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ABSTRACT: Many observations have shown that post-liquefaction flows exhibit enhanced mobility due to
some form of partial fluidisation leading to more rapid motions and longer runout distances than might be
otherwise expected. These phenomena may be explained by anticipating a reduction in frictional strength due-
to increasing velocity of flow. In this paper we investigate a simple model which manifests this effect. The
model produces a rich variety of strength-velocity responses, including near complete loss of strength at high

velocities.
INTRODUCTION

The aim of this paper is to construct a simple
numerical model for flow of a saturated granular
mass and to assess the effect of velocity on the
average frictional strength at the interface between
the flow and its bed. We are motivated by the need
for a rational description for behaviour of post-
liquefaction flows. Under certain circumstances
these may potentially attain high velocities.
Observations of velocities greater than 10 m/s are
common, as are instances where flows have
exhibited unexpectedly long run-out distances over
relatively flat ground. Numerous examples of flow
slides are described by Rouse (1984), Johnson
(1984), Seed (1987), and Stark and Mesri (1992).
Estimation of post-liquefaction soil strength is a
problem which has wide implication in analysis of
hazards posed by tailings dams, hydraulic fill dams,
and literally all embankments which are considered
susceptible to liquefaction. The problem has been
considered by several workers with the aim of
correlating post-liquefaction strength to pre-
liquefaction soil data. Poulos et.al. (1985) related
the post-liquefaction strength to the in situ, pre-
liquefaction void ratio. Poulos' analysis was
criticised by Seed (1987) who presented a new
correlation of post-liquefaction strength with pre-
liquefaction penetration resistance. Seed's
correlation has since been superseded by a similar
correlation by Stark and Mesri (1992). A

comprehensive review of work in this area may be
found in the paper by Stark and Mesri (1992).

None of the work discussed above suggests any
dependence of strength on flow velocity despite the
evidence that this may occur. Rouse (1984) noted
that a velocity weakening effect is consistent with
observations of exceptionally long run-outs noted for
some flows. Ring shear tests on both soil and rock
have also indicated strength-velocity dependence
(Skempton,1985; Weeks,1993). These indications
suggest that post-liquefaction strength may be far
more dependent on conditions within the flow, and
any correlation with pre-liquefaction characteristics
may be weak or even non-existent.

The model developed here sets out to explore
the possibility of velocity dependence. It is based on
a plausible physical model for the flow and
conceptually is very simple. Its mathematical
representation is completely linear and nearly all the
governing equations have closed form solutions.
Nevertheless, the model describes a surprisingly rich
variety of flow behaviour including both velocity
strengthening and velocity weakening.

MODEL CONCEPT

The analytical model is illustrated in Figure 1. A
sinusoidal . slip surface separates a porous upper
block of material from its rigid impermeable bed.
The upper block is forced to slip at a constant
velocity v,. Full saturation is assumed, the top
surface of the block being fully drained. One-



dimensional, vertical pore fluid flow is assumed.
We denote the amplitude and wave length of the
sinusoidal surface by a and /.

The model was motivated by an experiment
described by Iverson and LaHusen (1989). They
constructed a physical model composed of two
arrays of fibreglass rods which could slide across
each other to simulate slip on a rough surface. In
each array the rods were fixed to allow a degree of
permeability. After saturation with water, the upper
array was pulled across the lower at a constant
velocity. Measurements of dynamic pore fluid
pressure were made near the slip surface. Iverson
and LaHusen argued that the experimant could
represent a segment of the slip plane found in a flow
slide. Their results showed significant pore pressure
variations at the slip surface and they suggested
these might help explain how subaerial flows may
exhibit extreme mobility.

T Y
i
Wy
| Slip
W‘* Surface
7 CBed D

Figure 1. Schematic diagram of model.
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As shown in Figure 1, the horizontal
displacement of the flow is denoted by w,. A
second, more useful measure of horizontal motion is
the relative displacement of the block with respect to
the phase of the bed sinusoid. We will call this the
phase displacement and denote it by o. It is related
to w, and to [ as follows

@ = w, mod/ (1)

where mod denotes the modulo function. Thus as
slip occurs @ increases from zero to / and is then
reset to zero. When o equals zero or /, the block is
perfectly mated with the bed. The block need not be
touching the bed however, depending upon the pore
fluid stress.

