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ABSTRACT: A two-phase mixture model for evaluating stress-strain relationship of mixfures with different
elastic materials is proposed based on the consideration of stress distribution. As a homogenisation method in
numerical analysis of composite materials, this approach is applied to improved ground with pile-shaped
columns for obtaining average elastic moduli and yield stresses of the improved ground. A series of model tests
of the improved ground with cement-treated soil columns was conducted and vertical settlement and herizontal
displacement under inclined loads was measured. From comparison between the numerical analysis and test
results, it is confirmed that the proposed method is effective for predlctmg the coefficients of subgrade reaction

and bearing capacities of the improved ground

1 INTRODUCTION

Mechanical properties of many kinds of mixtures are
needed to be clarified in geotechnical engineering.
Improved ground made by the Deep Mixing Method
is a composite ground with pile-shaped columns and
it is regarded as one of the mixtures. For obtaining
average behaviour of the improved ground, it is
required to apply any homogenisation method.

In this paper, a homogenisation method for
two-phase mixtures is discussed and applied to the
improved ground with cement-treated soil columns.
First, the two-phase mixture model is proposed
based on the evaluation of stress distribution.
Stress-strain relationship of the mixtures with
different elastic materials is derived from the
proposed model. As an application of this
homogenisation method, average elastic moduli and
yield criterion of the improved ground are obtained.
In order to confirm the validity of the proposed
method, 1-g model tests of the improved ground
with cement-treated soil columns were conducted and
the test results are compared with the results
calculated by FEM analysis.

2 TWO-PHASE MIXTURE MODEL
2.1 Previous study

Some homogenisation methods for two-phase
mixtures have been proposed. Estimation of elastic
moduli of the mixtures is a classical problem in
micromechanics. Pioneer works on the estimation of
elastic moduli of the mixtures have been performed

by Voigt and Reuss V@lgt (1889): assumed that all
the elements of the mixture are subjected to the same
uniform strain and Reuss (1929) assusned that all the
mixture efements are subjected 10 a uniform stress
equal to the -applied stress.- The Voigt and Reuss
approximations give upper and lower bounds of the
elastic moduli of the mixtures, respectively. Hashin
(1962), Hashin and Shtrikeman (1962) have derived
upper and lower bounds of the elastic moduli of the
mixtures based on new variational principles. On the
other hand, Eshelby (1957) first pointed out that the
stress disturbance in a mixtire ¢an be simulated by
an eigenstress (internal stress) caused by an

inclusion, and .elastic moduli of mixtures with

_ellipsoidal inclusions are derived from this methed.
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From the different pomt of -view; the authors has
proposed a homogenisation method for evaluating
siress-strain relationship 6f two-phiase mixtures with
random spherical inclusions (Omine. et al., 1992).

The model cannot be applied to mixtures with
various shaped inclusions. Hence, it is important to
use an appropriate method suited for the individual
mixture. ) ' ’
2.2 Stress-strain relatwnshtp of two-phase
mixtures

Two-phase mixture consists of two - different
materials, namely matrix and inclusion. Stress-strain
relationship of the two-phase mixtures is discussed
based on the stress distribution in the mixture. '

First of all, average stress, g, and average sfrain,
& of the mixture are defined as
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where f, is volume fraction of inclusions and
subscript's' and superscript ' *' mean inclusion and

matrix, respectively. Stress-strain relationships of the -

inclusion and the matrix are represented as,

& = Cs O; 3
£§=CO @

where Cs and C* are complicances of inclusion and
matrix, respectively. In order to evaluate the stress
disteibition in the mixture; the following relationship

. between - stresscs of. ths mc]nsmn and matrix. is

mtrodueed,

a,—bc

extension of the stress distribution parameter which
was used in the previous study (Omine et al., 1998).
The:valueof the stress distribution teasor depends on
ashape of the inclosion, so that determination of the
stress: distribution fensor is mentioned  in the next
section.. If-the stress dlsmﬂ)unon tensor are known,

)

.wheretbesiressdzshibunoatensor b, is an

" where 1S unittensor:® - v et 1 o

2.3 Determination of stress distribution tensor

For discussing determination method of the stress
distribution parameter for various mixtures, the
relationship between the stress distribution parameter
and Eshelby's tensor is shown in Fig.1. The stress
distribution parameter for the laminateS or the
mixtures with spherical inclusions. is represented as a
power function of Young's modulus ratio, EJE, of
inclusion and matrix. It has been also found from
the results of numerical analysis that the adequate
value of 7 is in the range of 1/3~1/6 for the mixtures
with pile-shaped inclusions (Adams et al., 1967,
Omine et al., 1997). On the other hand, Eshelby has
proposed elastic . moduli .of the mixtures with

ellipsoidal inclusions, This. method has a limitation to
. mixtures with large

lume fraction of inclusions.

