)

So the line J”G”E”  in Figure 6(iii) has equation

VA = r + (h - K) (1 -- q/hd)  . (25)

In Figures 6(i), (ii) and (iii), two alternative test paths for triaxial test specimens are shown. The lines
FD, F’D’, F”D”  are for a test with p’ = constant , which was a type of test first undertaken by
Murayama’s group in Kyoto, in which Shibata’  found that as rl increased there was a linear decrease
of specific volume. The lines FC, F’C’, F”C” are for a test with v = constant . This is a more
common test - the undrained triaxial test with pore pressure measurement.
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In Figure 7 all test paths are reduced to a single line in a plot of VA  against r\ . People who
perform triaxial tests will find that 1:his is not a difficult way to plot their test data. The value of h is
easily and accurately obtained from data of soil classification tests and values of (p’ v) are easily
transformed into values of vk = v + h In p’. The values of (q, p’) give q = q/p’ . This is a
method of plotting test data that Schofield and Wroths proposed in 1968. It applies to the region with
r I VkL r+h- K labelled I in Figure 6. The extension of this plot into the region of Coulomb
rupture labelled II and the region of tensile fracture labelled III, the regions with VA I I’, was
discussed by Schofield9 but is not relevant here.

7. CONCLUSION
The Cam-clay equation is derived from the simple assumptions that any aggregate of

interlocking soil particles will dissipate work in Taylor’s manner, and that soil in states wetter than
critical will be a ductile plastic continuum satisfying the associated flow rule. The Cam-clay equation
explains the behaviour of soft ground without any need for assumptions about chemical bonds
between clay mineral particles. It is a mechanical model for the behaviour of water-saturated silty
soil. It is a simple model, and it does not address the important problems of anisotropy and of cyclic
loading. However original Cam-clay is consistent with Coulomb’s twice repeated10 statement that the
cohesion of newly remoulded soil is nil.
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