We now expand this simple model to represent
a large scale slip surface with random contact
distribution. We can assume the large surface is
composed of elements like that in Fig. 1, all with
random phase displacements so that ® is uniformly
distributed over the interval [0,/]. Each element slips
with velocity v,. The force required to maintain the
velocity is clearly a function of ®, the phase
displacement. Some elements may be separated due
to high pore pressure on the slip surface, and the
shear force on these will be zero. Other elements
may be in contact, and the horizontal force will
equal the frictional resistance based on the effective
stress principle. The important point is this. If the
phase displacements are uniformly distributed, then
the average strength of the slip surface at the
velocity v, can be determined from the average
strength of one element as slip occurs over one full
phase (as ® increases from zero to /) and dividing
that result by the wave length I. We will use this
approach to assess the strength of the model.

EQUATIONS OF MOTION

The rough surface of the bed in Figure 1 is described
by asin(27rx / l) . The lower surface of the moving

block is asin(2n'(x - wx)/ l) . The blocks may be

in contact as shown in Fig. 1, or they may be
separated when the block is buoyantly supported by
the pore fluid. In either case, for any particular
horizontal displacement w,, there will be a
corresponding minimum value for the vertical
displacement w, which is the minimum gap
dimension, denoted 5. If w, =b the blocks are in
contact. The minimum gap dimension is most
conveniently expressed in terms of the phase
displacement ®.

b=2asin(zw /1) '#))

Figure 2 shows b as a function of w,. In many cases
we will only need to consider one full phase of
displacement as ® increases from zero to /. This
corresponds to one of the humps shown in Figure 2.
Now suppose the mean depth of the sliding
block is A, and assume 4 is large in comparison to a
so that flow into or out of tife block can be assumed
vertical. The bed is taken as impermeable. The
excess pore pressure will be denoted by . Rigidity
of the block implies a linear excess pore pressure
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Figure 2. Minimum gap dimension b.

gradient. The value of « within the gap will depend
upon the degree of dilatation or contraction of the
slipping block, and upon the amount of flow into or
out of the block. The rate of compressive straining
of the pore fluid will be given by the velocity of the
fluid particle located at the block surface divided by
an appropriate gage length. The flow velocity at the
block surface is given by Darcy's law as —ku/p, gh
where k denotes the hydraulic permeability of the
block and p,, is the pore fluid density. This velocity
is measured relative to the vertical block velocity v,.
Thus the absolute velocity of the pore fluid at the
block surface is v, + ku/p,, gh. The strain rate is this
velocity divided by a gage length which we take to
be 2a the maximum value of b..  Finally,
multiplying by the pore fluid bulk modulus « , we
obtain the rate of change of excess pore pressure

i X ku

Equation (3) applies whether the block is in contact
with the bed or not. The remaining equations
depend upon the conditions of contact.

If the block is in contact with the bed, its
vertical displacement and velocity are immediately
found from

w, =b=2a sin(zra)/ l)

2mav

y =Wy =T 2 cos(m:o/l)

4)

Here the relationship da/dt=v, has been used.
Equations (3) and (4) completely describe the block
motion and pore pressure so long as contact with the
bed persists.