However it is apphmblc 1o mixtures: with various
shaped inclusions because an elhpso;d with radiuses
of @, a, and a, changes into various shapes, for

example,. sphere (a,=a,=a;), cylinder (=) and

plate (g,=a,=%°).. The values of Eshelby’s tensor are
given for the following mixtures as,

S 1111 =1 ; Horizontal Laminate
S 1111 =0; Vertical Laminate

-

P =_L5L__
average Stress-strain relationship. of the mixtures is Sun C15(-v) ; Spherical inclusion -
represented ﬁom Egs{1)~(5) as follows,_ . -
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Figure 1. Relationship between stréSs distribution parameter and Eshelby's tensor.

As shown in -Fig.1,” a power, i, of the suéés
distribution parameter (in the i-direction of applied
stress) is approximately related to Eshelby’s tensor
as

n=1-S iiii . (7)

Hence, the stress distribution parameter of the
mixture with ellipsoidal inclusions is given using
Eq.(7) as follows,

In the condition of G, +0 and all other stresses are
zero, the Young's modulus of the mixture is
represented by substituting Eq.(8) into the following
equation

Fo (DA ©
b, AF) ~
E; “E

Figure 2 shows comparison between the results of
numerical analysis by Adams et al. (1967) and the
calculated results calculated from Eq.(9) for
pile-shaped inchisions. . The average Young's
modulus of the mixtures normalized by that of the
matrix increases with increase in Young's modulus
ratio of, E/E", and the volume fraction of inclusions,
f.. Although Eshelby's method is not applicable to
the mixtures: with large amount of inclusions, the
proposed equation estimates well Young's modulus
of the mixtures with various volume: fractions of
inclusions in the range of E,/E” less than 100.

Elastic compliances' of inclusion and matrix in
general form can be expr&ssed by Young's moduli of
these materials as ¢ [,,, =1/, and Cs 1111 = VE;.
Young's modulus rato, EJE", is represented as a
compliance ratio, C;}11/Cs1111, Of inclusion and
matrix. In order ;10 generalise the -stress-strain
relationship of mixtures with ellipsoidal inclusions,

10 T T r——r—TTTTTT |
| Numerical Analysis Proposed Equation Y
| by Adams (1967) | 1,=70% ©00
8 X [eXaRa]
L [ & f=70% c®e
- |0 ,=55% Pile-shaped
6 M 0 f,=40% inclusion
ltﬁ I Proposed
LTI A Equation
4T £ oD+l
i : 5_4-_1:_
2 %/ . b= &. ] lssml
. \E
- { Sy =069
0 o : {v==035)
1 10 100
E/E"

Figure 2 Comparison between the results of
numerical analysis and the proposed equation.

the siress. *distribiition Fparameter of Eq.(8) is
extended into stress distribution tensor in a simple
nanner as

’ { c.n Y S |
b= b =3 | 2L ) : ‘
e ( Csijij ikl - (10)

Eshelby ’ s tensor, Sf,-,d, of the mixtures with

ellipsoidal inclusions is represented in a general
expression as a function of radiuses of ellipsoid (a,,
a, and a,) (Mura, 1982). The sumination convention
is not used for i, j, k and ! in the parenthesis, {}, of
the Eq.(10). All other non-zero components of the
stress distribution tensor are obtained by the cyclic
permutation of (1, 2, 3). The components which
cannot be obtained by the cyclic permutation are zero
(for instant, by112=b1223=b1232=0).

