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The authors have provided an intriguing insight into the
possible development of fabrics arising from grain crushing.
Such fabrics have long been recognized in geology where the
term cataclasis (Gr. breaking) is used to describe their forma-
tion and the term cataclastic to describe their character. Rocks
containing such fabrics are found in zones of concentrated shear
displacement, and often contain fragments that have clearly
been rolled. Weak sandstones exhibit similar features when
sheared (Dobereiner & de Freitas, 1986). Excellent descriptions
of these rocks and of the history of their investigation are
provided by Higgins (1971). Although such rocks were ®rst
recognized in the ®eld over one hundred years ago (Lapworth,
1885), and have been much studied since, their formation
remains a matter of curiosity. Experimental work recently
reported by Renner & Rummel (1996) and MeneÂndez et al.
(1996) will acquaint the interested reader with modern views on
the subject, and reveal the overlap which exists between the
concepts used in structural geology and soil mechanics to
explain both the formation and behaviour of cataclastic ma-
terial.

In these studies, observers must decide on the circumstances
which cause grains to fail in tension, and the authors rightly
raise this issue in their discussion of fractal crushing. Brie¯y,
the probability of small grains containing a large ¯aw is low,
however the probability of them also having the lowest number
of contact points (i.e. the smallest coordination number) is high.
Thus, small grains may be intrinsically strong but have the
greatest likelihood of carrying the highest stress. The authors
describe succinctly the dilemma this causes: `There are two
opposing affects on particle survival, size and coordination
number'.

Could it be that this dilemma is more apparent than real?
Butenuth (1995) reviewed the results of tensile tests undertaken
by others on single crystals, polycrystalline monomineralic
rocks, polymineralic rocks and non-crystalline solids (glasses of
various sorts), including the glass threads studied by Grif®th
and later by Gooding (1932). These all showed a loss in the
magnitude of ultimate tensile stress they could sustain as the
diameter of their sample increased; however, when the force
required to fail the specimens is compared with the area of
failure so formed, two apparently different types of relationship
emergeÐa straight line and a curve. The ®rst may be a special
case of the second, and this remains to be clari®ed, but it is
evident that the straight-line relationships are frequently seen
and appear to be constant over a wide range of areas in many
types of material.

As an example of this, Fig. 10(a) illustrates the results
obtained by Wijk et al. (1997) from carefully controlled tensile
tests on solid cylinders of granite from Bohus in southern
Sweden, and Fig. 10(b) the same material tested under a point
load. Figs 10(c) and Fig. 10(d) illustrate both results recalcu-
lated as the mean force at failure (F), calculated from the mean
values of ultimate stress at failure indicated by Wijk, and area
of failure (A) (Butenuth, 1997). If a linear relationship between
the points is used, the ratio (ÄF=ÄA) � 8:009 MN=m2

� 1 3 10ÿ3 with a correlation of 0´996, and 8:0897 MN=m2 �
2:2 3 10ÿ4 with a correlation of 0´991. Although the meaning
of the intercept remains uncertain, two interesting trends
emerge; (a) the slope (ÄF=ÄA), which can be considered a

measure of tensile strength, is for practical purposes the same
in both cases, and (b) this result has been obtained from quite
different shapes and sizes of sample. Butenuth (1997) gives
other examples which show the same effect.

Applying this approach to the results of Lee (1992) produces
the relationships shown in Fig. 2. To obtain these data the
values for mean tensile strength recorded by Lee (1992) and
reproduced in Fig. 12 by the authors, were compared with the
average particle size to which they are attributed, using the
same relationship employed by Lee, and based on the work of
Jaeger (1967), and Shipway & Hutchings (1993), namely
(ó � Fdÿ2), where F is a maximum diametral force applied to
a particle of diameter d just before catastrophic failure occurs
and the particle splits. Fig. 2 does not indicate a serious loss in
the slope at which the force of failure increases to match the
failure area it produces. Although the slope in each case is
different, the slope of the force required to fail the grains
appear close to constant over one order of magnitude change in
area of failure for Leighton Buzzard sand, over two orders of
magnitude for carboniferous limestone and over three orders of
magnitude for oolitic limestone.

