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On the micromechanics of crushable aggregates

G. R. McDOWELL* and M. D. BOLTON*

This paper presents a study of the micromecha-
nical behaviour of crushable soils. For a single
grain loaded diametrically between flat platens,
data are presented for the tensile strengths of
particles of different size and mineralogy. These
data are shown to be consistent with Weibull
statistics of brittle fracture. Triaxial tests on
different soils of equal relative density show that
the dilatational component of internal angle of
friction reduces logarithmically with mean effec-
tive stress normalized by grain tensile strength.
The tensile strength of grains is also shown to
govern normal compression. For a sample of
uniform grains under uniaxial compression, the
yield stress is related to the average grain tensile
strength. If particles fracture such that the
smallest particles are in geometrically self-simi-
lar configurations under increasing macroscopic
stress, with a constant probability of fracture, a
fractal geometry evolves with the successive
fracture of the smallest grains, in agreement
with the available data. A new work equation
predicts that the evolution of a fractal geometry
gives rise to a linear compression line when
voids ratio is plotted against the logarithm of
macroscopic stress, in agreement with published
data.

KEYWORDS: compressibility; constitutive relations;
plasticity; sands; statistical analysis.

Cet exposé présente une étude du comportement
micro mécanique des sols concassables. Pour un
seul grain chargé de maniére diamétrale entre
des platines plates, nous présentons les données
de résistance a la rupture des particules de
différentes dimensions et minéralogies. Nous
montrons que ces données correspondent aux
statistiques de Weibull sur la rupture de fragi-
lité. Les essais triaxiaux sur divers sols de méme
densité relative montrent que le composant de
dilatation de ’angle interne de friction baisse de
maniére logarithmique en méme temps que la
contrainte effective moyenne normalisée par la
résistance a la rupture du grain. Nous montrons
aussi que la résistance a la rupture des grains
gouverne la compression normale. Pour un
échantillon de grains uniformes sous compres-
sion uniaxiale, la limite élastique est liée a la
rupture moyenne des grains. Si la rupture des
particules est telle que les plus petites particules
sont dans des configurations a similitude géomé-
trique intrinséque sous un effort macroscopique
de plus en plus grand, avec probabilité constante
de rupture, une géométrie fractale apparait avec
la rupture successive des grains les plus fins, en
accord avec les données disponibles. Une nou-
velle équation de travail prédit que 1’évolution
de la géometrie fractale provoque I’apparition
d’une ligne de compression linéaire quand le
taux de pores est représenté sous forme de
courbe par rapport au logarithme de I’effort
macroscopique, en accord avec les données pub-
liées.

INTRODUCTION

It is well known that particle fracture plays a major
role in the behaviour of crushable soils. For an
aggregate of particles under normal compression,
the yield stress of a calcareous sand is lower than
that of a siliceous sand, simply because the calcar-
eous particles are more friable (Golightly, 1990).
The dilatational component of the internal angle of
friction of a sand measured in a triaxial test is
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known to reduce logarithmically with mean effec-
tive stress (Bolton, 1986), since at high stresses,
crushing eliminates the dilatancy. The normal com-
pression of a sand is known to give rise to the
evolution of a distribution of particle sizes
(Fukumoto, 1992). In particular, it has been found
that the particle size distributions of broken and
crushed granular materials tend to be self-similar
or fractal (Turcotte, 1986). The particle grading
can be characterized by defining a fractal dimen-
sion which, remarkably, often tends to be about 2-5
for aggregates subjected to pure crushing (Turcotte,
1986; Palmer & Sanderson, 1991).

The detailed micromechanics of the phenomena
mentioned above are not well understood. The
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tensile strength of particles must govern the beha-
viour of an aggregate, but how, for example, does
normal compression give rise to a distribution of
particle sizes? The difficulty begins with defining
grain fracture, in order to obtain a consistent
definition of particle strength.

This paper aims to relate the micromechanics of
grain fracture to the macroscopic deformation of
crushable aggregates. To this end, it is necessary
first of all to obtain a reliable definition of grain
fracture. Data from tests on grains crushed between
flat platens are explained in terms of the Weibull
statistics of fracture of brittle ceramics (Weibull,
1951), and this permits a consistent definition of
grain tensile strength. The paper uses this defini-
tion to quantify the behaviour of various crushable
soils. A study is made of the influence of grain
strength on the internal angle of friction for dila-
tant, crushable aggregates. In addition, the micro-
mechanics of normal compression are examined,
with the specific purpose of explaining the exis-
tence of approximately linear compression lines in
e—logo’ space. This leads to an expression for the
compressibility index of the aggregate, in terms of
more fundamental particle parameters.

