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Abstract: In numerical simulation of dynamic centrifuge model tests, use of cor-
rect initial conditions is important. A mathematical approach which can be used to
deterrhine the initial velocity /displacement conditions from any given digitised acceler-
ation signal was presented together with a step by step scheme. The proposed scheme
was evaluated using the base accelerations of six centrifuge model earthquakes. In each
case the scheme was able to predict the initial conditions satisfactorily.

Using these initial conditions a centrifuge model test RSS111 was analysed using a
finite element code. For all the six model earthquakes of this centrifuge test the results
from the numerical analysis agreed with the centrifuge test data when correct initial
conditions were used. One analysis with zero initial conditions resulted in unsymmetric
pore pressure generation and movement of the structure in the horizontal direction,
emphasizing the need for use of correct initial condtions in the numerical analyses.

1 Introduction

Centrifuge modelling has pfovided deep insight into complex geotechnical prob-
lems. Use of centrifuge modelling to simulate dynamic problems in Soil Mechanics has
been established over last decade at the Cambridge University, Schofield (1981). The
dynamic test data obtained has ;been used by many reséarch workers to validate the
Finite Element programs developed recently, Habibién (1987), Venter (1987), Jeyatha-
ran (1989), Madabhushi (1989). The common approach used by all the researchers was
to use a Finite Element program to analyse any given centrifuge test and compare the
results of the numerical experiment with the actual centrifuge test results. A finite
element mesh representing the centrifuge model is prepared and the base nodes of the
mesh are subjected to actual acceleration observed at the base of the model during the
dynamic centrifuge test. Many of the researchers have used zero initial velocity and
displacement conditions. However such conditions introduce a shift in the velocity term
and cause the drift of the displacement term due to the inherent integration procedure

involved.

Assume a simple sinusoidal accleration
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o) = ag Sin(wt) | o)

By integrating

o(t) = —i—" Cos(wt) + Cy 2)
and
dit) = -g-g- Sin(wt) + C, t + C, (3)
If v(0)=0 and d(0)=0 then
v(t) = %0 Cos(wt) + 20 <shift —term’ (4)
w w
dit) = —% Sin(wt) + -(-Z)ﬂt fdrift —term/ (5)

In this paper, the effect of the initial velocity and displacement conditions on the
numerical integration and hence on the whole analysis are sfudied. A new matheniatical
approach was considered to compute the appropriate initial velocity and displacement
conditions and a step by step scheme was presented to bring about these computations.
The scheme was then used in conjunction with a finite element program ‘Swandyné’,

Chan (1988), to analyse a centrifuge model test RSS111, Steedman (1986).

2 Review of litératuré

Biot (1956) has presented governing equations for the behaviour of a porus medium
saturated with fluid treating them as a coupled system. Many modifications have been
made to the Biot’s equations since then Chan (1988) has listed many of the modifi-
cations and has 1ncorporated them lnto his unified program SWANDYN E which uses
a staggered displacement-pore pressure (u-p) formulation. If the finite element solu-
tion for the Biot’s eqﬁdtions are considered for fhe case of dynamic loading (undrained

condtion) one can write

Mi+[Klu-[Qlp = f (6)



QTi+[SIp+[Hlp = f (7)

where [M] - Mass matrix

[K] - Stiffness matrix

[Q] - Coupling matrix of the two phases
[S] - Compressibility matrix

[H] - Permeability matrix

u - displacement of solid phase

p - pore pressure of fluid phase

The scheme starts by using the steady state pore pressures and solves the Eq. 6
to get the displacements which are then substituted in Eq. 7 to compute the modified
pore pressures. Thus the coupled system is solved in a staggered fashion. After solving
these equations at any time ‘t’, the time marching is brought fofward by using finite
differences schemes for the numerical integration. For the present purpose Generalised
Newmark (2"¢ order interpolation for the 2*¢ order polynomial) GN22 scheme was
used. If the acceleration time history is known then the velocity/ displacement can be

obtained as

. - . dt? dt?
Upyy = Uy + Uy dt+ut(1—92)'§'*+ut+1 6, - (9)

where 6, and 6, are constants and ‘dt’ is the data point spacing of the digitised
acceleration signal. Using Eq. 8 and 9 the velocity and displacement time histories can

be obtained provided the initial velocity and displacements_ are known.