Next suppose the block is separated from the
bed. Then instead of egs. (4) we have

Vy = -"(1 - pw/p)g + u/ph

which follows from Newton's law. Here p denotes
the mass density of the sliding block. Note that the
static pore pressure p,gh is included in this
equation. Differentiating this result and using (3)
gives the following expression for the motion of the
block when separated from the bed

| P . 2 xk P
V, 4200V, + v, = 2ahp(;;-1] (5)
Here
s K k Kp
e d = ————
7 2hp and ¢ 2p,8 \2ah

We see that the block velocity obeys the equation of
a damped harmonic oscillator. This results because
the block is supported on a cushion of pore fluid,
and flow into or out of the block provides a damping
mechanism. It is a simple matter to integrate eq. (5)
to determine both the velocity and the vertical
displacement w,,. ‘

Equations (3) through (5) describe the possible
states of motion of the block. In a calculation we
may change from one set of equations to another
depending upon whether contact exists or not. If the
blocks are separated, the criterion for contact is
simply w, =b. If the integration of eq. (5) suggests
at any time that w, is equal or less than the current
minimum gap dimension b, then contact has
occurred and the contact equations come into play.
Conversely, if the block is in contact with the bed,
the criterion for separation depends upon the value

of u. If u equals or exceeds the critical excess pore
pressure given by

2
u, = (p - pw)gh - 2pha(~7%,-9~) sin(mv/l) (6)

then separation will occur. The value of u
corresponds to the excess pore pressure which will
produce an acceleration of the block greater than that
caused by continued contact.

- We can now visualise a typical cycle of motion
of the block. Figure 3 shows the vertical
displacement w, (solid line) and the minimum gap
dimension b (dashed line) over one full phase of
horizontal displacement. Moving from left to right
on the figure, the block is initially separated and is



drifting down towards the bed. Contact occurs at the
point marked ¢. The block is then kinematically
constrained to follow the bed contour, until at the
point marked s separation occurs and the buoyant
downward drift begins again. An interesting point
arises here. The response of the block over this
cycle is fully determined by the equations of motion
together with initial values for the variables
evaluated at @=0. If the values of displacement,
velocity and pore pressure at the end of the cycle are
the same as those at the beginning, then the block
will exactly repeat itself over the next cycle of slip
as well as all succeeding cycles. This is called a
limit cycle. When the slip velocity v, is small or
moderate, we find that limit cycle conditions exist
and the block response repeats itself every full phase
of the bed sinusoid. As the slip velocity increases,
the limit cycle may lengthen to cover two or more
phases of the bed sinusoid, and, at sufficiently high
values of v,, no limit cycle can be found and the
motion is chaotic. These points will be considered
below.
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Figure 3. Motion during a typical cycle.

One other important point concerning the
equations of motion should be noted here.
Whenever the block is moving upwards, dilatation
may result in negative excess pore pressures . The
total pore pressure will decrease, and, depending on
the magnitude of the static pore pressure, we may
find the total pore pressure approaches a value of
negative one atmosphere. At this value cavitation
may occur in the pore fluid (McManus and Davis, in
press). The result is a lower limit on the excess pore
pressure which we will denote as the cavitation
pressure u,,,. If the value of u reaches u_,,, then the
equations of motion must be appropriately altered by

 setting du/dr =0. This may have a very significant

effect on the block motion.

DETERMINATION OF STRENGTH

In order to assess the overall strength of the large
slip surface we will consider the average strength of
our block as it moves across one or more wave
lengths of the bed sinusoid. First consider the case
where a limit cycle of one wave length exists. Then
we need only calculate the average strength over this
interval.

Consider the forces acting on the block while in
contact with the bed shown in Figure 4. Let the
force required to produce a constant slip velocity v,
be £ We will define the frictional strength s, as the
work done by fin one full phase of motion divided
by the wave length /.

!
1
s, =7 | fdo ™
: 0

The value of fis zero if the block is separated
from the bed, otherwise the force system in Figure 4
applies. The angle of dilatation & is a function of the
phase position

2ra xw)
T o0s

el
J = tan ( ]

®

The buoyant weight of the block is (p - Py )glh. Its

vertical acceleration is - 2a(n'vo /l)2 sin(:r af l).
Equilibrium of forces then gives

f={~u+(p-p,)gh

2
+2 phla(f-;-"-) sin Elf)-} tan(p + J)

®

Here ¢ denotes the intrinsic angle of friction of the
material which composes the block and bed. When
equation (9) is used in equation (7) the frictional
strength can be determined for single limit cycle
motions. If multiple limit cycles are found,
equation (7) is easily generalised by extending the
limits of integration.

