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OBJECTIVE: A computer simulation based on the finite-element method was used to study the biomechanics of acute
obstructive hydrocephalus and, in particular, to define why periventricular edema is most prominent in the

anterior and posterior horns.

METHODS: Brain parenchyma was modeled as a two-phase material composed of a porous elastic matrix saturated
by interstitial fluid. The effects of the cerebrovascular system were not included in this model. The change in the shape
of the ventricles as they enlarged was described by two variables, i.e., the stretch of the ependyma and the
concavity of the ventricular wall. The distribution of stresses and strains in the tissue was defined by two standard
mechanical measures, i.e., the mean effective stress and the void ratio.

RESULTS: With obstruction to cerebrospinal fluid flow, the simulation revealed that the degree of ventricular
expansion at equilibrium depended on the pressure gradient between the ventricles and the subarachnoid space.
Periventricular edema was associated with the appearance of expansive (tensile) stresses in the tissues surround-
ing the frontal and occipital horns. In contrast, the concave shape in the region of the body of the ventricle
created compressive stresses in the parenchyma. Both of these stresses seem to be direct consequences of the
concave/convex geometry of the ventricular wall, which serves to selectively focus the forces (perpendicular to
the ependyma) produced by the increased intraventricular fluid pressure in the periventricular tissues.

CONCLUSION: The distribution of periventricular edema in acute hydrocephalus is a result not only of increased
intraventricular pressure but also of ventricular geometry. (Neurosurgery 45:107-118, 1999)

Key words: Biomechanics, Finite-element analysis, Hydrocephalus, Periventricular edema

acterized by two main features, ie., ventricular expan-
sion and periventricular lucency (PVL), both of which
can be clearly seen in computed tomographic and magnetic
resonance imaging scans (1, 37, 49). Initially concentrated
around the ventricular horns, PVL in the brain of younger
patients is generally considered to represent a true increase in
the extracellular spaces of tissue (3, 9, 22, 27, 36, 38, 39, 45, 46,
53). However, the biomechanical factors that condition its
development are poorly understood (2, 40). PVL in the brain
of aging patients has more complex causes, including isch-
emia, gliosis, and demyelination, as well as true edema.
It has been hypothesized that PVL may be attributable to 1)
the intrusion of cerebrospinal fluid (CSF) into the white mat-
ter as a result of mechanical disruption of the ependyma (44),

The acute stages of obstructive hydrocephalus are char-
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2) periventricular stress concentrations (42), and/or 3) the
geometry of the ventricular wall (51). The recent advances in our
knowledge of the physical properties of brain tissue (24) and in
finite-element computational methods (56) suggest that a quan-
titative investigation of these factors is timely and may shed light
on how these factors interact with each other and on their
possible roles in the sequence of events that lead to PVL.

In this study, therefore, we have proposed a set of defini-
tions to evaluate quantitatively these three hypotheses, based
on standard theories from the fields of continuum mechanics
(19} and analytical geometry (52). These definitions have been
used in conjunction with a two-dimensional, finite-element
simulation of obstructive hydrocephalus (42, 43, 47, 51}, in
which brain parenchyma is modeled as a biphasic poroelastic
material. Also, for the first time, an assessment of the accuracy
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of the finite-element approximation involved has been per-
formed (57).

MATERIALS AND METHODS

Brain tissue as a biphasic material

Hakim et al. (25, 26), the first authors to use the methods of
continuum mechanics in the study of hydrocephalus, pro-
posed that brain parenchyma can be regarded as “an open celi
sponge made of viscoelastic material.” Nagashima et al. (42,
43) formalized this concept in terms of the theory of poroelas-
ticity (4) and the finite-element method (57). Since then, the
view of brain tissue as a poroelastic material has been used in
a number of studies (G Tenti, S Sivaloganathan, ]M Drake,
personal communication) (31, 47, 51).

In the present study, following the method of Hakim et al.
(25, 26) and Nagashima et al. (42), brain parenchyma has been
modeled as a linear poroelastic material composed of an
elastic porous matrix saturated by an interstitial fluid in the
pores. In this model, the volume occupied by the solids cor-
responds to the neurons and neuroglia, whereas the voids
correspond to the extracellular space of the tissue. The effects
of the cerebrovascular system are not included in this modef.