FRACTURE OF A SINGLE PARTICLE

It is widely accepted that the failure of a
spherical particle under compression is in fact a
tensile failure. There is a tensile stress distribution
induced in the particle and failure occurs when the
tensile stress o at a critical flaw of size a is such
that the stress intensity factor K = Yo+/ma (where
Y is a dimensionless number relating to the pro-
blem geometry) for the flaw reaches the mode I
fracture toughness of the material K., according to
Griffith’s criterion (Griffith, 1920). Consequently,
the ‘tensile strength’ of rock grains can be indir-
ectly measured by diametral compression between
flat platens (Jaeger, 1967). Lee (1992) compressed
individual grains of Leighton Buzzard sand, oolitic
limestone and carboniferous limestone, in such a
manner shown in Fig. 1. For a grain of diameter d
under a diametral force F, a characteristic tensile
stress induced within it may be defined as

F

0= pl ey
following Jaeger (1967) and Shipway & Hutchings
(1993). This is also consistent with the definition
of tensile strength of concrete in the Brazilian test.
Fig. 2 shows a typical plot of platen load F as a
function of the platen displacement 6. It can be
seen that there are some initial peaks in the load—
displacement curve, which correspond to the frac-
turing of asperities, and the rounding of the parti-
cle as small corners break off. For a particle of
size d under load F, an asperity of size a may be

F; — fracture force

Polished
surfaces

@ >

Fig. 1. Particle tensile strength test set-up (Lee, 1992)

Bearing failures
at contact points

Force: kN

Platen displacement

Fig 2. Typical load-deflection plot (Lee, 1992)

considered to have an induced tensile stress of
F/a?, and the asperity would break off when this
stress attained the critical value for the asperity.
However, this cannot be described as failure of the
particle: the asperity under the platen which has
just broken off would have fractured irrespective of
the size of the parent particle. Hence, a more
reliable definition of particle breakage is required.
It can be clearly seen in Fig. 2 that the initial
small peaks are followed by a large peak corre-
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sponding to the maximum load, and a catastrophic
failure as the particle splits, and the load drops
dramatically. Particle fracture will henceforth be
interpreted as particle ‘splitting’. With this defini-
tion of fracture, Lee calculated the tensile strength
of grains as

Fy
a2
where the subscript f denotes failure. He found
that for particles of a given size and mineralogy,
the tensile strength is not a constant but has a
standard deviation about some mean value. Further-
more, he found the average tensile strength to be a
function of particle size d. Fig. 3 shows the mean
tensile strength o¢ as a function of the average
particle size d. The data are described by the
relation

o o< d’ 3

where typical values of b are given by —0-357,
—0-343 and —0-420 for Leighton Buzzard sand,
oolitic limestone and carboniferous limestone, re-
spectively. This size effect on particle strength was
also evident in particle crushing tests performed by
Billam (1972), and it is a direct consequence of
the statistical variation in the strength of brittle
ceramics. Because ceramic materials contain a dis-
tribution of flaw sizes, small samples are stronger
than large samples, since there are fewer and smal-
ler flaws. This will now be quantified more rigor-
ously using Weibull statistics of fracture, which is
widely accepted to describe the tensile strength of
brittle ceramics.

Weibull (1951) recognizes that the survival of a

Of =

@

block of a material under tension requires that all
its constituent parts remain intact (i.e. a chain is as
strong as its weakest link). Weibull stated that for
a volume ¥, under an applied tensile stress o, the
‘survival probability’ Py(¥) of the block is given

by

P(V) = exp {—VKO <§0> } )

where Vj is a reference volume of material such
that

(Vo) = exp [ (030) } 5)

which is plotted in Fig. 4. The parameter o is the
value of tensile stress o such that 37% (i.e.
100 exp(—1)%) of the total number of tested blocks
survive. The exponent m is the Weibull modulus,
and decreases with increasing variability in tensile
strength. For chalk, stone, pottery and cement m is
about 5. A similar value would be expected for
carbonate sands, which have similar intraparticle
porosity values. The engineering ceramics, such as
Al,O3 have values for m of about 10, and the
variation in strength is much less. For soils, we
expect 5 <m <10. It can readily be shown that the
mean tensile strength for samples of volume Vj is
given by

Omean = 00T (1 + 1/m) (6)

where I’ is the gamma function, and returns a
value of about 1 for the values of m being consid-
ered. It is also readily seen in Fig. 4 that the
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Fig. 3. Mean tensile strength as a function of particle size (Lee, 1992)
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Fig. 4. Weibull distribution of strengths

maximum rate at which samples of volume V)
fracture as the applied tensile stress increases oc-
curs at around 0 = 0y. A more rigorous analysis
shows that dP;/do is a minimum (i.e. dPs/do is a
maximum, where Pr is the fracture probability) at
a value of stress given by

1/m
o =Uo(m7_1) (7

It is evident, then, that o, is a significant and
useful parameter in describing the strength of cera-
mic materials. For a block of material of volume
V1 under tension, equation (4) gives the 37%
strength g, as

v 1/m
001 = 00(;?) (8

and the mean strengths scale in the same way.