3 APPLICATION TO IMPROVED GROUND

3.1 Average elastzc moduli of the improved
ground .

Improved ground by  the deep mixing method
(DMM) is a oomp051te ground ‘with pile—shaped
columns as shown in Fig.3. Such improved ground
is regarded as anisetropic material with different
elastic moduli for horizontal and vertical directions.
The elastic behaviour of the improved ground is
represented by the following stress-strain

relationship :
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Figure 3. Improved ground with pile-shéped
columns. : :
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vlhere_f,, =§1 =Ez_ > E" =-E:; 3 %},ifé@'lz H
Grv=G13=G23> Vyh=V31=V32 > vpp=vyy and
subscripts of 'h' and 'v' mean horizontal and vertical
components, respectively. The average Young's
moduli, Poisson's ratios and shear moduli of the
improved ground are given from the proposed
two-phase mixture model as

E=-Gi-Df+1 (12)
fibi  (-f5)
Es E®
Vs 1Y
|
i =
b, (1-f5) (13)
Es E* -

G = (bij - 1)fs +1

J_fsbij + !1‘25! ‘ (14)
Gs G*

Thus, the average elastic moduli of the improved
ground are obtained from those of the improved soil
and the original soil. The stress distribution tensors
in Egs.(12)~(14) are expressed as follows, °

by = &) 9

where b; =b;i;; and b;j =bjj;; and Eshelby's tensors
for the mixtures with pile-shaped inclusions are
S1111582222=3/4, S333;=0 and § 1212=51213=5233=1/4
(Mura,1982).

3.2 Yield criterion of the improved ground

Itis assumed that the improved soil and the original
soil are both linear elastic perfectly plastic material as
shown in Fig.4. If the frictional angles of the
improved soil and the original soil are zero in
undrained condition, the yield stresses of those soils
are represented as

Oys = 2Cus

O =20

where cus and ¢, are cohesions of the improved soil
and the original soil, respectively. When horizontal
stress, oy, » is applied to the improved ground, it is
considered that the original soil yields first and then

the average stress of the original soil is represented
as

O11=0y =26 17

'Ilfe.average stress of improved soil at yield of the
original soil is represented using the stress

G .- .

A .
0, Improved soil
e Original soil

1 é .
EYS g; >

Figure 4. Linear elastic perfectly plastic model for
improved and original soils.

distribution tensor, by (=b1111) , as follows
Os11=bp Oy11 = 2bpea’ (18)

Hence, the yield stress, g, (=0, 11 ) » of improved
ground in the horizontalcydirec?on 25 given as an
average stress of the improved soil and the original
soil (Egs.(17) and (18)),

Syn = 2(fsbh +1-f5 Yo )

In a similar manner, the yield stress of the iniproved
ground in the vertical direction is obtained from the
yielding condition of the improved soil as

Oy =2{ fe +(1- f5) /bv }eus (20)
On the other hand, it is considered that the original
soil yields at first for the shear stress, g, - The yield
SIess, Gy, (=0y 12) » Of the improved ground in the
horizontal shear component is given as an average
stress of the improved-soil and the original soil,

Oyhh = —{2,? (fsbun +1-fs )cu” (1)

w_here von Miss cn't_grion is used. Furthermore, the
yield stress, gy, (=0 13=0y 23), Of the improved
ground in horizontal-vertical shear component is also
obtained as

S =T bt #1-Fe ) @
Finally, the following modified von Mises criterion

is applied in the consideration of the anisotropic yield
condition of the improved ground,

;L(_Z"':]b2 (611'322)2

2|52
+ (.622'633)2_'_ (633'811 )2
20,,° 26,2

o ¥ (o ¥, [onf_
+(5yhh)2+(3yhv)z+(3yhv)z ! )

where the individual yield stress in Eq.(23) is
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obtained from Eqs:(18)~(22): This equation is a
simple extension of Von Mises criterion and the
parameters are decided from the linear elastic
perfectly plastic properties of the improved soil and
the original soil, namely, Es, E°, cusand ¢,

4 VERIFICATION OF THE PROPOSED
METHOD BY 1G-MODEL TESTS

4.1 Model tests

In order to confirm the validity of the proposed
homogenisation method, 1g-mode! tests of the
improved ground with cement-treated soil columns
are conducted. A general view of the model test is
shown in Fig.5. Improved soil columns of 30mm in
diameter and 200mm in height were made in a mould
by mixing Kaolin clay slurry and portland cement.
On the other hand, original soft ground with small
stiffness and small strength was made by adding a
small amount of cement (15kg/m¥) to Kaolin clay
slurry without consolidation and poring it into the
specimen box. The improved soil columns were

Virtical load Rigid plate

Cement-treated soil colu\mn l Soft clay
b - ‘Horizontal load
y 5 170
Bl ﬂ 200
e : ; “' .‘l
o 1| -
970 150 Unit : mm

Figure 5. A general view of the model test.