Are the size and shape controlling the micromechanics of
failure in the way traditional thinking suggests? It is dif®cult to
®nd evidence from cataclastic fabrics which clearly shows there
is a preference for particles of one size to fail before another;
the drawings of particle fracture in Dobereiner & de Freitas
(1986) illustrate typical occurrences. Perhaps greater progress
would be made in studying this subject if some attention were
directed to the force applied and the area of failure it creates in
addition to the force applied and the area of contact over which
it is presumed to operate. One interpretation of Fig. 2 is that it
may be unsafe to claim anything more at present than that a
particle of any size will fail when the force upon it is suf®cient!

Authors' reply
We are very grateful to the authors of this discussion for

their support regarding the direction of our research, and for the
additional references they have provided. They raised the inter-
esting question of the negative correlation between strength and
sample size in brittle materials. In our paper we associated this
phenomenon with plastic hardening in soils, arguing that irre-
coverable volumetric compression was associated with the pro-
gressive crushing of the materials, and therefore with the
progressive reduction in effective grain sizes. The discussers
seem to be using their sources to make two different points:

(a) Tensile strength may be seen to vary with sample size not
because of inherent strength loss in the material of the
larger samples but because the proportional area of fast
fracture changes as sample size increases.

(b) The nature of the sample size effect, however caused, can
empirically be allowed for by ®tting a straight line to the
data of maximum fracture force plotted against gross area,
and describing the slope of this line as the inherent strength.

Point (a) can be seen as a micromechanical restatement of
Weibull's postulate, as we now show. For approximately geome-
trically similar particles, we suggested that Weibull statistics
can be applied to Jaeger's (1967) characteristic stress at failure
ó � F=d2. Such an approach predicts the average tensile
strength to be given as óav / dÿ3=m, where m is the Weibull
modulus. For grains of soil of size d suppose that the size of
the critical ¯aw a is given by a / dx. For x � 1, we have
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Grif®th's law for a disordered material óav / dÿ1=2, correspond-
ing to a Weibull modulus of 6. For x , 1, as grain size de-
creases, the size of the critical ¯aw becomes a higher
proportion of the size of the particle, representing a narrower
distribution of ¯aws, less variability and m . 6. Engineering
ceramics have m � 10. A value of x . 1 implies that as the
particle size increases, the ¯aw size increases at a faster rate,

implying an upper limit to the possible size of particle. This
corresponds with m , 6.

For Lee's data (Lee, 1992), it was found that óav / dÿb, and
the parameter b can be converted to a Weibull modulus m for
approximately geometrically similar grains using m � 3=b. The
lowest Weibull modulus in Lee's data occurs for carboniferous
limestone, with m � 7, implying a ceramic material of fair
quality. The average crushing force is then given by Fav �
óavd2 / d2ÿb. If the new surface area A produced at failure is
taken to be proportional to d2, then Fac / A1ÿb=2. For the least
ordered material in Lee's data, carboniferous limestone,
b � 0:42 giving Fav / A0:79. For the least variable material,
oolitic limestone, Fav / A0:83. The plots produced by the dis-
cussers to support point (b), are therefore seen to be power
curves, although they can be approximated as linear over some
range of grain sizes since the power exponent is quite close to
(but not equal to) unity.

It seems to be common ground amongst all research workers
on brittle materials, including those mentioned by the discus-
sers, that the point load tests, which we treat as analogous to
particle contact forces in an aggregate, give data with size
effects as we assumed. Larger grains actually do fail at propor-
tionally smaller stresses. If, as the discussers say, this is due to
proportionally reduced fracture areas, this evidence supports our
use of Weibull's statistics. This seems to us to point to the
advisability of permitting the data to be ®tted by power curves,
as it so naturally appears to do.