It is now necessary to examine the applicability
of Weibull to the data presented by Lee in Fig. 3.
If particles are approximately geometrically similar,
and have the same number and distribution of
contacts, the size of the zones of tensile stress
induced within them must scale with their volume.
In this case, Weibull applies. The survival prob-
ability of a particle size d under diametral com-
pression is therefore given by

3 m
Pyd) = exp [ (dio) (c%) } ©)

alog

where o is the characteristic tensile stress induced
in the particle given by equation (1), and oy is
now the value of F/d? at which 37% of the tested
particles survive, and is approximately equal to
(and is proportional to) the mean tensile strength
of particles of size djy. It is evident from equations
(8) and (9) that the average tensile strength of
grains scales with particle size according to the
relation

oo o d3m (10)

which is equivalent to equation (3). Apparently,
values of m in the range 5—10 cover Lee’s data for
rock grains in Fig. 3.

The above analysis concludes that the mean
value of F/d?* at fracture for grains compressed
diametrically between flat platens is a proper statis-
tical measure of the tensile strength of ceramic
particles.

INFLUENCE OF GRAIN STRENGTH ON ANGLE OF
INTERNAL FRICTION

Bolton (1986) proposed an empirical relation for
the extra component of internal angle of friction
A¢p due to dilatancy above the critical state
strength ¢¢it, as a function of the mean effective
stress p' and the initial relative density /p:

A¢g = ¢r/nax - ¢érit = AlR° (11)
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where 4 = 3 for triaxial strain and 4 = 5 in plane
strain conditions, and

Ig = In(Q—Inp")—1 (12)

where p’ is in kilopascals. The parameter Q relates
to the mean effective stress required to suppress
dilatancy, and takes a value of 10 for the quartz
and feldspar sands discussed by Bolton. Bolton
(1986) noted that triaxial tests by Billam (1972)
had shown that reducing the crushing strength of
the grains reduced the critical mean effective stress
required to suppress dilatancy, implying that the
value of Q in equation (12) should be reduced for
soils of weaker grains. Bolton suggested values for
O of 8 for limestone, 7 for anthracite and 5-5 for
chalk. However, since the average grain strength as
measured by Lee (1992) has now been shown to
be a proper statistical measure of tensile strength,
it seems likely that the dilatational component of
the internal angle of friction A¢ should be a func-
tion of the mean effective stress normalised by the
average grain tensile strength o, for soils of equal
relative density.

Figure 5 shows results of triaxial tests performed
by Lee (1992) on samples of Leighton Buzzard
sand and oolitic limestone at the same initial
relative density. The results include two different
particle size gradings for each soil: samples con-
tained approximately uniformly sized particles, but
the size of the grains, varied by a factor of about
10 between the two gradings. The figure shows the
dilatational component of angle of friction A¢
plotted against p'/o¢ on a logarithmic scale. It is
clear that A¢ reduces linearly with log(p’/0y),
thus confirming the hypothesis that the tensile
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strength of grains should govern the dilatant beha-
viour of crushable soils. More micromechanical
insight can therefore be achieved if equation (12)
is rewritten as

B
IR :[Dll’l( O;0> —1
P

where B is a scalar multiplier. As Bolton (1986)
remarked, this expression is applicable for Ix = 0,
and should not be taken to apply as p’ approaches
Boy. The onset of contraction is the subject of the
next section.

(13)

ONE-DIMENSIONAL COMPRESSION

There now follows a study of the micromecha-
nics of one-dimensional compression. In particular,
the aim is to determine the role of grain fracture in
the uniaxial compression of crushable soils. Fig. 6
(Golightly, 1990) shows typical plots of voids ratio
against the logarithm of vertical effective stress for
samples of carbonate and silica sands which have
been compressed in an oedometer. Plots for loose
and dense silica sand are shown for comparison.
Consider the compression of dense silica sand. A
geotechnical engineer might describe the form of
the curve by the relationship

e=f(o}) (14)

which is dimensionally inconsistent: the vertical
effective stress ought to be normalized by some
material parameter with the dimensions of stress.
Bolton & McDowell (1996) suggested that for the
small deformations in region 1, the normalizing
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Fig. 5. Dilatational component of angle of internal friction plotted against
mean effective stress normalized by grain tensile strength (Lee, 1992). LBS,
Leighton Buzzard sand; OLS, oolitic limestone
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Fig. 6. One-dimensional compression plots for carbo-
nate and silica sands (Golightly, 1990)

parameter should be the elastic modulus of a
particle, so that one might write

e=f(0v/Gp, ) (15)

where ¢ is the angle of internal friction. Even with
a dense sand, small irrecoverable deformations may
occur by particle rearrangement, since grains not in
their closest possible packing may still rearrange.
This explains why the relative density of a vibro-
compacted sand increases with increasing time
spent on vibro-compaction.