Another source of strength in addition to the
frictional strength is the impact strength ;.
Whenever the block contacts the bed, its kinetic
energy is altered. Conventional theories of impact
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Figure 4. Forces acting while the block is in contact
with the bed.

(Keller, 1986) relate the tangential impulse applied
to the impacting object to the normal impuse by the
coeffiecient of friction. Using the conventional
theory we can determine for any impact the
horizontal component of velocity which the block
would have, post impact, were the constant velocity
v, condition not imposed. Let this velocity be

denoted v,*. In general v," will be smaller than v,.
Thus energy is effectively dissipated in the impact.
Another way of looking at this is to note that we
~ must add energy to the block following any impact
in order that the constant horizontal velocity v, be
maintained. The total dissipated kinetic energy
summed over all impacts occurring in a cycle
divided buy the wave length gives the second source
of strength.

=3oh 3 [ - 6]

h
impacts

(10)

For high values of v, this may be the most

significant source of strength.
Finally we will define the effective angle of
friction @, in the obvious way

oy =tan” (s, +5,)/(0- 5, ) ghl an
It is dependence of ¢, on the slip velocity v
which is the main focus of this work.

STRENGTH-VELOCITY DEPENDENCE

In this section we present a small selection of results.
Limitations of space will not permit a complete
discussion of the model response. Results presented
will be condfined to the case where the separated

motion of the block is overdamped (£=21). Arange
of slip velocities covering four orders of magnitude
will be considered.

Values of the model parameters for the calculations
shown below are summarised in Table 1. The value
used for p is typical for moderately dense flows.
The value for k is the bulk modulus of water. The
permeability would be typical for clean gravels or
heavily fractured rock with relatively large particale
sizes. The value of 10 m for h is arbitrary but flows
of this depth are not uncommon. Note that ¢ and /
enter the calculation only through their ratio, which
we take to be .067. This number correspondes to the
interlocking dimension of a close packed array of
uniform cylindrical rods divided by their centre to
centre dimension. Finally, the intrinsic angle of
friction is typical of a clean sand.

Table 1. Model parameter values.

Parameter Value Parameter Value
afl .067 Q 24 deg
h 10m p 1.75t/m’
k 2x10° mfs X 2.2x10° N/m*

Low Velocity Response

If the slip velocity is sufficiently small, the limit
cycle response will exhibit continuous contact
between the block and the bed. In this case the
separated equations of motion never come into play,
and there is no requirement for determining points of
contact and separation, -

For very small values of v, the pore fluid has
ample time to move into or out of the block without
creating appreciable pore pressures. In the limit as
v, approaches zero, so must the excess pore pressure
vanish. We can set # and v, equal to zero in
equation (9) and use the result to determine the low
velocity strength limit. This gives

al 1 tan® @ + 1

] e ]

@, = tan
tang 1—(27ratan¢;ao/l)2

(12)

We see that ¢, is greater than ¢ for all a>0.

There is a well defined upper limit for the slip
velocity at which continuous contact can occur.
Separation will first occur at the end of a cycle when
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Figure 5. Strength-velocity response

w=1. Setting @ =1 in equation (6) we see that the
critical pore pressure for separation reduces to

U, =(p—-pw)gh. If we integrate (3) and set the
result equal to u,, we can find the upper limit on slip
velocity for continuous contact. The exact result is
somewhat complicated, but a close approximation
which is much simpler is given by

5, =(p-p, )1 k2w pa (13)
If the slip velocity v, exceeds #,, then for at least
some. part of the motion the block will be separated
from the bed.

Low velocity response for the selected model
parameters is shown in dimensionless form in Figure
5, to the left of the point marked 'separation’. As v,
increases from near zero the strength smoothly
increases from the low velocity limit to a maximum
value at the onset of separation.

Response at Moderate Slip Velocity

Next we consider the model strength over the central
region of Figure 5. In this region the block
undergoes some separation during each cycle.
Single limit cycle response is maintained for nearly
all velocities in this region.

