f

aE

Densification by the successive crushing of grains

" D. Robertson

Cambridge University, Cambridge, UK

M. D. Bolton ‘
Cambridge University, Cambridge, UK

ABSTRACT: Discrete element methods have been widely used to investigate the behaviour of assemblies of
granular materials under applied stresses and deformations. Usually the particles are represented by elliptical
or ellipsoidal elements which may deform at contact points, but which are not permitted to fracture. McDowell,
Bolton and Robertson® demonstrated some of the principles which could be used to explore the statistical
fracture mechanics of a granular aggregate. An iterative scheme is used in which particles, represented by rigid,
close-packed, triangular elements are assigned finite probabilities of fracturing. The probabilities depend on the
value of increasing macroscopic stress, particle size and co-ordination number. No attempt is made to assess
local equilibrium or to include contact deformations. This earlier work is now extended to include the explicit
presence of voids. As stress increases, particles begin to fracture and a kinematic rule permits broken fragments
to fall, so that the voids ratio reduces. The forms of the derived plots of voids ratio against the logarithm of the

macroscopic stress are discussed.

INTRODUCTION

McDowell, Bolton and Robertson® (1996) introduces
a two-dimensional numerical model, using an exten-
sion of Weibull statistics, in which a granular medium
under stress evolves as a function of the behaviour
of individual grains. An initial sample of uniformly
sized grains is represented by an array of identical
right-angled triangles, each of which might fracture
to create two right-angled triangles in its place. Start-
ing from an initial level of macroscopic stress a pass
is made of the triangles, fracturing them on the basis
of the proposed probability equation. When a suffi-
ciently small proportion of the triangles fracture dur-
ing a single pass, the level of stress is increased and
the process repeated. For each increment of stress the
corresponding reduction of voids is deduced from the
amount of breakage occurring, using a work equation.
A simulated compression curve is generated, showing
the voids ratio versus the logarithm of the macroscopic
stress. In this case, however, the voids are not explicit
in the geometry of the aggregate.

Earlier work has referred to the fractal nature
of a debris of crushed fragments (Sammis, King
and Beigel® (1987); Palmer and Sanderson* (1991);
Turcotte® (1996)). Bolton and McDowell' (1996) ad-
vance the hypothesis that both sands and clays adopt

such a fractal geometry on their “normal consolida-
tion line” and propose mechanisms of “clastic yield-
ing” followed by “clastic hardening”. Clastic yield-
ing is the onset of fracture of the weakest particles of
the aggregate. Clastic hardening occurs because the
fracture strength of the broken fragments exceeds that
of their progenitors. Self-similarity can emerge in the
hardening, crushing aggregate, and particle size distri-
butions can display some fractal properties.

The new simulation first creates a “loose” assem-
bly of triangles with voids, and the migration of frag-
ments. The resulting compression curve is therefore
solely a function of statistics and kinematics.

INITIALISATION - CREATING A SAMPLE

The purpose of the initialisation process is to gener-
ate an initially stable assembly of equally sized, trian-
gular elements, containing voids, so that the reduction
of these voids within a region can be observed when
a fracturing process is introduced. In reference to the
sample, the terms “porosity” and “void ratio” of a re-
gion are taken to mean the proportion of area not cov-
ered by any triangle, and the ratio of the areas of voids
and triangles. As a first step, a solid array of 200 tri-
angles containing no voids is created (e.g. Fig. 1)
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Fig. 1 - Solid array of triangles.

Fig. 2 - Generation of “initial” sample.

Particle removal and filling

Particles are next removed, one at a time, opening up
voids within the sample. Each particle in the current
sample has an equal probability of being removed.
Following each removal, the remaining particles are
permitted to fall and slide according to simple kine-
matic rules, so that some of the space created migrates
towards the top of the sample.

Whenever a sufficient amount of space becomes
available at the top of the sample, a fresh block of 20
triangles is introduced and allowed to fall, to replenish
those which have been removed.

The aim is to repeat this process a sufficient number
of times until a region has been formed within the
sample in which the density of the triangles might
acceptably be described as “loose” (e.g. Fig. 2).

Fig. 3 - Direction in which particles may fall.
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Fig. 4 - Average porosity.

Kinematics

Triangles are not allowed to rotate and are permitted to
fall in only three directions: vertically, or downwards
at an angle of 45 degrees (Fig. 3). Triangles may fall
whenever their movement in a particular direction is
not blocked by another particle.

A horizontal "wrap-around” is implemented so that
particles which fall out ¢r protrude from one side of
the sample are allowed to fall in or intrude into the
other side. This wrap-around is taken into account
when the co-ordination numbers of particles is being
calculated. No corresponding vertical ”wrap-around”
is defined. Particles which come into contact with the
base of the sample are not permitted to fall further.