It is evident in Fig. 6 that a well-defined yield-
ing region 2 exists. This cannot be due to particle
rearrangement alone: for this dense sand, which
has exhausted all possible particle rearrangement at
region 2, particle breakage is a prerequisite for
further compaction. For an array of approximately
uniform particles under compression, the average
characteristic tensile stress o induced in a grain
must be proportional to the applied macroscopic
stress o (where the overbar will now be used to
indicate macroscopic, compressive). For particles
loaded in this manner, there will exist a value of
characteristic induced tensile stress o, such that
37% of particles survive. As previously noted, oy
also represents (approximately) the characteristic
tensile stress at which the rate of particle fracture
with increasing stress dPr/do is a maximum,
which we may consider to correspond to the yield-
ing region 2. The yield stress, then, must be pro-
portional to the average tensile strength of grains,

as measured by crushing between flat platens, so
that for irrecoverable strains in region 2 we may
write

e =£@/Gy. .5 /00) (16)

Bolton & McDowell (1996) called the behaviour in
region 2 ‘clastic’ yielding, whereby major irrecov-
erable deformations are permitted by the onset of
particle fracture. A clastic yield stress oy may be
defined as the value of macroscopic stress which
causes the maximum rate of grain fracture under
increasing stress, for particles loaded in this con-
figuration. For an aggregate of brittle particles of
very high Weibull modulus (i.e. a unique particle
tensile strength), it is evident that catastrophic
compression of the aggregate would occur when
the applied macroscopic stress attained a value
equal to the clastic yield stress. McDowell (1997)
showed, using a simple numerical model, that this
is indeed the case.

The compression plot in Fig. 6 for loose silica
sand shows that at higher voids ratios more particle
rearrangement can occur before the onset of crush-
ing, in agreement with data published by Hagerty
et al. (1993). Furthermore, the clastic yield stress
is lower, since at higher voids ratios the average
coordination number (number of contacts per parti-
cle) in the aggregate reduces (Oda, 1977). Jaeger
(1967) showed that for circular particles under
combinations of surface forces, the maximum ten-
sile stress in a particle reduces as the coordination
number increases.

The compression plot for the dense carbonate
sand also shows a yielding region, although it is
less pronounced than that for the dense silica sand.
This should be expected from a material with a
lower Weibull modulus, which is what one might
anticipate for a calcareous sand which is composed
of very porous grains.

‘NORMAL COMPRESSION

Figure 6 shows that for a crushable aggregate
which has been one-dimensionally compressed,
clastic yielding is followed by a region of plastic
hardening, in which the macroscopic stress must
be increased in order to produce any further com-
paction. Geotechnical engineers call this ‘normal’
compression. Furthermore, there is a linear rela-
tionship between voids ratio and the logarithm of
effective stress. From early publications in soil
mechanics, the one-dimensional plastic compres-
sion of soils has been shown to satisfy this rela-
tionship. The resulting plots are known as ‘normal
compression lines’, and the slope of such a plot,
the compressibility index, is taken to be an empiri-
cal soil constant, given the symbol 4 when using
natural logarithms, in Cam Clay (Schofield &
Wroth, 1968), and subsequent models based on
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plasticity theory (Roscoe & Burland, 1968; Miura
et al., 1984):

e=¢y—Alno 17)

Terzaghi (1948) used a similar equation with com-
mon logarithms, and the slope was given the
symbol C.. Equation (17), like equation (14), is
dimensionally inconsistent and physically incom-
plete—the macroscopic stress should be normalized
by a material parameter with dimensions of stress.
The popular use of atmospheric pressure, or a
standard stress (1 kPa, 1 kgf /cmz, etc.) is, of
course, no answer to this dilemma. The principles
of physics demand that behaviour be described in
terms which are dimensionless with respect to
parameters involved in the physical process.
Furthermore, the physical origins of 4 have re-
mained a mystery to geotechnical engineers: it has
seemed impossible to formulate a non-dimensional
group for A in terms of particle parameters. The
linear—log relationship described by equation (17)
applies to a wide range of geotechnical materials
(Novello & Johnston, 1989), and the compressibil-
ity index A is remarkably in the range 0-1-0-4 for
a wide range of granular materials.

It is well known that the normal compression of
crushable soils leads to particle size disparity
(Fukumoto, 1992; Hagerty et al., 1993). The aim
of this paper is now to relate the evolution of a
distribution of particle sizes to the existence of the
normal compression lines evident in Fig. 6.