Refering to the figure we see that shortly after
separation commences the strength begins to
decrease. Reasons for this are two-fold. Less
contact between block and bed implies less
- opportunity for the block to generate frictional
strength. A second reason is the onset of cavitation
during contact. Cavitation limits the negative pore
pressure and further inhibits development of
frictional strength. In this region impacts are

occurring, but the impact strength remains low for
dimensionless slip velocities smaller than about 100.
Once the slip velocity exceeds roughly 100 an
increase in strength is apparent. This increase is
entirely due to impact strength. The additional
energy required to maintain a constant slip velocity
begins to dominate the frictional energy dissipation
in this region.

As we near a dimensionless slip velocity of
roughly 250, the single limit cycle conditions noted
at smaller velocities give way to multiple limit
cycles. Then the strength abruptly drops to low
values. This drop coincides with the onset of chaotic
behaviour

High Velocity Behaviour

The abrupt drop in strength evident on Figure 5
occurs for a well defined reason. Whereas cavitation
had occurred during contact with the bed at
moderate slip velocities, it did not occur during
separated motions. At high velocities this is not the
case.

At first glance one might imagine that
cavitation during separation will have little if any
effect on the model strength. In fact it has a
dramatic effect. When the block is separated from
the bed and cavitation occurs, the forces acting to
pull the block back down into contact are limited.
The negative pore pressure which may occur during
rapid separated motion acts to accelerate the block
downward. Cavitation obviously limits this effect
and promotes greater distances of free flight of the
block. The block now maintains contact with the
bed for only a brief period before it is thrown
upward, passing over the peak of the bed sinusoid.
Cavitation during this phase of the motion can only
occur when the value of the separation pore pressure




u, given in equation (6) is smaller than the cavitation
pore pressure u,,. Setting u, equal to wu,, in
equation (6), we can solve for the slip velocity at

which separated cavitation may first occur. This
gives
h o
" / (p“pw)g_ucav/h 2
v, =— (14)
T 2ap

For the model parameters used here, the value of
V,/k is 241, almost exactly the point at which the
strength abruptly decreases. Omce v, exceeds v,
and cavitation is possible during separated motion,
the entire behaviour of the model is radically altered.

As the slip velocity increases beyond ¥, the
characteristic limit cycle response observed before
disappears. The trajectory of the block may pass
over one or more peaks of the bed sinusoid,
depending on the conditions at the previous impact.
The absence of limit cycle behaviour is equivalent to
chaos in a mathematical sense. For these higher slip
velocities the determination of strength becomes
more difficult than simply summing s, and s, over
one or possibly two or three cycles. The high
velocity data points shown in Figure 5 were
calculated by summing the dissipated energy over a
number of cycles ranging from 200 to 500,
depending on the particular point, and finally
dividing by the total distance of travel of the block
(i.e. dividing by / times the number of cycles used).
In each case a sufficiently large number of cycles
was used so that a stable value of ¢, was acheived.

DISCUSSION

The model presented here is clearly speculative, but
it nevertheless possesses a number of interesting and
possibly useful features. First it is a physical model
in the sense that we can easily visualise its
components. Second, its behaviour is relative easily
determined, most of the equations being solvable in
closed form. Third, its response shows
characteristics which obsevations of real flows
suggest may be physically possible in nature.

The strength-velocity relationship shown in
Figure 5 offers two stable slip velocities. The first is
very low velocity creep coreresponding to points
near the left hand side of the figure. This might

occur in situations where the low velocity strength
limit ¢, is slightly exceeded. If, however, the loads
acting on the flow are such that the peak strength
near 36 degrees is exceeded, then the region of
velocity softening is entered and unstable slip will
occur until the velocity. reaches the second stable
value near v/k of roughly 100. If the system of
loads acting on the flow is short lived, then stable
slip will continue until the load drops beneath the
corresponding stable strength value of roughly 14.5
degrees. On the other hand, if higher loads are
maintained, then the slip velocity will continue to
increase and unstable, high velocity flow will result.
These are all features which have been observed in
real flows.
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