A triangle which is able to move, moves according
to the following rules. First, the particle is allowed to
fall as far vertically as it can until it comes into con-
tact with another triangle or reaches the base of the
sample. Assuming it has not reached the base of the
sample, it is then allowed to fall in one of the diago-
nal directions, selected at random, until it again comes
into contact with another triangle or reaches the base
of the sample. If the triangle is unable to move any
distance in the diagonal direction selected, then it is
allowed to fall as far as it can in the other diagonal di-
rection. Having now fallen diagonally, the triangle is
again permitted to fall as far vertically as it can and
the process repeated until the triangle is no longer able
to move, being constrained in the three possible direc-




tions by other triangles or the base of the sample.

For the purposes of determining how far a triangle
may move, or with which other triangle it is in con-
tact, the sample space is considered to be divided into
a grid. Each triangle maintains a list of the boxes of
the grid which it overlaps and each box maintains a
list of the triangles by which it is overlapped. The
grid is chosen so that the width of its squares are
slightly larger than the size of the initial triangles so
that each triangle need maintain at most 4 boxes in its
list. In calculating the co-ordination number of a tri-
angle, only the triangles belonging to these boxes need
be examined. Triangles which share more than one
box are counted only once.

A triangle may be prevented from moving in one of
the directions by more than one triangle. However, to
simplify storage, each triangle stores the identities of
one constraining triangle for each of the three direc-
tions. These are updated whenever a triangle falls, or
attempts to fall.

If a triangle falls, or is fractured, or is removed,
a pass is made through those triangles with which it
previously shared a box. Those which had recorded
the triangle as a constraint are appended to a list of
potentially unstable triangles. Each triangle on this
list is then considered in turn and tested to determine
whether it can now fall. If it is still prevented from
moving, its constraints are updated and it is removed
from the list, otherwise it is allowed to fall. This may
or may not result more triangles being appended to the
list. When all triangles have been removed from the
list, every triangle in the sample is again constrained
in each direction. When a triangle splits, the resulting
fragments are automatically appended to the list of po-
tentially unstable triangles.

The boxes are also used when determining the
maximum distance a triangle may fall in a given
direction. The distance is initially set to the that
required for the triangle to come into contact with
the base of the sample. Starting form those boxes
to which a triangle currently belongs, those boxes
which might contain an intervening triangle are then
considered in turn. The triangle is tested against all
of the triangles belonging to the current box. This
is continued until the maximum distance found is
zero, or less than the distances to the boxes still to be
considered.

Statistics/Sampling

Initially, as triangles are removed from the sample the
overall density of triangles decreases.

The voids ratio calculated during the fracturing pro-
cess is based on a sub-sample within the assembly of
triangles created during the initialisation process. The
proportion of area occupied with triangles is consid-
ered within 20 equally sized horizontal layers through

the sample. Fig. 4 shows the porosity of the 20 lay-
ers averaged out over periods of 1000 iterations within
an initialisation period of 10,000 iterations. From this
graph, and the trend and scatter from each succes-
sive iteration a sub-sample was chosen extending from
10% to 60% of the total height of the sample, from the
base.

An initialisation period of 1,000 iterations was
found to be sufficient to ensure that the assembly of tri-
angles was sufficiently random. In general, the poros-
ity in the sub-sample rises rapidly to a reasonably sta-
ble level long before this.

Once a “loose” sample has been generated in this
way, the fracturing process is applied.

STATISTICS OF FRACTURE OF A GRAIN

The model for breakage is based on Weibull” statistics
of failure. Weibull postulated that the probability of
the survival of a specimen, of a given size, subjected
to a tensile stress o could be written in the form:

Py(o) = exp{_%)m} (1)

where m, the Weibull modulus, is a measure of the
variability in the strength of the material, increasing
with decreasing variability, and oy is the value of
stress at which approximately 37% of the samples sur-
vive (Fig. 5).

Weibull also recognises that the survival of a
block of material under tension requires that all its
constituent parts remain intact. The mean fracture
strength decreases as the size of the specimen in-
creases. For a block of material of volume V, under
an applied tensile stress o, the survival probability of
the block is given by:

P,(V) = ewp{——‘vf—(i)m} @
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McDowell, Bolton and Robertson® used a modified
survival equation which introduces an extra term
to account for the variable co-ordination number of
the particles, and so that the maximum tensile stress
induced within a particle reduces as the number of
contacts increases. The survival probability of a 2D
grain is then given by

d\*(5/o0)"
P,(d) = —| =] = 3
@=earl-(7) 25 @
where d is the size of the particle, dj is the size of the
original particles and the factor a can be used to vary
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the degree to which the co-ordination number C af-
fects the probability of fracture.