The use of a biphasic poroelastic model for brain paren-
chyma is particularly appropriate because it allows direct
computation of the transient changes in the regional solid/
water contents of tissue (such as in edema) as a function of the
sustained deformation. This capability is not available in other
mechanical models that are monophasic, such as elastic, vis-
coelastic, and hyperelastic models (19).

The general theory for the mechanics of porous continua
was initiated and formalized by Biot (4, 5). Other forms of this
theory have been presented as the theory of mixtures (7);
when applied to model the biomechanical behavior of soft
tissues, they are equivalent (50). (For a comprehensive treat-
ment, see the report by Coussy [13].) The linear theory of poro-
elasticity is based on the following principles: 1} linear elasticity
of the solid matrix, 2) conservation of mass of the solid and {luid
phases, 3) Darcy’s law governing the diffusion of fluid through
the pores of tissue, 4} equilibrium of forces, and 5) Terzaghi’s
principle of effective stress {see Appendix A).

Finite-element analysis

The differential equations, presented in Appendix A, rep-
resent what is termed in mathematics an initial-boundary
value problem (IBVF). This represents the spatial and tempo-
ral relationships that the field variables ought to satisfy at
every point in the domain of interest. The sclutions of the
IBVP are functions representing the history of the variabies u
and p. Simple boundary conditions and domains with simple
geometries produce an IBVP that is amenable to producing
exact or analytical solutions. However, this is seidom the case
in applied mechanics, where complex geometries, boundary
and initial conditions, and loads make the solution of the
IBVP by exact mathematical methods practically impossible.
Insuch cases, an approximate or numerical solution should be
determined by the application of numerical analysis tech-

niques based on computers. The finite-element method is a
powerful example of such methods (57). Its advantages are its
abilities to manage compiex geometric domains, heterogene-
ities, load histories, and boundary conditions. In this study,
we use the implementation of the finite-element method in
the computer program ABAQUS/Standard (28), which was
recently favorably benchmarked for the study of poroelastic
materials (56).

The anatomic information needed te construct the finite-
element mesh for our simulation was obtained from T2-
weighted axial magnetic resonance imaging scans for a nor-
mal patient from the internet facility Whole Brain Atlas (30).
Only one-half of the slice was used, given the symmetry of the
brain in that section. One hundred sixty-seven points were
digitally obtained and joined by straight lines to create the
domain. From this domain, we generated our finite-element
mesh using an automatic mesh-generating algorithm (14),
which discretized the domain into 679 eight-noded quadrilat-
eral elements, which are appropriate for consolidation analy-
ses (Fig. 1),

The specific material properties of gray and white matter
are controversial. In this study we assume the following ex-
perimental values, based on the most recent literature (24):

=10 kPa, v = 0.30, K = 107" m*N"s™" (see discussion in
Append1x B).

Two sets of boundary conditions, i.e., one for the solid
phase and another for the fluid phase, are required for a
consolidation analysis. The solid phase (the parenchyma) is
assumed to be attached to the subarachnoid space and thus to
be restricted to anterior-posterior movement along the mid-
line and to be fixed at the end of the falx cerebri. The fluid
pressure is assumed to be zero at the beginning of the anal-
ysis. A pressure gradient of 3.0 kPa (22.5 mm Hg) was estab-
lished between the ventricular and subarachnoid spaces in the
course of ¢t = 30,000 seconds (8 h) simulated time. The inifial
conditions are zero displacements at the beginning of the
analysis for the solid phase and 0 mm Hg of pressure for
the fluid phase.

Measures of stress and strain

To be able to characterize the stress concentrations in the
parenchyma, we propose to use the mean effective stress p'
and the void ratio e, which are invariant measures of the
effective stress and strain tensors of tissue (16, 19). Changes in
geometry of the ventricles are captured by the stretch L of the

FIGURE 1. Axial
magnetic resonance
imaging scan for a
normal subject (4) and
the finite-element mesh
used for the simulation
(B). The mesh
consisted of 679
quadrilateral elements
and 2208 nodes. Only
one- half of the scan was discretized, given the symmetry of
the brain in this region.
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- ventricular wall and its concavity C. See Figure 2 for explan-
atory diagrams and Appendlx A for definitions.
The mean effective stress p’

!

1
pl=- gtrace(o-;f) )

represents the average volumetric stress in a point of -the
parenchyma, This stress is the one uniquely responsible for
the change in tissue volume.