In the next section a mathematical approach is suggested to compute these ini-
tial velocity and displacement for a given centrifuge test whose input acceleration is
available in the digitised form. These initial conditions are then used to perform the

numerical integration using Eq 8 and 9.



In order to compute the discrete fourier transform of the digitised acceleration
signal the algorithm suggested by Cooley etal (1969) was used. This algorithm splits
the given time series into sub-series until each of these will have only one term. Then

the fourier transform of the single term series is computed as

X, = Yz H (10)

and these components are then reassembled to give the fourier transform of the
original time series. This procedure requires N Log, N computations to evaluate the
transform, where N is the number of data points in the series. Also the algorithm

requires that this number N must be a power of 2.

3 Formulation

A typical accleration trace obtained from a centrifuge test can be considered as a
periodic signal if the time window is long enough, as the trace can then be assumed to

repeat itself outside the window. Now any signal that is periodic can be represented as

/

k=co - k=00 ‘
27kt . 27kt L
a(t) = a +? ,;_0 ay cos 5 +2 kil by sin T (1D

If the average acceleration is zero then a, vanishes and

| k=co .k:-‘-oo 23

a(t) = 2 Z a; coscdk t+2 Z by stnw, t (2
' k=0 k=1 ' :

27k ) 3y

where wp = ——;7— . ' (1‘3?

By integration, velocity

) k=ooa : k=’oo,_b : 3“(
v(t) = 2 £ sinw, t + 2 —* cosw, t+C
(t) :L; o *ines ,;o oy oSkt O (14}

Now if the initial velocity were to be



k-—co 706

W) = 23 &
k=

the constant C; vanishes.

Now the displacement is obtained by integrating the velocity

k=o0 =00 (37
dit) = -2 Z g—%coswkt—- Z —Zsinwkt+C2 (16)
k=0 k=1

By similar arguement the initial displacement is

: k=oo 3§
d(0) = Z —% (x7)

so that C, is zero.

Thus by computing the initial velocity and displacement using Eq. 14 and 16 , the

shift term and drift term of Eq. 4 and 5 can be eliminated.

However, it should be possible to compute the initial velocity/displacement con-
ditons from the mechanics of the bumpy road excitation system used to generate the
input acceleration, Kutter(1982). It should be noted that such a value would only be.of
limited use as before each earthquake such a value might change due lack of mechanical
fit of the excitation system. Also the solution scheme is very sensitive to the initial

conditions as demonstrated in Section 5.0.

4 Proposed scheme

~

The mathematical approach developed in the last section can be implemented

using the following scheme.
step i) compute the average acceleration. Offset the acceleration trace by the
Xy

average. This ensures that a, term of Eq. is zero.

step ii) Compute the Discrete Fourier Transform of the trace

ANY 2E 4, +ib, ) (18)



step iii) Filter the low frequencies and high frequencies using a band pass
filter. Effects of bandwidth are investigated in the next section.

step iv) Reconstruct the acceleration trace by performing a IDFT and compare
the filtered trace with original trace.

step v) Compute the initial velocity and displacement by evaluating the
7{;'(' Dk 2 é .
summations in Eq. 14 and 16—

step. vi) Using these initial conditions perform the numerical integration using

726 12k )26

\ a GN22 scheme as shown in Eq. & and &

Compare the acceleration, velocity and displacement traces.

The advantage of the procédure is that it involves computing the discrete fourier
transform of the base acceleration trace and the initial velocity/ displacemeﬁt only once
before the actual F.E. analysis is started. These conditions will then ensure the accuracy
of the integration procedure during the time stepping in the actual analysis as explained

in Sec. 2.0.