Cement treated columns

o g OO
oo KRS

000
© O 9§ 000

000

£5=22% £=42%

Figure 6. Arrangements of improved soil columns.
Table 1. Test cases.

Cement Nymber 1mprove-  Inclined

content  of m‘;{“ load ratio

3 1 v ratio

(kg/m’) columns — %g /9.
Case-1 90 8 22 0. 0.3. 0.6
Case-2 90 15 42 0. 0.3. 0.6
Case-3 250 8 22 0. 0.3. 0.6

instzlled into the ofiginat grotnd then. Arrangements
of the improved soil columns are shown in Fig.6.
The model ground is cured for 3 days and the tops of
the improved soil columns are fixed to a rigid plate
using plaster. Test cases are shown in Table 1.
Loading tests of the improved model ground were
conducted under stress —controlled conditions,
Increments of vertical. stress of 0.96kPa and
horizontal stress corresponding to the inclined load
ratio were applied to the model ground using weights
placed every minute.

4.2 Determination of the parameters for numerical
analysis

For determining the soil parameters in FEM analysis,
unconfined compression tests of the improved: soil
and - the original soil : were conducted. These
specimens with 38mm in diameter and 76mm in
height were made under the same curing condition.
The strain rate in the tests was about 1%/min.
Relationships between compressive siress and axial
strain of the improved soils are shown in Fig. 7. The
improved soils with relatively small cements content
were made because of a limitation of load weight
capacity in the test apparatus. However, it is found
that these improved soils have a clear peak strength
and the effect of cementation appears adequately. In
addition, the original soil with a small amount of
cement has no clear peak strength and the value of
the strength is very small comparing with those of
the improved soils.

The finite element mesh for analysis of the model
test is shown in Fig.8. The improved soil and the
original soil are assumed both linear elastic perfectly
plastic materials. The soil parameters used in the
analysis are shown in Table 2. The deformation
moduli, E, obtained from the unconfined
compression tests of the improved soils and the
original soil are used as each elastic modulus.
Cohesions of the improved soils and the original soil

300 [~

=

<

:200 [\ \ - Cement content

g 250kg/m?

-]

£

[

3 100 -
PR AV SN S I

0 1 2 3 4
Axial strain (%)

Figure 7. Relationships between compressive stress
and axial strain of the improved soils.
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4.3 Comparison: between namencal .anglysis and

“Table 3. Testresults of model tests.