THE EXISTENCE OF FRACTALS

It has long been recognized that a wide variety
of scale-invariant processes (magnification does not
alter the picture) occur in nature. The concept of
fractals provides a means of quantifying these
processes (Mandelbrot, 1982). Turcotte (1986) ex-
amined the fragment sizes for a wide range of
crushed materials and found the size distributions
to have a fractal character. A fractal defines a
simple power law relation between the number of
particles and their size, so that the number of
fragments which have a diameter (or other charac-
teristic linear dimension) size L greater than size d
is given by

N(L>d) = Ad™P (18)

where A is a constant of proportionality and D is
the fractal dimension. The fractal dimension D is
often about 2-5 for materials subjected to pure
crushing—for example Turcotte (1986) gives bro-
ken coal a value of D =2.50; granite fragments
from an underground nuclear explosion have D =
2-50; and basalt fragments from projectile impact
have D = 2.56. The materials which exhibit fractal
dimensions significantly different from 2-5 are
usually not the result of pure crushing, and have

often been subject to sorting—for example, glacial
till has an observed fractal dimension of 2-88
(Turcotte, 1986). It seems likely that there is a
mechanical explanation for the existence of a
fractal dimension of about 2-5—Palmer & Sander-
son (1991) produced a simple fractal crushing
model for ice, and showed that if the crushing
force on a block of ice is determined equally by
the fracture of fragments of all sizes (i.e. all
fragment sizes make an equal contribution to the
crushing force), then the fractal dimension must be
2-5, in agreement with observed values of D.
Steacy & Sammis (1991) used computer simula-
tions to examine the evolution of a fractal geome-
try under different conditions, in order to explain
the observed fractal dimensions in fault gouge of
2:6 +0-1 (Sammis et al., 1987). Their model con-
sists of a cube of material which splits into self-
similar cubes, such that no neighbours are of the
same size at any scale, since this would maximize
the stress concentrations on a particle surface.
Steacy & Sammis showed that if neighbours are
defined as blocks sharing faces or edges, then it is
possible to generate arrays of particles with a
fractal dimension of about 2-5.

It will therefore be assumed here for simplicity
that normal compression gives rise to a fractal
distribution of particles with a value of D = 2.5.
McDowell et al. (1996) have given a more general
analysis of aggregate compaction, in which the
fractal dimension need not be 2-5; this will be
discussed briefly later. It is essential at the outset
to recognize that although a strictly fractal distribu-
tion of particle sizes obeying equation (18) would
extend over an infinite range of scales, the fractal
distribution must, in reality, be limited (Fig. 7).
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Fig. 7. A limited fractal of dimension D. The smallest
particle size reduces under increasing stress
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There will be a ‘largest’ particle of size dy corre-
sponding to the original population, and a smallest
particle of size dy which will generally reduce as
stress increases. This is of uttermost importance in
understanding the micromechanics of normal com-
pression. If the size distribution in Fig. 7 were
strictly a fractal without limit, the aggregate would
have a voids ratio uniquely defined by the fractal
dimension D: scale invariance would demand it
and make the process of normal compression im-
possible. The model for ‘plastic’ or ‘clastic’ irre-
coverable compression which will now be
presented is wholly dependent on the reduction of
the smallest particle size d; by successive splitting,
so that voids ratio reduces as the broken fragments
fill pre-existing voids.

FRACTAL CRUSHING

The probability of fracture of a particle is
determined (McDowell et al., 1996) by the applied
macroscopic stress, the size of the particle and the
coordination number (number of contacts with
neighbouring particles). The fracture probability
Pr(d) must increase with any increase in macro-
scopic stress o, but reduce with a decrease in
particle size, or an increase in the coordination
number (since an increase in the number of con-
tacts must reduce the induced tensile stresses
(Jaeger, 1967)). For an aggregate with particle size
disparity, the largest grains will have very high-
coordination numbers, since they will be sur-
rounded by many smaller particles. The smallest
particles in the aggregate must have the minimum
coordination.

It might be anticipated, at first sight, that be-
cause small particles are stronger than large parti-
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cles the largest particles are always the most likely
to fracture. This would lead to the evolution of a
uniform matrix of fine particles from the compres-
sion of an aggregate of coarse grains, behaviour
which is not evident in the geotechnical literature.
However, although the smallest particles are the
strongest, they also have the fewest contacts. There
are two opposing effects on particle survival, size
and coordination number. If coordination number
dominates over particle size in the evolution of the
aggregate, then the smallest particles always have
the highest probability of fracture. In this case, the
compression of an aggregate of uniform grains
would lead to a disparity in particle sizes, in which
a proportion of the original grains is retained under
the protection of a uniform compressive boundary
stress created by its many neighbours. This type of
behaviour is evident in Fig. 8, which shows the
particle size distribution curve which evolves for
Ottawa sand. McDowell ef al. (1996) have shown,
using a simple numerical model, that when coordi-
nation number dominates over particle size in
determining the fracture probability of a particle, a
fractal distribution of particle sizes evolves.
Suppose that it is the smallest particles which
continue to fracture under increasing macroscopic
stress, and that the probability of fracture of the
smallest particles is a constant p, and that the
number of fragments produced when a particle
splits is a constant n. The scale-invariant para-
meters p and n will be shown to define a fragment
size distribution which is a fractal. Consider a
hierarchy of splitting grains such that the largest
particles are size dy, and that subsequent ‘orders’
of particle size are dy, d», ..., d;, where d; is the
smallest particle size which decreases under in-
creasing macroscopic stress. If there were origin-