The void ratio e

= (2)

represents the volume of voids V¥ (extracellular space) di-
vided by the volume of solids V* (cellular space) in a unit
sample of tissue. The extracellular space of tissue is approxi-
mately 15% (21), so its void ratio is approximately 0.18.

The concavity C of the ventricular wall can be computed
from the following formula, modified from the report by Boas

(6),

Adf
C(x) = log dx (3)
= 10 _"““—2fi"‘m
[1 * (dx ) ]

where f = f(x} is a function representing the shape of the
ventricular wall. To obtain this analytical curve, the set of points
representing the wall are interpolated using a set of Bezier
splines (29). Note that the curvature is a function of the position
and that we have taken the logarithm to facilitate plotting,

The stretch L of the ventricular wall was computed from

_dR 4

. L= T (4)

representing the ratio between the original length (dr) of a

segment of the ependyma and the new length (dR) after
ventricular expansion,

Assessment of accuracy

The finite-element method, like any other numerical anal-
ysis technique, is an approximate procedure (41). It is there-
fore essential to establish the accuracy of the calculations to
assess the limits within which the results are meaningful. A
number of techniques have been reported for this purpose (8,
10, 57). In this study, a residual (R) analysis (to study the
accuracy} and an h-refinement (to study the convergence of
the solution) are used.

The residual, sometimes called the force residual, is the dif-
ference between the total external forces (F) applied to the do-
main and the internal reaction forces (I) that arise from the
deformed structure (12).

R=F-1 ®)

The smaller the residual, the better the equilibrium between
the modeled structure and the real structure and thus the
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FIGURE 2. Explanatory diagrams for the geometric and
mechanical definitions proposed. The void ratio () is a measure
of the proportion of solids and fluids in a region of tissue, If @,
is the void ratio of the normal brain, then e > e, corresponds
to an increase in fluid content, whereas e < e, corresponds to
a decrease in fluid content, The mean effective stress (p') repre-
sents the average solid stress applied to an infinitesimal cube of
parenchyma., If the reference state.is unpressurized, then p' =
0. With p’ > 0 the reference configuration tends to compress,
whereas with p’ < 0 the configuration tends to expand. The
stretch (L) is a measure of the strain along the ventricular wall.
If the reference configuration is L = 1, then a local elongation
of the ventricular wall is characterized by L > 1, whereas short-
ening is described by L < 1. The concavity (C) is a measure

of the curvature of the ventricular wall with respect to the
inside of the ventricles. Therefore, C > 0 corresponds to a con-
cave ventricular surface, whereas C < 0 corresponds to a
convex ventricular surface,

smaller approximation error. However, small residuals are
necessary but not sufficient conditions for accuracy; an inves-
tigation of the convergence of successive approximations is
also required. Here the technique known as h-refinement
analysis has been used, which consists of solving the same
problem using an increasing number of elements (and thus a
smaller size per element). The term ki refers to the typical size
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of the elements involved. Because we know that the finite-
element approximation has an order of convergence O(#®) for
quadratic elements, a convergent sequence of solutions
should indicate the convergence of the numerical solution
towards the exact analytical solution.

RESULTS

The results of the finite-element simulation showed the
typical progression of hydrocephalus, including ventricular
dilation and the appearance of PVL. A progressive expansion
of the veniricles was observed (Fig. 3). Maximal ventricular
distension occurred at ¢ = § hours, which corresponded to a
ventricular pressure of 3 kPa. The outward movement or
displacement of the ventricular wall associated with this dis-
tension was heterogeneous. At equilibrium, a displacement of
almost 7.8 mm was observed for a node at the frontal horn,
whereas a node at the thalamus moved only 4.2 mm. This
differential displacement resulted in a change in shape from
the original ventricular configuration. The horns became “in-
flated” at the time that the thalamus was effectively displaced
and flattened in the radial direction.

Stress concentrations, which were characterized by the
mean effective stress p’, were also heterogeneous (Fig. 4).
Areas of compression {(p' > 0) and expansion (p* < 0) were
observed. Expansive (tensile} regions where p’ varied from
—1100 to 360 Pa were found surrounding the anterjor and
posterior horns. In contrast, compressive regions with p’ be-
tween +30 and +300 Pa were found near the thalamus and
areas with p’ between +700 and -+1100 Pa were found in the
rest of the brain.
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Changes in the distribution of the free water of tissue (ede-
ma) can be computed from changes in the void ratio. Quali-
tatively, the graph for the void ratio was almost identical to
that for the mean effective stress p', because strain changes are
a direct consequence of the applied stress. Because we know
that under normal conditions ¢, = 0.18, an increase in free
tissue water {edema) is represented by ¢ > ¢, and a decrease
by e < e,. Regions in which ¢ was increased were seen sur-
rounding the ventricular horns, where e varied from +0.34 to
+0.46. Moving from the ventricles toward the cortex, the void
ratio ranged between +0.22 and +0.1 (Fig. 5).