Recently, work has been done on calcareous Quiou sand.
Particles ranging in size from 1 to 16 mm in diameter were
crushed between ¯at platens. For each size the distribution of
strengths was Weibullian, and the average m value was found to
be about 1´5. When the 37% strength ó0 was plotted as a
function of average particle size at failure on a log±log scale,
the value of b corresponded to an m value of 1´5, with a
correlation of 0´98 (Fig. 3). In this case, it would be anticipated
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that there would be no great variation in the average force
measured at failure for the range of different particle sizes. It
was found that there was no strong correlation between the
average force at failure and average particle size at failure: the
average crushing force varied from a minimum of 39 N to a
maximum of 128 N for particles ranging in size from 1 to
16 mm in diameter. The average force at failure is plotted in
the discussers' fashion as a function of d2 in Fig. 13. The ratio
of the maximum average crushing force to the minimum
average force for the Quiou sand can be seen to be about 4,
and this can be attributed to the difference in the values of m
between grain sizes and the variability in the strength of the
material in general.

If force at failure had been proportional to area (i.e. to d2), it
would have been expected that the crushing force might in-
crease by a factor of about 250 over the range of increasing
grain sizes. For a soil with grains in which the size of the
critical ¯aw is proportional to the size of the grain (m � 6), it
would be anticipated that the average force at failure for the
16 mm grains might be greater than that for the 1 mm grains by
a factor of 161:5 � 64. Fig. 13 illustrates the fact that the
average force at failure is not a strong function of particle size.
The best-®t straight line in Fig. 12 would have a clear intercept
(which the discussers' ignore), a small slope (implying low
tensile strength according to the discussers' de®nition), and a
very poor correlation coef®cient. We feel that this interpretation
would not be useful for this soil. It should be noted that if the
average force at failure in Fig. 13 is divided by the average d2

at failure, this corresponds approximately to the average char-
acteristic stress at failure, which when plotted as a functional of
d on a log±log scale, gives a value of b of 1´93 with a
correlation of 0´98. It seems that for this material the best
de®nition of strength is the 37% or average characteristic stress
at failure, which is a strong function of particle size.

Of course, we do not discount the possibility that some
micromechanical theory can validate the ®tting of straight lines
to some force/area databases. On the other hand, we presently
prefer to plot log±log axes at the outset to discover whether the
relation is a power curve to which Weibullian statistics would
apply. However, we do strongly support the discussers' sugges-
tion that more attention be directed to observing the geometry
and mechanism of fracture produced by forces on grains.

We also believe that purely theoretical work is required to
resolve the question of particle shape and relative size effects,
raised by the discussers. In McDowell et al. (1996) we used a
numerical program to study the effect of particle size and
coordination number on the probability of fracture. We arbitra-
rily kept every particle under equal stress, so that contact force
was effectively proportional to d2. We assumed that smaller
grains are stronger than larger grains. We then varied the effect
of coordination number. For more angular grains, a high co-
ordination number becomes less helpful. Similarly, for grains of
a given shape and coordination number, the effect of the
coordination number will change as the Weibull modulus
changes. Our paper examined the relative in¯uences of grain
size and coordination number on the probability of fracture. If
the effect of coordination number is removed, then the largest

grains are always the weakest, so that a uniform matrix of very
®ne grains emerges. This sort of behaviour is not found in the
soil mechanics literature. Usually, a proportion of the original
grains remains, a distribution of grain sizes evolves, and the
®ne grains in the matrix soon represent a signi®cant percentage
by mass of the whole sample. Since mass is proportional to the
d3, then this means that most of the particles in the soil are
very small. In that case, the small and medium-sized grains
continue to disintegrate because of large tensile stresses induced
in them by the few particle contacts. If coordination number is
allowed to dominate, a fractal grain size distribution emerges.

