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Cellular poroelasticity: A theoretical model for soft tissue mechanics
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ABSTRACT: This paper presents a theoretical model for the mechanics of soft biological tissues. It is based
on the hypothesis that tissue can be regarded as a recursively poroelastic material, composed of a poroelastic
extracellular matrix in- which poroelastic cells are embedded. A set of equations describing such “cellular
poroelastic” material are presented, and subsequently used to study the consolidation of a one-dimensional
sample of tissue. The model predicts a difference between the intra and extra-cellular fluid pressures, which
depends on the consolidation coefficients and characteristic length scales of cells and tissue, This behaviour is _
reminiscent of the “secondary consolidation” phenomenon sometlmes observed in geomechamcs Bxpenments

are required to further explore thls theoretxcal ‘model.

1. INTRODUCTION

Several models have been proposed to investigate
the biomechanics of soft biclogical tissues based on
Biot’s poroelastic theory. They include, among
others, successful applications in the study of arterial
walls (Simon et al. 1993), skin (Mak et al. 1994),
cardiac muscle (Yang and Taber 1991), and articular
cartilage (Mow et al, 1986).

All these models have been based on the
conception of tissues as structurally bi-phasic, i.e.
composed of a solid matrix saturated by interstitial
fluid. HoWever, the main characteristic of tissues is
that they are made up of cells: each one of them a
complex organism in itself, both biologically and
structurally {Alberts 1989). A sensible refinement for
the classical poroelastic model, as applied in
biomechanics, would then be to include the existence
of the cells as differentiated structures within tissues,
Such ‘cellular poroelastic’ model would be relevant,
for example, for situations in which it is of interest to
know the. regional intra-cellularand extra-cellular
water contents of tissue, e.g. in the case of cytotoxic
or vasogenic oedema.
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The objective of this study has been to
maodify the classical poroelastic paradigm, in order to
take into account explicitly the effect of the micro-
mechanics of cells on the macro-mechanics of tissue.
This has been done based on the following
hypothesis: soft biclogica! tissue can be regarded as a
recursively poroelastic material, composed of a
poroelastic extracellular matrix in which poroelastic
cells are embedded (Peﬁa 1996),

In the following sections we will present a
brief description of soft tissues, the biomechanical
model proposed and its application to the study of
the consolidation of a one-dimensional sample of
tissue.

2. SOFT BIOLOGICAL TISSUES | _

Tissues are the aggregation of cells, but they are not
made exclusively of cells. A substantial part of their
volume is extra-cellular space, which is largely filled
by an intrincate network of macromolecules called
extracellular matrix. One of the functions of this
matrix is to hold cells and tissues together.



2.} Cells

A typical animal cell is composed of a nucleus, a
cytoskeleton, 2 series of organelles and a plasma
membrane. The organelles (‘small organs’) occupy
approximately half of the intra-cellular volume. The
cytoskeleton is a complex network of filaments that
criss-cross the cell in all directions. There is
increasing evidence that a major function of some of
these filaments is to resist mechanical stress (Alberts
et al. 1989). The cell membrane is composed of lipid
and protein molecules. Some of these proteins form
channels which allow the transport of ions and other
substances across the cell membrane. :

2.2 Extracellular matrix

There are many different kinds of tissues in the
human body. Despite their differences, however, they
can be theoretically classified somewhere in the
spectrum between connective and epithelial tissues,
depending on the structural roles played by the
extracellular matrix and the cells,

Connective tissue is mostly made up of
matrix and the cells are sparsely distributed within it,
“The matrix is rich in polymers-{especially coliagen)
and it is the matrix -rather than the cells~ that bears
most of the mechanical stress to which tissue is
subjected” (Alberts et al. 1989: 949), The cells are
attached to components of the matrix but direct
attachments between cells are relatively unimportant,

Epithelial tissue, in contrast, is mostly made
up of cells and the matrix is scarce. “Here the cells
themselves, rather than the matrix, bear most of the
mechanical stress by means of strong intracellular
protein filaments (components of the cytoskeleton)
that criss-cross the cytoplasm of each cell” (Alberts
et al. 1989: 950). In order to transmit mechanical
stress from one cell to the next, the filaments are
directly or indireclty attached to transmembrane
proteins in the plasma membrane,