The stretch of the ependyma at equilibrium is presented in
Figure 6b. For most of the domain, the stretch L remained
consistently between 0.8 and 1.0, indicating little or no change
in length. The exceptions were two peaks of approximately
1.6 and 1.4 that occurred in the regions of the ventricular
horns. These values of L > 1 indicate that the interceliular
gpaces of the ependyma are expanding or tearing, so that CSF
may pass more freely into the periventricular tissue.

Figure 6a shows the initial concavity (computed from Eq. 3)
of the ventricular wall at equilibrium. Two peaks of approx-
imately C = 12 units were observed in the regions corre-
sponding to the anterior and posterior ventricular horns. The
rest of the domain exhibited a smaller curvature, with C
remaining between 8 and 4 units.

To assess the accuracy and convergence of the results, the
residual R was computed for each time step of the solution
procedure for a sequence of three finite-element meshes, with
679, 1273, and 2421 elements. As theoretically expected, an
increase in the number of elements resulted in a decrease of
the residual (error) of the approximation. In all cases, how-

&,
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s .."?.tﬂé‘gs'
(TR R HGHT
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FIGURE 3. Sequence showing ventricular expansion on the finite-element mesh as a result of increased intraventricular pres-

sure at 1, 2, 4, and 8 hours (from left to righ?).
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FIGURE 4. Mean effective stress (p’) on the tissue after ven-
tricular expansion. The levels of stress range from —3300 Pa
(blue) to +1480 Pa (red). Note the region of expansive
stresses (p’ < 0) surrounding the anterior and posterior
horns (green) and the region of compressive stresses (p' > 0)
in the body of the ventricle (orange).

ever, R remained consistently below 5%, suggesting that an
acceptable level of accuracy was attained throughout the three
simulations.

DISCUSSION

A number of studies have emphasized the importance of
biomechanics (17, 18) in the early development of PVL. Qur
finite-element simulation has allowed the quantitative evalu-
ation of three biomechanical factors, i.e., stress concentrations,
disruption of the ependyma, and ventricular geometry, which
have been integrated into an explanatory sequence of events
that are thought to lead to PVL.

Stress concentrations

Nagashima et al. (42) stated that “ventricular configuration
is an important factor in hydrocephalus” and that PVL is
attributable to periventricular “stress concentrations, espe-
cially at the anterolateral angle of the frontal horn.” Tt is of
theoretical and practical importance to determine explicitly to
which type of stress these concentrations are referring. In a
biphasic material there are three types of stress, i.e., the total
stress o, the effective stress o, and the pore fluid pressure p.
They all produce different effects on the material to which
they are applied. Moreover, mathematically the wvariable
stress is a tensorial quantity. A cartesian tensor in three di-
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\ N : /
FIGURE 5. Changes in tissue water after ventricular expan-
sion, characterized by changes in its void ratio (e), in the
anterior (A) and posterior (B) ventricular horns. The values
for e range from 0 (blue) to 0.767 (red). Note that the tissue
surrounding the anterior horn has an increased water con-
tent, i.e., e = 0.34 (green), which is greater than the normal
water content of e, = 0.18. Similarly, the region surrounding
the posterior horn has an increased water content of
e = 0.28 (green).

mensions has nine components and, in the case of stress, six
independent ones. The common practice in mechanics is to
introduce the mathematical concept of invariants, which are
transformations to the stress tensor that obtain some measures of
it that are unchanged with coordinate transformations. Some
of these invariants fortunately have a physical meaning, which
permit us to visualize the deformation behavior of a material.
(For an extensive discussion, see, for example, the report by
Fung [19]). This is the reason for our choice of p’ as a measure of
the stress concentrations in the brain parenchyma.