5 Numerical evaluation of the scheme

5.1 Sensitivity

In order to test the sensitivity of the GNpj integration scheme to the initial velocity
and accleration conditions a numerical experiment was carried out using a sinusoidal

signal of the form

alt) = 100 sin(2401) (19)

According to Eq. 14 the initial velocity must be -2%0,; = 0.1326291 . The
nufnerica.l integaration was performed using the above value as v(0) and later by altering
this value by a mere 15 percent (0.1127347) and the results are presented in Fig. 5.1 and
Fig. 5.2. Clearly in Fig 5.2 the displacement is eﬁ'ec,teé by the drift term and increases
with time while in Fig. 5.1 it oscillates with the same frequency as the acceleration.

(with 180° phase shift).



5.2 Base accleration of a centrifuge model

The base acceleration from a typical centrifuge model RSS111, Earthquake 1 was
filtered to remove the very low and very high frequencies. As explained in Sec. 4.0,
the initial velocity/displacement were computed and the numerical integration was
performed. In Fig. 5.3 the original trace together with the filtered trace and the
velocity and displacement traces obtained by the numerical integration are presented.
In Fig. 5.4 the spectral analyses of the same trace are presented before and after the
filtering process. In order to check the stability of the the proposed schemé several other
base acceleration traces for Earthquakes 2 to 6 were analysed and the results are shown
in Figures 5.5 through 5.9. In each case it was found that satisfactory displacement

traces which do not under go drift with time could be obtained using this scheme.

5.3 Band Pass Filter

In the proposed scheme the nécessity to filter the very low frequencies was iden-
tified. Using the base acceleration observed during Earthquake 1 for this centrifuge
model the effects of the bandwidth of the filter on the integration scheme were studied.
The numerical integration itself would reduce the. high frequencies to certain extent (as
it involves division with the square of the frequency while computing the displacement
term). Comparing Fig. 5.10 and Fig 5.12 it is evident that the low frequencies need
to be filtered as when the low frequencies are present the displacement trace oscillates
with this low frequency. However, sufficient care must be excercised in choosing the
lower cut off frequecy of the filter so that none of the dominant modes of vibration of
either the structure or the soil column are eliminated. For this, a preliminary fourier
analysis of acceleration traces at various transducer positions in the centrifuge model

can be carried out to find the dominant modes of vibration.

6 Analysis of the centrifuge test RSS111

Centrifuge test RSS111 was a dynamic test in which a solid structure was embedded
into a sand embankment. The sand embankment was saturated using silicone oil of
viscocity 80 cs to scale the permeability effects accurately, Schofield (1981). Details of

the materials used in the construction of the model and the method of construction



can be obtained from the data report, Steedman (1986).

The section of the model is shown in Fig. 6.1 along with the positioning of the
transducers within the model. The section of the model was discretised as shown in
Fig. 6.2 into 35 elements using 8 noded quadrilateral elements and 6 noded triangular
elements. The structure was assumed to be rigid during the analysis. The positions
at which the output was obtained during the numerical analyses which correspond to
the positions of the transducers in the centrifuge model are shown in Fig. 6.3. Six
earthquakes were fired on the model during the centrifuge test using the bumpy road
excitation system, Kutter (1982). The soil-structure system was analysed for each

earthquake using the finite element code ‘SWANDYNE’, Chan (1988).

6.1 Earthquake 1

The acceleration observed at the base of the model during the centrifuge test was
processed as explained in Sec. 5.2. This acceleration was then used as the input
acceleration at all of '_the base nodes of the F.E. grid shown in Sec. 2.0. The initial
velocity and displacement conditions obtained by the proposed scheme were applied at

all of the base nodes.
6.1.1 Comparison of the results

The output obtained from the numerical analyses at homologus points were com-
pared with the experimental data. In Figures 6.4 and 6.6 the time histories of acceler-
ation, pore pressure and displacéments at various points shown in Fig. 6.1 are plotted.
The results from the numerical analyses are shown in Figures 6.5 and 6.7. In all the
figures the‘ accelerations are shown in the units of m/ s.2 , excess pore pressures in the

units of KPa and the displacements in metres.