sﬁ'ength The Poissen’s rafios of 0.4 and 0.49 arc  test results 250 P 3T
dssumed for the improved soils and the original soil, . ' Inclined Case-1 Case-2 Case 3
res.pect_ively.. Average elastic gmduli, Poisson’s Comparison between the FEM analysis and the ,\200 i g ;;l\:lrﬁ;ss:s ] loadratio | q Qe | § )
ratios and yield stresses of the improved ground in  test results on the deformation behaviour of the E _ ‘ %9, (klf’va) (kPa) (klf"a) (kPa) (kPa) (k?a)
each direction are calculated using the proposed i S150 - o/ 7 MRS,
homogenisation method - (Egs.(12)~(14) and , ; b} G 0 J2500 o0 [3920 o0 5790 0.
(18)~(21)). Anisotropic elasticity and perfectly ~ Table 2. Material parameters used in analyses. | 100 1 o B 03  [1450 4352167 650 {26.00 7.80
plasticity (mégde(lll\;vl;ﬂ;d ﬂ(1§3 )1;10diﬁed h‘::ln L?:s& (a) Improved soil and original soil | 50 ) o _ 0.6 |9.50 570 ] 10.00 6.00 [11.53 6.92
approach (Eqs are applied in - sson" ; | B ' =0 T
analysis of the improved ground. . Flasi n:;Odulus Po§z%n ® Shea;;uo?m ! ) 1 qh/?v—
’ ° ed ground are shown in"Fig.9 (a) and ().
X 2 ° Case-1 Case-2 Case-3 imptov
T EE % Y w0k a(P) . Fig.9 (a) shows the relationship between vertical
q, Case-1| 17262 4171 {040 049 29.96  2.66 €0 T T T load intensity, g,, and normalized vertical settlerment,
L—ql , Case-2| 17262 4171 [0.40. 0.49 | 29.96: - 2.66 . 50 L [0 Test results i d/B, in the condition of inclined load ratio, 3,/44,=0,
= R Case3| 58238 4171 [040 04911329 266" = | | O FEM analysis where d is vertical settlement and B is width of the
: . - — §~40 = . rigid plate. Fig:9 (b) shows the relationships
o = () Improved ground » & between horizontal load intesisity, g,; and normalized
; - e Elastic modulus | Poisson's | Yield stress S 30 horizontal displacement, h/B, in-the comdition of
: : (kPa) ratio (kPa) oF inclined load ratio, g;/g,=0.3, where k is horizontal
Im Wed “ On al d vt 20 |- G
P area gm B E, B Gy |V Ya|% G Ou displacement. The results of FEM analysis reprscnt
F:gure 8. Finite element meshfo: theanalysxs 7 10 - well  the - difference of the test cases in the
= ‘ , Case-1] 7051 5331 2063]0.47 0.48 [17.32 5.80 4.11 o . . \ deformation'* behaviour of the - improved ground
- Case-2| 9669 6786 2798)0.45 0.47 [28.24 626 5.03 T Cased Case2  Case3 obtained from the model tests. Although the
e pe s Case-3|16066 6203 3204)0.47 0.4953.98 6,40 6.04 : o deformation obtained from the analysis at small load
R : * 8o T T T density overestimates as compared with the test
— R ; 70 O Test results - results, this reason is that the secant modulus, E;,,
£ 70 T A AR RA AN AR T 70 (e .. 60 || O FEM apalysis| . defined at a half ‘point of compressive strength is
= 60 Case3_+ S 6o T Cased—t i 7] £ 50 ' : - used as Young's modulus. Hence, the following
= Y A0 R T & / o € 40 ' o _ cocfficients of vertical “and horizontal subgrade
£ / Case2 »Ss0 / < M , rwcnonatthehalfvalue ofbeanngmpacnyare
g 40 / ST W s 2 40 L Case2 o 30 . defined as
= it} i =N ' i 20 — : L
= 30 - Case-1 S 3p / /L —iCasel | Coefficient of vertical subgrade reaction ;
§ 20 / e g ™ g 10 thq,,=0.6' ‘ Q )
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Figure 9. Comparison of FEM analysis results and test results on deformation behaviour of the improved ground.

Honzontal bearing capacity, Gur (kPa) Horizonta! bearing capacity; gy (kPa)
(2) Influccnce of improvement ratio (b) Influecnce of strength ratio
Figure 11. Influences of improvement ratio and strength ratio on bearing capacity of improved ground.
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where g, and g, are verfil and horizontal bearing
capacities and ds, and hsp are veértical settlement and
horizontal displacement at 50% of bearing capacity,
respectively. Figure 10 shows the comparison
between FEM analysis and test resulis on the
coefficients of vertical and horizontal subgrade
reactions. The vahie of K, or K, depends on the test
cases. The results of FEM analysis give relatively
good agreeent with the test results.

The results of the bearing capacities obtained by
the :reode} tests are shown in Table 3. Figure 11
shows. the -relationships between the vertical and
hexizental bearing capacities of the improved ground.

The influences” of improvement ratio and: strength

ratio are.shown in Fig. 11.(a) and (b); respectively. It
is found that the bearing capacity increases with
increase.in improvement ratio and strength ratio, and
the horizontal beaging “capacity . is very small as
compased with. the vertical bearing. capacity.. The’
results of numesical analysis agree well with such a
tendency. It is therefore confirmed that the proposed
method is effective for numerical analysis of the
improved gronnd. SRS

5 CONCLUSIONS -

In ordex to evaluate strength-deformation properties

of the improved ground with cement-treated soil

columns, a homogenization method is proposed in

this study.. The following conclusiens are obtained:

1) The generalised two-phase mixture model is
proposed in the consideration of relation to
Eshelby's texisor. o

2) Average elastic moduli and the -yield criterion of
improved ground are obtained from the two-phase
mixture model. . S S

4) Bearing capacities and coefficients of subgrade
reactions in vertical and horizontal directions of the
improved ground are predicted from the numerical
analysis based on the proposed homogenisation
method. ' '

5) The validity of the method is confirmed by
" 1g-model tests of the improved ground.
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