In the simulation, expansive stress concentrations (p' < 0)
were observed around the ventricular horns and compressive
stresses (p’ = 0) were observed elsewhere (Fig. 4). Because stress
is linearly related to strain in an elastic material, expansive
stresses have the effect of increasing the extracellular spaces of
tissue and thus its free water content (in other words, creating
PVL). Compressive stresses, in contrast, have the effect of reduc-
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C: curvalure

FIGURE 6. Geometric information
regarding the ventricular wall, in the
form of its curvature before
ventricular distension (a) and its
stretch after ventricular expansion (B).
The vertical axes represent a spatial
dimension along the ventricular wall.
Points A and B correspond to the
locations of the ventricular anterior
and posterior horns, respectively.

ing the extracellular spaces and thus “squeezing out” the free
water of tissue {Fig. 5). This behavior corresponds to the clinical
observations of PVL during the acute stages of hydrocephalus.

Ventricular/subarachnoid pressure gradients

Our model confirms that, for ventricular expansion to oc-
cur, a pressure gradient between the ventricle and the sub-
arachnoid space must develop. Such a gradient has been
documented experimentally in the acute stages of hydroceph-
" alus (11}, but there is debate regarding whether such a gradi-
ent persists in the chronic stages. '

According to Hooke’s law (Eq. A5), the degree of ventric-
ular expansion is a function not only of the gradient but also,
and more precisely, of the ratio of this gradient to the stiffness
modulus of the tissue. This suggests that a particular gradient
could create a substantial ventricular dilation, given that the
modulus of the parenchyma is small, In this study, we have
chosen a ratio of 0.33 (i.e., 3 kPa/10 kPa), whereas other
studies have used values of 0.916 (i.e., 1.1 kPa/1.2 kPa) (51) or
0.27 {i.e,, 2.7 kPa/10 kPa) (31). -

Conner et al. (11), in cats, experimentally measured a gradient
of 5 ¢m H,O (0.5 kPa) 7 days after cisternal kaolin injection.
Although in absolute terms this is smaller than the gradient of 3
kPa that we used in our simulations, the same gradient/stiffness
ratio can be cbtained by simply assigning a value of 1,66 kPa to
the stiffness modulus of tissue. We computed the resultant ven-
tricular distension with these parameters and found that almost
exactly the same deformation pattetns as those theoretically
expected for a linear elastic material were obtained. For instance,
the body of the ventricle had a maximal displacement of 7.47
mm with these parameters, compared with 7.62 mm with the
previous ones. Only simultaneous precise measurements of all
of these parameters (pressure gradient, ventricular distension,
and tissue stiffness) would clarify this issue.

Ventricular geometry

Nagashima et al. (43) stated that “ventricular configuration
is an important factor in hydrocephalus.” Subramaniam et al.
(51), in addition, proposed that “the greater fluid content
[PVL] around those regions [the homs] is a function of the

curvature of the boundary [the ventricular walll.” In this
report we have followed their hypotheses but we have mod-
ified the concept of curvature to that of concavity, because
curvature by itself yields insufficlent information regarding
the propensity of tissue to develop edema. Figure 6a shows
that the regions of maximal concavity of the ventricular wall
correspond precisely to the anterior and posterior horns.
Moreover, a simple study of the ventricular shape, in relation
to the forces produced on the ependyma by the increased
intraventricular pressure, is edifying. The concave ventricular
wall around the horns suggests that it serves to focus these
forces (perpendicular to the ependymal surface} in diverging
directions, producing the effect of an effective expansive
stress on that region of tissue. In contrast, the convex ventric-
ular wall regions around the thalamus focus the forces in
converging directions, producing the effect of an effective
compressive stress on that region of tissue (Fig. 7). The net
effect of these two phenomena is the appearance of edema
predominantly around the ventricular horns.

Disruption of ependyma

It is known that during the acute stages of hydrocephalus
the ependyma may be stretched and flattened and, in more
severe cases, tears may appear (55). Naidich et al. (44) sug-
gested that PVL may be attributable to the intrusion of CSF
into the periventricular white matter as a result of mechanical
disruption of the ependyma. Our finite-element simulation is
based on a linear elastic mode! for brain tissue. This means
that this imodel does not allow for tears or ruptures appearing
in the brain tissue when it is stretched; such a simulation
would require an elastoplastic model (33). At this time, the
material properties of brain tissue are incompiletely defined,
and as a first approximation most studies have used either
elastic, hyperelastic, or poroelastic models. However, we can
begin to study the stretch of the ependyma by measuring how
much the elements along the ventricular wall stretch or com-
press (separate or come together) as the ventricles grow. Our
results indicate that the stretch of the ventricular wall closely
follows the distribution of PVL (Fig. 6b), presenting regions of .
stretch (L > 1) around the horns and areas of compression