3. CELLULAR POROELASTICITY
3.1 Physical model

Based on the preceding general description of
tissues, the following hypothesis is proposed: soft
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biological tissue can be regarded as a recussively
poroelastic material, composed of a poroelastic
extracellular matrix in which poroelastic cells are
embedded. The mechanical behaviour of the whole
fissue, thus, is dictated by the interaction of the
generalised (extracellular) macroscopic consolidation
process and the localised (intra-cellular) macroscopic
consolidation process. These micro and macro
consolidations are linked by the exchange of fluid
between the intracellular and extracellular spaces,
and by the continuity of stresses across the boundary
between them, i.e. the plasma membrane of cells.

Then, in the framework of this hypothesis, for
tissue; the corresponding solid matrix will be the
extracellular matrix and the fluid the extracellular
fluid; and for cells, the solid matrix will be the
cytoskeleton and organelles and the fluid the
intracellular fluid. During consolidation, the path of
the drainage of the fluid will be from the intracellular
space into the extracellular space via the plasma
membrane, and then out of the tissue via the
boundaries of the sample..

The relative effects of the micro and macro
consolidations could then be computed from a
weighted average, based on the ratio of the volumes
of the intra and extra-cellular spaces to the total
volume of tissue, i.e. their volume fractions, This will
make the model flexible to accommodate the
behaviour of different kinds of tissues, e.g. epithelial
and connective. '

In consequence, the present model is limited
to the ‘mechanical’ behaviour of tissue, i.e. without
taking into account the cellular ionic potentials of
Na,KandCa. '

‘ matrix

cells
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Figure 1. Idealisation of a cellular poroelastic material (not to
scale). )



3.2 Mathematical model

Implementing - the :complete dellular poroelastic
idealisation, will require to solve n+ - consolidation
problems: one macroscopic: (for the matrix) -and n
microscopic {for the cells). In order to avoid this, it
is proposed that two independent coordinate systems
(x and & are used for the macroscopic and
fnicrodcopic domains, These dotnains will be denoted
by £2 and £2', with boundaries I” and I"', for the
matrix and cells respectively. Thus, any poist in the
tissue could be represented as a point in a higher-
dimensional space (x,£.4).
For the cells we have

a2 u(f)! F) e(i) o p(i)
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For the extra-cellular matrix we have
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where the superscripts (I and () represent
intracellular and extracellular, respectively; and the
other indexes and wvariables have their usual
meanings.

As we mentioned before, the connection
between fhe micro and macro consolidations is by
means of 1, the identity of stresses, ie. p(I\5) =
PP, n, and 2. the continuity of flows, i.e. 0% =—
Q®, across the plasma membranes of cells.

4. EXAMPLE: 1D CONSOLIDATION
4.1 Field equations '

In order to investigate this model, let’s consider a
simple one-dimensional case. A sample of tissue of
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length L, free drained at its:boundaries, is subject to
a load o at ¢ = 0. It will bé assuthed that the
concentration of cells is small, thus O = 0.

According to equation (1) the extracellular
fluid- pressure thus, must. satlsfy :

(e} a p(t)

Kc-)(zym_'_/g-))a 4 =

&)

P01 = p(L,1)=0

(x0)=c

While, for a cell located at point x, the
intracellular fluid pressure must satisfy

5 2p(i) 5P(i) ,
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POx0,1)= pO(x,a,8)= pO(x,1)

P(5,£,0)=0
where a represents the diameter of a typical cell.

4.2 Analytic solutions

Equation (3) is a classical consolidation problem
which was solved by Terzaghi {1948) giving

P(x,t) = Z (1 cosmr)sm( zr )e-a..m

Equation (4). is a non-homogeneous initial-
boundary value problem with parameter x. This
problem can be solved using classical Fourier series
methods (Strauss 1992) resulting in
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As we -are not -actually intérested. in the
detailed intra-cellular pressure distribution but on its
average, we can integrate p” over each cell (thus

eliminating coordinate £).. . : -

After some algebra- and by making these

equations non-dimensional, we obtain:

Anl
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whete the paramaters used are defined as
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5. RESULTS

This simple one-dimensional consolidation problerﬁ,
then, is fully defined by either of the parameter

vectors.

et
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in which @ is the cell size, I the.size of the sample, a
and fconsolidation coefficients; and T, -and Ts can
be interpreted.as dranitig coefficients.