The numerical analyses could predict the general trend of the accelerations, pore
pressures and displacements observed during the actual centrifuge test. The magnitude
of accelerations obtained from the F.E. analyses were satisfactory. The vertical accel-
erations shown at ACC 1925 and 1572 have high frequency components in both the
centrifuge test and the numerical analyses. Smoothing of the acceleration trace as the
shear wave travels up through the sand medium could be simulated in both centrifuge

and numerical models as observed at ACC 3478 and ACC 3466.



The excess pore pressure histories obtained from the numerical analyses are com-
parable to the excess pore pressures generated during the centrifuge test. The shape
of the pore pressure history at PPT 2842 (located at mid depth in sand) compares
with the predicted pore pressure trace during the numerical analysis. The magnitudes
of excess pore pressures observed in the experiment are lower compared to the val-
ues predicted by the F.E. analyses. The bimodality of frequency present in the pore
pressure traces PPT 2631 and 2338 could be predicted during the first few cycles of
the earthquake after which it was superposed by higher frequency components. It is
important to note that the pore pressure traces at PPT 2855,2846 and PPT 2631,2338
which are symmetrically placed about the vertical axis, exhibit a 180° out of phase
relationship with each other as in the case of the centrifuge test. The negative pore
pressure observed at PPT 1111 as a result of ‘the suction generated by rocking of the

structure could be simulated by the numerical code.

The displacement traces of LVDT’s 1648 and 4457 compare well with the observed

experimental traces and have the same order of magnitude.
6.1.2 Pore pressure contours

From the numerical analysis pore pressure contours with a contour intervel of 10
KPa were plotted. In Fig. 6.8 these total pore pressure contours are shown after every
18.75 milliseconds. As the earthquake vibrations start the hydrostatic distribution of
the pore pressures is altered due to generation of the excess pore pressures. The regions
under the structure were subjected to large pore pressure rises.. After the completion -

of the shaking the pore pressure distribution reaches a symmetric pattern.

The excess pore pressure contours are also shown at an intervel of 10 KPa in Fig.
6.9. The triangular marks indicate the regions of high excess pore pressures. The
excess pore pressure contours confirm in the regions under the structure high excess
pore pressures were generated. The pore pressure reach a symmetric pattern towards

the end of the shaking and will dissipate with passage of time there after.
6.1.3 Analysis with zero initial conditions

In order to compare the influence of the initial conditions the analysis was repeated
using zero initial velocity and displacements at the base nodes. The results from this

analysis are presented in Fig. 6.10 . It is interesting to note that the pore pressure at



points symmetrically placed about the vertical axis of the model (PPT 2855 and 2856
; PPT 2631 and 2338) no longer exhibit the 180° out of phase relationship. Also the
horizontal displacement shqwn by LVDT 4457 increases with time as explained in Sec.
5.0. The rate at which th;a pore pressure is generated was different from the actual

centrifuge experiment.

6.2 Earthquake 2

The base acceleration observed during the second earthquake was processed as
explained in Sec. 5.2. Using this as the input acceleration and obtaining the initial

velocity and displacement condtions the F.E. analysis was carried out.

The results from the centrifuge experiment are shown in Fig. 6.11 and 6.13 while
those from the numerical analyses are presented in Fig. 6.12 and 6.14. As in the
case of Earthquake 1 the numerical analysis compared reasonably well with the actual
centrifuge test. However, it was interesting to note that the excess pore pressures gen-
erated during Earthquake 2 of the centrifuge test where lower than those in Earthquake
1. This tendency cannot be predicted by the numerical analyses as in each case the
analysis would start from the same stress state of the soil while the actual sand in the

centrifuge test would undergo some densification after each earthquake.

6.3 Earthquakes 3 to 6

Each of the earthquakes were processed as explained in Sec. 5.2 and the initial
conditions were computed using the procedure explained earlier. The results from the
centrifuge tests and the numerical analysis are presented in figures 6.15 through 6.30.
The numerical analyses were comparable to the experimental data though it must be
stressed that the F.E. analyses tend to give a band of solutions rather than the exact

solution itself.