Other statistical approaches are possible. It is evident from
discrete element models of soil behaviour (Cundall & Strack,
1979) that strong force chains are set up in granular aggregates,
so that the stresses induced in small particles can be very large
indeed. Consider grains compressed diametrically in a force
chain. The strength of grains scales with size as dÿ3=m, but the
stress induced in particles on a force chain scales as dÿ2, which
is much greater (for m� 1:5). It seems that small grains are
even more vulnerable than simple coordination concepts allow
when contact forces are allowed to vary in accordance with
statical principles. Nevertheless, the outcome should be the
sameÐsmall grains fracture and particle sizes disperse as
volume reduces due to improved packing. Stress rises as volume
reduces because the smallest particles are getting smaller and
proportionally stronger.

Future work must involve the numerical simulation of crush-
able aggregates under stress if a better understanding of the
micromechanics of clastic soil is to be obtained. It may then be
possible to de®ne reliable soil parameters: those for which the
physical origins are understood.

REFERENCES
Butenuth, C. (1995). Gesteinfestigkeit und deren VeraÈnderung als

Grenzschichtproblem. Das Vorhaben wird durch das Ministerium fuÈr
Wissenschaft und Forschung des Landes NordheinÐWestfalen, Bun-
dersrepublik Deutschland, gefoÈrdert. Die Forderung erfolgt im Rah-
men des Lise Meitner Programms.

Butenuth, C. (1997). Comparison of tensile strength values of rocks
determined by point load and direct tension tests. Rock Mech. Rock
Engng 30, 65±72.

Cundall, P. A. & Strack, O. D. L. (1979). A discrete numerical model
for granular assemblies. GeÂotechnique, 29, No. 1, 47±56.

Dobereiner, L. & de Freitas, M. H. (1986). Geotechnical properties of
weak sandstones. GeÂotechnique 36, 79±94.

Gooding, E. J. (1932). Investigation on the tensile strength of glass. J.
Soc. Glass Tech. 16, 145±170.

Higgins, M. W. (1971). Cataclastic rocks. Geological Survey Profes-
sional Paper 689. Washington, DC: US Department of the Interior.

Jaeger, J. C. (1967). Failure of rocks under tensile conditions. Int. J.
Rock Mech. Mineral Sci. 4, 219±227.

Lapworth, C. (1885). The Highland controversy in British geology; its
causes, course, and consequences. Nature 32, 558±559.

Lee, D. M. (1992). The angles of friction of granular ®lls. PhD
dissertation, University of Cambridge.

McDowell, G. R., Bolton, M. D. & Robertson, D. (1996). The fractal
crush-ing of granular materials. J. Mech. Phys. Solids. 44, No. 12,
2079±2102.

1000

10

1

0·1

100

10·1

Average particle size at failure: mm

10 100

σ 0
: M

P
a

y = 78·867x–1·9647

R 2 = 0·9577

Fig. 12. 37% tensile strength as a function of average particle size
at failure

140

120

100

80

60

40

20

0A
ve

ra
ge

 fo
rc

e 
at

 fa
ilu

re
: N

0 50 100 150 200 300250

Average d 2 at failure: mm2

Fig. 13. Average force at failure as a function of average d2 at
failure

DISCUSSION 317



MeneÂndez, B., Zhu, W. & Wong, T.-F. (1996). Micromechanics of brittle
faulting and cataclastic ¯ow in Berea sandstone. J. Struct. Geol. 18,
1±16.

Renner, J. & Rummel, F. (1996). The effect of experimental and micro-
structural parameters on the transition from brittle failure to cata-
clastic ¯ow of carbonate rocks. Tectonophysics, No. 258, 151±169.

Shipway, P. H. & Hutchings (1993). Fracture of brittle spheres under
compression and impact loading. I Elastic stress distributions. Phil.
Mag. A 67, No. 6, 1389±1404.

Wijk, G., Rehbinder, G. & LoÈgdstroÈm, G. (1997). The relation between
uniaxial tensile strength and the sample size for Bohus granite. Rock
Mech. Rock Engng 10, 201±219.

318 DISCUSSION


	REFERENCES