100
80 [~

= 100 MPa

Ky

=2

[}

$ 60 55 MPa

>

o

8 35 MPa

= 40}

g 7 MPa

o

o}

o
20 -
o I I

001

01 1

Grain size: mm

Fig. 8. Evolving particle size distribution curves for one-dimensionally com-

pressed Ottawa sand (Fukumoto, 1992)
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ally o particles of order 0, then the number of
particles of order i must be w(np)'(1 — p). The
number of particles of size d; or greater is given
by

N(L>d;) = o(np)(1 = p)[1 + 1/np

+1/(np? +...] (19)

which reduces to

N(L>d;) = a(np)'(1 = pl =1/np]”"  (20)
for np>1. The number of fragments of size d;;
or greater is given by replacing i by i+ 1 in
equation (20), so that the ratio of the number of
fragments of order i or greater, to the number of
fragments of order i + 1 or greater is easily calcu-
lated as

NL>d) 1
NL>dr)  np @D

This defines a fractal distribution. Equation (18)
gives

-D
N(L>d) ( d ) — (n'/3)P 22)

N(L>di11)  \din

so that by comparing equations (21) and (22), the
fractal dimension can be related to p and n:

I
D:3(1+2) 23)
Inn

The idea of having a probability of fracture which
is constant for the smallest particles is consistent
with the idea that the smallest particles remain in
geometrically similar configurations, with a mini-
mum coordination. In this case, it is also evident
that the smallest grains will, on average, have a
characteristic induced tensile stress which is pro-
portional to the current macroscopic stress. Micro-
scopically, strong columns of force may form at
intervals of a few particle diameters to transmit the
major principal stress (Cundall & Strack, 1979).
However, the organization of particles must change
when any particle fractures, so that the snapshot of
order at any instant should be irrelevant. The
tensile stress induced in the smallest particles can
be considered to take some characteristic value
when integrated over many fractures.

We now proceed to relate the smallest particle
size ds to the current macroscopic stress o. Con-
sider a material containing Griffith flaws (Griffith,
1920), and for which the maximum flaw size in a
particle is proportional to the size of the particle
(i.e. there is statistical self-similarity in the flaw
size distribution), which corresponds to a disor-
dered granular material. Following Carpinteri
(1994), such a material would exhibit Griffith’s law
of fracture, with a size index in equation (3) of

b = —0-5. Since the smallest particles of size d;
may be considered to have a characteristic tensile
stress which is proportional to the macroscopic
stress 0, and if the splitting of grains is governed
by linear elastic fracture mechanics so that the only
material parameter involved is the fracture tough-
ness Kj., then the only dimensionless group that
can be formed from these parameters is
0 +/d;/ Kjc—which must remain constant for geo-
metrically similar situations, that is,

o\ ds x K (24)

Alternatively, we may write

G\/dy x Gor/dy (25)

where 0 is the clastic yield stress for the aggre-
gate, and the constant of proportionality in equa-
tion (25) may be derived by equating the fractal
probability of fracture p to the Weibull fracture
probability Py (McDowell, 1997), and may be
taken to be about 1. Equation (25) relates the
current smallest particle size to the applied uniax-
ial compressive stress for a material which obeys
Griffith’s laws of linear elastic fracture mechanics,
and provides a mechanism for plastic hardening of
the aggregate. Bolton & McDowell (1996) have
termed this behaviour ‘clastic hardening’. It should
be noted that granular materials having flaw size
distributions other than that which is described
above have been treated by McDowell et al. (1996)
using Weibull statistics, and have been omitted
here for clarity.

CLASTIC HARDENING

It is now proposed to relate the evolution of a
fractal geometry to the evolution of a ‘normal
compression line’ which is linear in e—logo space.
For this purpose, a new work equation will be
introduced. It is first of all useful, however, to
consider the original Cam Clay work equation
(Roscoe et al., 1963; Schofield & Wroth, 1968),
which has been used very widely to model the
deformation of a porous aggregate:

qOeh + p' del, = Mp'Oel (26)

The left-hand side represents the plastic work done
per unit volume by deviatoric stress ¢ and mean
effective stress p’ (with corresponding irrecover-
able strain increments de) and 8¢). The right-hand
side was identified as internal frictional dissipation.
If elastic strains are ignored, then the equation
reduces to the Granta Gravel work equation
(Schofield & Wroth, 1968), which will be used
here for simplicity: elastic strains may easily be
superimposed (McDowell et al., 1996). We now
add a term on the right-hand side of equation (26)
for the energy dissipated in the successive fracture
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of brittle particles and get (McDowell et al.,
1996):
, , rds

qde,+ p' dey =Mp 684+Vs(l+e) 27
where dS is the increase in surface area of a
volume Vs of solids distributed in a gross volume
Vs(1 + e), and I is the ‘surface energy’, related to
the critical strain energy release rate G. by
I' =G./2 (not to be confused with the gamma
function in equation (6)). For the special case of
one-dimensional normal compression with effective
axial stress ¢ and uniaxial strain €, we obtain

rds
Vil +e)
where K| is the lateral/axial effective stress ratio,
and may readily be estimated using Jaky’s formula
(Jaky, 1944) Ky ~ 1 — sin¢. Substituting

de

(1+e)

into equation (28) relates the reduction in voids

ratio to the increase in surface area in the soil
sample:

G de = IM(1 + 2Ko)o dg + (28)

de =

(29)

_ rds
(T —waVs

where u is a weak function solely of the angle of
internal friction (McDowell, 1997), varying from
0-4 for ¢ =20° to 0-6 for ¢ =40° and so may
conveniently be assumed to take a value of 0-5. It
is worth noting that equation (27) removes a
limitation of the original Cam Clay work equation
(Schofield & Wroth, 1968) by permitting plastic
volume changes for simple isotropic loading. This
new work equation predicts that under isotropic
loading (i.e. ¢ =0, de, =0), an increase in the
surface area of particles produces a finite volu-
metric strain, so that de,/de, is infinite. In this
case, if the normality rule were to be applied in
order to derive a yield surface, the new work
equation (27) would tend to round off the corner
of the Cam Clay yield locus.

The total surface area of particles in the samples
can be found by consideration of equation (18). By
differentiating equation (18), it is evident that the
number of particles with a size in the range of d
to d + 0d is

ON = ADd P 8d 31)

The surface area of a particle of size d may be
given by

S(d) = psd* (32)

where S is the surface shape factor, so that the
total surface area of particles of size in the range
dtod+ddis

de = (30)

&S = B ADd" P dd (33)

The total surface area of particles in the sample
S(L>ds) is given by integrating equation (33):

S(L>dg) = 5p,4d;/? (34)

using D = 2.5. Incidentally, the mass distribution
may be calculated in the same way, so that the
volume of particles less than or equal to size d is
given by

M(L<d) = 58,4d"? (35)

where f, is the volume shape factor for the
material. This is the final mass distribution which
evolves during the successive fracture of the smal-
lest grains. The total volume of solids in the
sample Vs is given by equation (35) with d = d.
Combining equations (34) and (25) relates the total
surface area in the sample to the current applied
macroscopic stress:

o) 1
S=564|=— ) —= 36

b <0 0) Vdo )
Combining equation (36) with equation (30) pro-
vides a clastic hardening law:

1 Bs ' \do
de=—(—— — 37
¢ <1 *ﬂﬁv50d0> g G
which is a normal compression line, of slope
1 ps T
= 7é7 (38)
1-— /Ltﬂv O'()d()

It is evident, then that the evolution of a fractal
geometry provides a micromechanical commentary
for the evolution of normal compression lines. It is
interesting to substitute some typical values for the
parameters in equation (38). For a quartz sand,
with ¢ = 30°, u ~ 0-5, Harr (1977) quotes values
of fBs/By for crushed quartz in the range 14-—18
(where the shape factors are defined using the
projected diameter of a particle), so we might
assume a value 16; Ashby & Jones (1986) give
values of surface energy I' for rocks of 25 J/m?;
and the clastic yield stress for a silica sand com-
prising 1 mm diameter particles might be 10 MPa.
These values give a compressibility index A = 0-1
in equation (38), which is of the correct order of
magnitude, comparing with available data for gran-
ular materials (Novello & Johnston, 1989).

DISCUSSION

The value of compressibility index A~ 0-1 gi-
ven by equation (38) must be partly fortunate: the
least certain parameter is the surface energy I,
which is difficult to estimate. Furthermore, the
dependence of A on d is surprising, although there
is a lack of experimental data to suggest that the
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compressibility index should be independent of the
initial particle size. One possible source of expla-
nation is the surface energy I'. The surface energy
has traditionally been taken to be a material con-
stant (Ashby & Jones, 1986), related to the mode I
fracture toughness Kj. by Kj. = V2EI[ (where E
is Young’s modulus) when the principles of linear
elastic fracture mechanics apply. However, recent
tensile testing experiments on concrete (Carpinteri,
1994), and tensile splitting experiments on short
rods of sandstone and marble (Scavia, 1996) have
shown that over a range of scales for these regular
geometries,

I o dP2 (39)

where d is some characteristic length of the speci-
men and Dy is the surface fractal dimension, with
2 < Dy<3. In fact, the kinematics of the fracture
process puts an upper limit on D; of 2-5, which
corresponds to an extremely disordered material,
with a wide distribution of flaws. For a material
containing Griffith flaws, with the maximum flaw
size proportional to the size of the specimen, then
I o d'/?. If we now rewrite equation (38) as

i L BTN

- ﬂﬂv 50\/61_0
then @yv/dy < K., which is a material constant
(Xie, 1993), so that in the application of linear
elastic fracture mechanics it might seem plausible
to scale the surface energy in proportion to d'~,
so that A is seen to be a material constant. Never-
theless, what is important is that equation (38)
predicts a unique value of A for a particular aggre-
gate, so that if a normally compressed soil is
unloaded and reloaded, the normal compression
line will be rejoined at the preconsolidation stress.
The current preconsolidation or yield stress is
determined by the tensile strength of the smallest
grains. If the smallest particle size is known, then
the current voids ratio may be uniquely defined by
the relationship

e=f(©/Gp, ¢, 0/00s) (41)

where o¢s is the tensile strength of the smallest
particles.