7 Conclusions

It is possible to evaluate the initial velocity and éisplacement of a given digitised
acceleration signal using a discrete fourier transform. These initial conditions are im-

portant in the numerical integration schemes used by the Finite element programs,



especially when a centrifuge model test is being simulated using the numerical code. A
systematic procedure was evolved to compute the initial conditions for any given trace.
The procedure was evaluated using six different model earthquakes and it was found

to yield satisfactory results in each case.

Using the correct initial conditions the finite element analyses were carried out
for tht; centrifuge model test RSS111. For all the six model earthquakes analysed, the
results from the numerical code compare favourably with the centrifuge test data. It
was demonstrated that use of correct initial condtions is important in the numerical

simulation of the dynamic centrifuge model tests.
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Fig. 5.11 Effects of Band width on numerical integration (30 hz to 900 hz)



2

DISPLACEMENT (M)

Fig. 5.12 Effects of Band width on numerical integration (70 hz to 400 hz)

ACCELERATION (M/52) VELOCITY (H/5)
dbddonsxs

TR R

ACCELERATION (M/52)

Displecoment (Integreted frem Vel.)

1 1 1

TME (S)

Velocity (integreted frem Acc.)

Recorwiruction of Accl. from DFT

TE (5)

Acceleration tme history

THE (5)




ONIMVHS 3Svd 40 NOILO3HId

111SSY [opowr aFnJIjuad jo uonosg 1°9 *Jig

e

lvve OOV

'O euodljig
$50@ Ul peleinjes
pueg ool/es a1

1582 1dd
]

<
6/v€ DOV Cl

o (]

8v82 Ldd geez 1d
@ ()

vaw 1dd

I1IL 1dd @

JHNIONYHLS

&

§682 1dd §Sé¢ ldd
® ®

\}€9¢ E& 9292 En_ mmmw 1dd

HH_mmvm ooV wovm 30

Al

¢lS1 OO0V

8¥91 1LAA1

|

§261 D0V

LShY 1aAT



10 i) 18 k1 X «®
¥,
i 32018 1 1827 X XY ol « B 41 ]
' x3 x4 3} x3
1 12 18 b.+} vl R (7] 8
.2
1 13 17 2 X S| [<] a2 -l Ny R

Fig. 6.3 Finite element mesh with plot points

L 5
A ] — ] W% 5. SN
4 . 2
k] 4 ” bl [ .
el PR vy stice o v ¢S &ﬁ
“a W2 ] K] St -] ] W3 E
2 v) 5 v. I v. B 2 "
3 K] K] N K] 2] a5 e o2 o K3 7 \‘9\
1 1 1 2 % n___|x o q L) L)

Fig. 6.2 Finite element discretisation

.



1024 data points per truasducer, plotted after | coporhing pass
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1024 data points per full. transducer record, plotted after | smoothing pass
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1024 data points pes ransducer, glatted after ! Z3oorhing pass
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1024 catag points per *‘ransgucer, plotted after ! smoorhing pass
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Fig. 6.18 Numerical analysis for Test RSS111 - EQ. NO:-3
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1024 data points per !ransducer, plotted alfter ! caoothing pass
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Fig. 6.22 Numerical analysis for Test RSS111 - EQ. NO: 4




024 data points per rransducer, plotteg after ! smoothing pass
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Fig. 6.24 Numerical analysis for Test RSS111 - EQ. NO: 5
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Fig. 6.24 Numerical analysis for Test RSS111 - EQ. NO: 5 (coqf.)
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Fig. 6.26 Numerical analysis for Test RSS111 - EQ. NO: 5
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Fig. 6.28 Numerical analysis for Test RSS111 - EQ. NO: 6
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Fig. 6.28 Numerical analysis for Test RSS111 - EQ. NO: 6 (cont.)
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Fig. 6.30 Numerical analysis for Test RSS111 - EQ. NO: 6