The same equation is used in this simulation.
In the original work no triangles were allowed to
move and the co-ordination number was taken as the
number of triangles sharing an edge. The minimum
possible co-ordination number was therefore 3. Here
the particles may move and for ease of calculation
the co-ordination number is taken to be the num-
ber of triangles sharing any contact: edge-to-edge,
edge-to-corner or corner-to-corner. Two triangles are
considered to be in contact if the distance between
them is below a very small tolerance value, based on
the size of the smaller of the two triangles. Since it
is now possible for a triangle to have only one or two
neighbours, the value of C' is arbitrarily set to a value
of 10 in the probability equation if the particle has
less than 3 neighbours, to give these particles a very
small chance of fracturing.

COMPRESSION

McDowell, Bolton and Robertson® did not explicitly
represent voids in the model. Fig. 6 shows the frac-
tal geometry of the broken fragments after a signif-
icant increase in stress. It was argued that such a
figure could be regarded as creating a logical map
of co-ordination numbers and particle sizes. An im-
plicit voids ratio e was then inferred by applying a
work equation. The work done per unit volume by
the macroscopic stress & was written 5de/(1 + €) and
equated to the work absorbed in fracture and frictional
rearrangement.

The following relationship was derived to calculate
the change in voids ratio associated with each incre-
ment in stress:

de r —
i+~ T=wr 5% @

where the orders of the particle sizes are listed as r=0
for the largest particle (size dp) and »r = s for the
smallest (size d,), and B, is the number of particles
of size d, which are splitting. T is the critical strain
energy release rate, a measure of the “material tough-
ness”, and p is a function solely of the internal angle
of friction.

In calculating the value of de in the simulation,
equation 4 was simplified to:

de= 23 B4, )
o r=0

where K is taken to be a constant.
Fig. 7 shows a simulated compression curve gener-
ated using this approach. In the current simulation the
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voids ratio is calculated directly from the area of trian-
gles within the sub-sample rather than from the work
equation.
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Fig. 5 - The Weibull function.

A stress level is initially calculated such that a sin-
gle particle fractures. After each set of fractures the
earlier kinematic rule, used to generate the initial sam-
ple, is invoked and the crushing and subsequent falling
of particles is allowed to continue until less than 2% of
particles fracture in a single pass of the triangles. The
stress is then increased by 1% and the process contin-
ued.

Fig. 8 shows the sample after 1193 iterations and
Fig. 9 shows the corresponding compression curve.
The form of this curve differs from the curve gener-
ated using the work equation. During the first stages of
fracturing the sample has undergone significant com-
pression, corresponding to the fall in the first part
of the compression curve. However, larger triangles
with relatively large survival probabilities then begin
to form a stable structure through which the smaller
particles are unable to fall. Although fracturing con-
tinues to occur, the tendency is for the smaller parti-
cles to continue crushing and the curve begins to level
out. The grading curve of the sub-sample, is shown in
Fig. 10. Fig. 11 shows the porosity within 20 vertical
slices through the entire sample space. This show the
values within the chosen sub-sample to be reasonably
consistent.

The statistical rules adopted in the new kinematic
simulation lead to something of a paradox. Heavily
fractured debris tends to continue crushing even
though it appears to lie on the “floor” of a “cave”
formed between larger blocks. The answer lies in
relaxing the condition that all particles should carry
a fair share of the macroscopic stress. The best way
of achieving a lifelike soil structure, and a reasonable
variation in local stress, is under investigation. The
theoretical ideal would be to capture the detailed
equilibrium and kinematics of every grain. This



Fig. 6 - Fractal geometry for explicit voids.
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Fig. 7 - Compression curve using the work equation.

Fig. 8 - Sample containing 2083 triangles.
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Fig. 10 - Distribution of particle sizes.
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Fig. 11 - Porosity within vertical slices.
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seems not to be a realistic computational proposition
if, as proposed, the successive creation of many
generations.of fragments is an essential pre-requisite
to the modelling of “plastic” compression in granular
media. The statistical approach, adopted here, ap-
pears to have some promise.

CONCLUSIONS

1) Techniques are available to obtain simulated
compression curves using statistics of fracture of
rigid clasts.

2) Voids can be created by particle removal, and a
statistically reliable ”loose” soil can be generated.

3) Stress analysis and Weibull statistics lead to
successive fracture, rearrangement, wide gradings,
efficient packing, and the irrecoverable reduction of
voids.

4) Work is in hand relating the kinematics of broken
fragments to earlier observations of fractals, and the
use of a work equation to derive changes of voids
ratio.
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