.. Using equations (5) and (6) we can graph the
behaviour of 8 sample of tissue with L=lem and
@=10 um (a typical diameter for an animal .cell), In
the following two figures we ¢an observe the
distributions of R and R as functions of x and .
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Figure 3. Intracellular pressure R¥(x,7) for T, = 1 and T, = 2.

Using again equations (5) and (6) we can graph the
evolution of the fluid pressures at the midpoint-of the
sample, for different values of T, and 7.
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Figure 6. R” and R* at x = 0.5 cm for T, = 1 and T, = 10°%.
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Finally,a set of graphs-for the behaviour of

the solution (5) and (6) at x=0.05 o and: with T, =

200-and" Ty =10 have beeh developed inforder to
compare this ‘solution-to that ‘obtained. by Bachrach
et-al. (1995) for the case of 'a-single: pbtnelasuc cell
embedded ina poroelastw medlum o
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Figure 8: RY/RY af'x = . 05 cm for T., 200 And T, = m

6. DISCUSSION

The extraceflular and intracellular fluid
pressure distributions, shown in Figures 2’ and '3,
present substantial differences. While the extra-
cellular pressure R® has the classical pronounced
isochrones, the intracellular pressure 'R has much
less pronouriced curves, especnally near the
boundaties of the sample. In those regions, R
decidys rapidly while R¥ stays relatively high. This



difference creates a positive pressure  differential
between the intra-cellular and extra-cellular spaces,
clearly due to the difference in material properties
{T~1 and T=2) between cells.and tissues,

This pressure differential is reminiscent of the
*secondary consolidation’ phenomenon - sometimes
observed in geomechanics (Akagi 1994). This
phenomenon has been linked to the existance of
‘lumps’ of exogenous materials within soil. The
overall effect of these lumps on the soil is to delay
the settlement of the sample under load; possibly due
to the additional time that these take to dissipate
their internal fluid presssures. _

Figures 4, 5 and 6 investigate the behaviour
of R® and RY for diverse geometrical (a,[) and
material characteristics (T, ) of célls and tissue. As
expected, when the paramertes T, and T are chosen
as to represent that cells and tissues have the same
material properties, R” and R are the same. As T,
and 7 begin to differ, R and R begin to diverge
too. A difference, such as the one observed in Figure
6, where (7,=1 and Ty=2) would imply that o = 10"*
and B = 5x10° ' This is a large, but not an
unthinkable, discrepancy that could occur in
biological tissues. '

Figures 7 and 8 present the behaviour of R”
and R™ for the characteristics of a sample studied by
Bachrach et al. (1995). These authors investigated
the compression of a chondrocyte (cartilage cell)
within a sample of cartilage tissue. The behaviour of
RU-R™_ Figure 7, shows a differential with a peak of
2.5% occurying at approximately t = 25 seconds.
R R™, Figure 8, shows that this quotient grows
until reaching a steady-state of 1.037. Both of thse
solutions present an acceptable level of agreement
with Bachrach et al. (1995) who found less than 5%
and ~1.035, respetively.

All these results are mechanically and
biologically reasonable. However, only experiments
will show if poroelasticity is a valid model for the
beahviour of cells, or other models, such as
tensegrity (Stamenovic et al. 1996) are more
appropriate. '

7. CONCLUSIONS & FUTURE WORK

The cellular poroelastic model predicts susbtanﬁal
differences between the intra-cellular and extra-
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cellular fluid pressures, depending on a set of
geometrical (o,L) and material (T, T5) parameters of
the cells and the matrix. These differentials would
affect the settlement behaviour of samples of tissue
under load. Experiments are required- to further
explore this theoretical model, perhaps involving the
use of confocal microscopy (Lee and Bader 1995) in
order to observe compressing cells.
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