Neurosurgery, Vol. 45, No. 1, July 1999



FIGURE 7. Magnified view of the frontal horn (A) and the
body (B) of the ventricle. The arrows indicate the orientation
of the forces on the ventricular wall generated by the
increased intraventricular pressure. The original finite-
element mesh, i.c., before deformation, is shown in gray,
whereas the deformed mesh after ventricular expansion is
shown in white.

{L < 1) around the thalamus. So, although we cannot define
when rupture occurs in this model, we can state that there is
a tendency for the ependymal cells to separate at the horns of
the ventricles,

|
Proposed sequence of events

Although" the sequence of events that lead to the appear-
ance of PVL; have been known for decades (49), cur analysis
suggests a rationale for these observed events. In particular,
our simulation is a contribution toward understanding the
biomechanics of the complex interactions between intraven-
tricular forces and the deformation of the cerebral mantle. A
biomechanical sequence of events, incorporating theoretical
considerations and the well-known clinical and experimen-
tal observations, may be outlined as follows. 1) There is a
sudden obstruction to the normal flow of CSF. 2} Because
CSF is being  continually produced by the choroid plexus,
there is a gradual increase in the ventricular fluid pressure,
3) The ventricles expand in proportion to this increased pres-
sure. 4) The resulting compression of the parenchyma pro-
duces periventricular stress concentrations but, because of the
convex/concave geometry of the ventricular wall, some re-
gions receive expansive stresses {around the horns), whereas

Periventricular Biomechanics 113

others receive compressive stresses (around the thalamus).
5) These expansive stress concentrations around the horns
produce a local increase in the extracellular spaces of the
tissue and thus initiate the development of interstitial edema.
6) These expansive (tensile) stresses also produce a stretch of
the ventricular wall and possibly initiate the rupture and/or
opening of the cell junctions of the ependyma, facilitating the
development of PVL,

Limitations and future work

The results have a number of limitations, We have assumed
constant material properties for the parenchyma. For purely
anatomic reasons we can easily imagine that this would not
be the case, because tissue would have different stiffnesses
when compressed from different directions (anisotropy).
More detailed information regarding the elastic and perme-
ability parameters of tissue is required. We are using a two-
dimensional approximation of a three-dimensional object. In-
formation regarding the stresses and strains that occur out of
the considered plane is lost. The effects of the cerebrovascular
system are not considered in this model. A number of studies
have also suggested that the observed distributions of PVL
are attributable to altered interstitial fluid flow to the ventricle
(44). This hypothesis has not been explored in this work.
Finally, changes in local metabolic homeostasis are not con-
sidered, which means that the results from this study are valid
only in a time frame that includes the early stages of the
development of hydrocephalus. Clearly, in the future, it will
be essential to integrate continuum mechanics for the tissues
with the CSF and blood flow dynamics for the craniospinal
system (35).

CONCLUSION

Our results seem to corroborate the hypothesis that PVL is
a result of both periventricular stress concentrations (in the
form of expansive mean effective stresses) and disruption of
the ependyma (in the form of stretching of the ependymal
cells). The tendency of these forces to appear around the
ventricular horns seems to be a direct consequence of the
geometry (in the form of the concavity) of the ventricular wall,
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APPENDIX A

The linear version of the poroelastic theory is based on the
following principles (4):

oy =0y~ pdy (A1)
ao';j

a_x}-_ 0 (A2)

ow; ap
ﬁ-i- K,-ja—xi—— 0 (A3)
_ 1 au; n auj Ad
€= 2 ax,- ax; ( )
)= hegaby + 2uey (A5}
§ 0w, de 0 A6
ot dx; ot (A6)

w; = n(uf — uf)

For the definitions of the variables used, see Table A1. Note
that the Einstein summation convention is used throughout.
The field variables of our model are ; (a vector quantity), the
displacement of the solid phase, and p (a scalar quantity), the
pore pressure of the fluid phase of the tissue. Combining

TABLE A1l. Definitions of Variables

Symbol Quantity Units
oy Total stress Pa
oy Effective stress Pa
P Fluid pressure Pa
fod Mean effective stress Pa
e Void ratio

E Young's moduius Pa
v Poisson’s ratio

I Lame’s shear modulus?® Pa
A Lame’s elastic modulus® Pa
w; Relative fluid velocity m/s
X Space coordinate m
K;; Hydraulic permeability m*N g1
ey Cauchy's strain _

u, u*  Displacement of the solid phase m
o Displacement of the fluid phase m

t Time ]

8 Kroenecker delta function

2 Lame’s elastic constants can be transformed to the more usual E
and v via A = Ev/[(1 + (1 — »)] and p = E/[2(1 + )] (19).