The derivation of the e—logo relationship in
this paper has been for disordered materials in
which the average size of a critical flaw is propor-
tional to the size of a particle, and which form
particle size distributions with a fractal dimension
of 2-5. A more general analysis has been given by
McDowell (1997), which shows that the voids
ratio—effective stress relationship is given by

(40)

47

de = _/1(5)(m/3)(D72)7
o

(42)

so that for the majority of granular materials with
D =25, and 5<m<10, the power on stress in

equation (42) is negligible, which explains why
most normal compression curves are approximately
linear in e—logo space. However, the purpose of
this paper has been to elucidate the fundamental
micromechanics of normal compression and pro-
vide a mechanism of plastic (clastic) hardening.
There is a lack of experimental data to show
that the existence of linear normal compression
lines for crushable soils is consistent with the
evolution of a fractal geometry. However, the theo-
ry is supported by the data in Fig. 9, which shows
a normal compression curve for petroleum coke,
together with the particle size distribution which

25
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Fig. 9. (a) One-dimensional normal compression curve
for petroleum coke. (b) Evolving particle size distribu-
tions for one-dimensionally compressed petroleum
coke
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evolves (Bard, 1993; Biarez & Hicher, 1994). It is
clear that the evolution of the linear portion of the
curve in Fig. 9(a) is consistent with the evolution
of a fractal distribution of particle sizes in Fig.
9(b) as the uniformity coefficient tends to some
constant value. The change in curvature of the plot
at low voids ratios must be due to the comminu-
tion limit (Kendall, 1978) for petroleum coke—
Fig. 9(b) (Bard, 1993) shows that at high stresses
there is significant breakage of the larger grains,
since the smallest particles are so small that they
yield before fracture. However, the data clearly
support the hypothesis that the micromechanical
origin of normal compression lies in the evolution
of a fractal geometry. It seems that ‘normal com-
pression’ would be better termed ‘fractal compres-
sion’.

CONCLUSIONS

The tensile strengths of soil grains compressed
between flat platens satisfy the Weibull statistics of
fracture of brittle ceramics, which permits a useful
and consistent definition of grain strength. This
grain strength governs the strength and dilatancy of
crushable soils, so that at a given relative density
the dilatational component of the angle of internal
friction is proportional to the logarithm of mean
effective stress normalized by grain tensile
strength. For an aggregate under one-dimensional
normal compression, the yield stress is proportional
to the grain tensile strength. The successive frac-
ture of the smallest particles under increasing
macroscopic stress to form a limited fractal geome-
try provides a micromechanical insight into the
existence of linear ‘normal compression lines’. In
this case, the current yield stress of the aggregate
is determined by the tensile strength of the smallest
particles.

NOTATION
b Lee index on tensile strength
d particle size
dy size of largest particle, order 0
d; size of a particle of order i
dg size of smallest particle, order s
D fractal dimension
e voids ratio
F  diametral force for a particle compressed
between flat platens
F¢  crushing force for a particle compressed
between flat platens
G, shear modulus of particle material
Ip relative density
Ix relative dilatancy index
Kj. mode I fracture toughness
K, lateral/axial effective stress ratio in one-
dimensional compression
m  Weibull modulus

M(L<d) volume of particles finer than size d
n number of fragments produced when a
particle splits
N(L>d) number of particles larger than size d
p fractal probability of fracture
p' mean effective stress
Pr(d) fracture probability for a particle of size d
Py(d) survival probability for a particle of size d
Py(V) survival probability for a volume V'
q deviatoric stress
O Bolton constant
S surface area
S(L>d) total surface area of particles larger than
size d
V' volume
Vo reference volume
Vs volume of solids
pBs surface shape factor
By volume shape factor
gq triaxial shear strain
&y volumetric strain
£ uniaxial macroscopic compressive strain
¢ angle of friction
I' surface energy
A compressibility index
u frictional constant for one-dimensional
normal compression
M  critical state frictional dissipation constant
o characteristic tensile stress induced in a
particle
o¢ Lee tensile strength of a particle
oo Weibull 37% tensile strength
effective stress
oy vertical effective stress
0 uniaxial macroscopic compressive stress
0o clastic yield stress
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