TABLE A2. Material Properties of Brain Tissue

Authors (Ref. No.) Parameter Value Species
Flexner et al. (15} E  37.8-43.3 kPa Dogs
Calford and McElhaney 200 £ 67 kPa Human

subjects
Metz et al. (38) £ 10-35kPa Monkeys
Walsh and Schettini (54) £ 28-41 kPa Dogs
Reulen et al. (48) K 1.6x10™ Cats
. mINTTs™!

Grieschafer et al. (23) - E  30kPa - Cattle
Guillaume et al. (24) 7  46.8 £ 31.3 kPa Cattle
Guillaume et al. (24) E 106 = 73.9 kPa Cattle
Guillaume et al. (24) y  0.32-0.37 Cattle

# Refers to nonperfused brain.
b Refers to perfused brain,

Equations A1l through A6, we obtain the field equations for
our problem:

2

w2y A7

-”‘ax,axj (e dx; ax; (A7)
¥*p - oe

i anan“ ﬁ_ (AS)

These equations are known as Biot's equations and corre-
spond to a set of elasticity (Eq. A7) and diffusion (Eq. A8)
equations with a pressure-coupling term. Our computer sim-
ulation is based on the extension of these equations to the
finite strain case. This is because only a finite-strain formula-
tion can provide an accurate description of large deformations
in a material, such as those encountered in the late stages of
obstructive hydrocephalus. The full mathematical develop-
ment, which is quite involved, can be found, for example, in
the report by Coussy (13).

APPENDIX B

A linear poroelastic material can be characterized by a set
of three parameters, i.e., Young’s modulus (E), Poisson’s ratio
(»), and hydraulic permeability (K). This set of material pa-
rameters must be measured experimentally for brain tissue. A
review of the literature has shown the values presented in
Table A2.

It is interesting to note that the range of E remains consis-
tently between 10 and 100 kPa. It is also interesting to note
that the values reported by Guillaume et al. (24) were some-
what out of that range when they were measured in perfused
brains. Apparently this is attributable to the fact that the
cerebrovascular bed, which occupies approximately 7% of
the total brain contents (32) and has a more or less homoge-
neous distribution, contributes to the stiffness of the brain.
Measurements for the permeability have been very scant.
Reulen et al. (48) obtained a value of K = 1.6 X 107"
m*N~"s™! by measuring the spread of sodium fluorescin dye
through the parenchyma in cold infused edema. For an excel-
lent discussion of the significance of material parameters for
poroelastic analyses, see the report by Kaczmarek et al. (31).
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nounced in areas of severe ependymal damage, there is edema
of the white matter (5, 8). This is the earliest pathological finding
involving the brain parenchyma and occurs in specific sites at
specific times. At the dorsal angles of the lateral ventricle, for
example, the periventricular white matter becomes edematous at
3 to 6 hours. The margin of edema spreads thereafter and
reaches the white matter of the centrum semiovale by 19 to-24
hours (5, 6, 8). '

When isotopes or tracer dyes are injected into the ventricles
of acutely hydrocephalic animals, a significant increase in

-the ventricular permeability can be demonstrated (1, 6, 8). The

increase becomes apparent as soon as the pathological
changes in the ependyma become appatent (1-3 h), and the
permeability is greatest at points of severe ependymal dam-
age (5, 6, 8). Taken together, these findings indicate that
increased intraventricular pressure, acting in concert with the
pathological changes in the ventricular wall, results in flow of
CSF out of the ventricles at points of least resistance (1, 4-6, 8).

The results of this study confirm and extend pathological
findings in acute obstructive hydrocephalus. Evidence that
the geometry of the ventricular wall serves to focus the forces
associated with increased intraventricular pressure is not sur-
prising. Less well appreciated are counterforces, created by
variations in the density of gray and white matter, that influ-
ence the formation of PVL.

Thomas H. Milhorat
Brooklyn, New York
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The authors used finite-element mechanical models to
study the changes in ventricular shape and their effects in the
acute stage of the hydrocephalic process, particularly the rea-
son for periventricular lucency concentrated in the horns of
the ventricles. Pefia et al. provide an elegant description of the

Periventricular Biomechanics 117

biomechanical process leading to ventricular dilation. Of im-

‘portance is the fact that the results of experimental cat studies

with kaolin injections and the theoretical predictions of the
mode] are in excellent agreement. Despite the tathematical
compilexity, the authors have taken great care to explain these
phenomena in the simplest of terms. Their analysis has dem-
onstrated that, with obstruction of CSF outflow, ventricular
dilation approaching 2 cm develops in response to a 22.5-mm
Hg gradient between the ventricles and the subarachnoid
space, in an 8-hour period.

The hypothesis of Hakim et al. (Refs. 25 and 26 in the
article), ie., that the brain acts like a sponge and water
squeezed out of the ventricles expands, is supported by the
analysis. The study aiso dispels the notion that periventricular
lucency, as seen in magnetic resonance imaging scans, may be
artifactual. Although the cerebrovascular system is not repre-
sented in this initial work, I look forward to an expansion of
the modeling effort and the eventual incorporation of both
CSF and vascular elements.

Anthony Marmarou
Richmond, Virginia

The biomechanical forces that lead to ventricular dilation
and the development of PVL in communicating hydrocepha-
lus are investigated by computer simulation using bioengi-
neering principles. There are extensive and comprehensive

~definitions of the effects of ventricular configuration, brain

tissue properties, and transventricular forces on these pro-
cesses. The authors have carefully presented the basic as-
sumptions of their proposed biological system and the limi-
tations of their methods. The computer simulation accurately
predicted that the greatest dilation of the ventricular system
would be at the anterior and posterior horns, the site of
greatest PVL, because of the concave configuration of the
ventricular horns and the effective tissue pressure gradient.
The authors also demonstrated the greatest lengthening of
the ependymal wall at this site. Presumably the changes in the
ventricular wall (changes in the cell junctions or actual rup-
ture) increase the permeability of this barrier and increase the
movement of ventricular fluid down a pressure gradient,
leading to the development of PVL. As carefully pointed out
by the authors, the effects of the cerebrovascular system,
variations in tissue properties, and local changes in metabolic
homeostasis are limitations to this study. The latter factor, but
perhaps the other limitations as well, make the results valid
only for the short time frame investigated in this study. The
basic methods seem to have great utility, and further studies
should take these limitations into consideration and define the
more chronic state and the effects of aging on this process.

Michael Pollay
Sun City West, Arizona

The authors have used a mathematical model of the brain
to examine the changes in acute hydrocephalus. Their model
supports one theory of the development of PVL, namely the
concentration of expansile stress at the frontal and occipital
horns, resulting in increased interstitial spaces.

Neurosurgery, Vol, 45, No. 1, July 1999



f

118  Pefia et al.

The model is faitly sophisticated and uses a poroelastic
matrix, with saturated interstitial fluid, and finite-element
analysis to develop a numerical solution. As noted by the
authors, this type of analysis has been performed previously.
The authors used what is, in our opinion, a more realistic
value for the Poisson ratio (1, 4) and focused on the changes
in the curvature of the ventricular wall. As they point out, the
mechanical parameters of the brain have been infrequently
measured and are critical for this type of analysis.  ~

The model uses a rather latge pressure gradient across the
ventricular wall in a short time period. Although this is an
important first step, analysis of the development of chronic
hydrocephalus and its response to the insertion of a ventricu-
loperitoneal shunt would be much more interesting and of
much wider applicability. It is unlikely that this particular
model, which is linear, could be extrapolated to large changes
in ventricular size. Further progress in the management of
hydrocephalus is dependent on the development of more
sophisticated mathematical models of brain biomechanics.
Previous assumptions based on simple compartment models

(2, 3) have helped explain the short-term effects of shunts, but
the shunt designs have not performed as predicted in the long
term. Collaborations between mathematicians and neurosur-
geons, as in this report, should be strongly encouraged and
could lead to further progress in this fascinating area.

James M. Drake
Toronto, Ontario, Canada
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