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A micro mechanical model for overconsolidated behaviour in soils

G.R.McDowell & M.D.Bolton
Cambridge University Engineering Department, UK

" ABSTRACT: This paper presents a simple micro mechanical model for the behaviour of overconsolidated

soils. We consider the simplest case of isotropic unloading and reloading of an isotropically normally

compressed aggregate. The model is based on the de
representing a large grain, surrounded by a matrix of

elastic behaviour followed by "kinematic yielding"

finition of a unit cell which contains a rigid kernel
finer particles. On initial unloading, the model exhibits
which is the onset of sliding of grains. On reloading,

kinematic yielding may not occur, but the inhomogencous stresses may induce "clastic yielding" which is the
onset of particle crushing. The model offers realistic hysteresis loops featuring shakedown on cyclic loading.

1 INTRODUCTION

Figure 1 shows a typical plot of voids ratio e versus
the logarithm of mean effective stress p' for a soil
which has been isotropically normally compressed,
unloaded and reloaded. McDowell, Bolton and
Robertson  (1996) proposed that the micro
mechanical origin of plastic compression in soils lies
in the crushing of grains. In particular, they showed
that the linear-log compression line C-D-I is
consistent with the evolution of a fractal distribution

~ of particle sizes. In this case, particle size disparity

must be a hidden feature of all constitutive

behaviour.
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Figure 1. Isotropic normal compression, swelling and
recompression.

The unload-reload behaviour D-E-F-G-H which
would occur "inside the yield surface" in stress space
is assumed (incorrectly) in conventional plasticity
models to be entirely elastic. More sophisticated
models such as the kinematic hardening yield
surface (Hashiguchi, 1993) have proved to be useful

in predicting hysteretic behaviour, but give little
information about the micro mechanics of
deformation. A mean field approach predicts that a
monotonically increasing isotropic strain cannot give
rise to the sliding of grains, and is of no use here.
What is required is a micro mechanical model which
accounts for the existence of a fractal geometry and
which permits frictional dissipation during global
isotropic unloading and reloading.

Consider the arrangement of particles following
normal compression to D. The largest particles have
the highest co-ordination numbers, since they are in
contact with many smaller particles. The smallest
particles have the lowest co-ordination and will be
the most unstable: in particular, the smallest particles
which are in contact with the largest particles will
have the lowest co-ordination, so that on initial
unloading, they will be the first to move. On further
unloading, slightly larger particles will rearrange,
and so on. The largest particles are stable and
remain relatively undisturbed in the elastic-frictional
fractal matrix. It makes sense to define a unit cell
which has one of the largest particles at its centre,
and which accounts for the percentage by sample
volume of such particles: the volume fraction of the
largest particles is known to influence the frictional
behaviour of the aggregate (Lee, 1992).

2 A'KERNEL CELL' MODEL

Fig. 2(a) shows the chosen unit cell which is
spherically symmetric and consists of one of the



largest particles (the "kernel") of radius a, at the
centre of a matrix of finer particles. The radius b of
the cell is taken as half the mean distance between
the centres of the largest particles in the aggregate.
The kernel is assumed to be rigid, and the Young's
modulus E of the matrix is assumed to be constant.
The displacement u at radius  is measured positive
radially outwards, and compressive stresses and
strains are positive. Incremental strains are related
to incremental displacements by the equations:
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Figure 2. Definition of the kemel cell, showing elastic and
plastic zones.

2.1 First unloading: elastic behaviour

It is assumed that the fractal crushing which
occurred during isotropic normal compression, has
left the material "soaking" in a uniform stress field,
so that the radial stress o; and the circumferential
stresses oy, 0, are each everywhere equal to the
preconsolidation pressure p,. At all subsequent
stages of the unload-reload process, it is assumed
that the radial pressure oy(b) on the boundary of the
cell at r=b, is—equal to the current global isotropic
pressure p. On first unloading, the behaviour of the
unit cell is entirely elastic. Stress increments in the
matrix are related to increments in global pressure
by Lamés equations for an elastic matrix containing
arigid kernel:
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and v is the Poisson's ratio for the matrix. The
volumetric strain increment for the unit cell is
related to the increment in global pressure by
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2.2 Kinematic yielding

Yield is assumed to occur according to the Mohr-
Coulomb criterion:
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where ¢ is the mobilised angle of friction. This
marks the onset of sliding of grains in the matrix,
leading to a partial loss of shear stiffness while some
normal contact stiffness remains. We describe this
as "kinematic yielding", which is more informative
than the term "kinematic hardening”". By combining
(1), (2) and (7), it can be shown that kinematic
yielding first occurs at r=a. Substituting typical soil
parameters, for speswhite kaolin 1=0.3 - and
K=0.4375 at the critical state (Al-Tabbaa, 1988), so
that for a soil sample in which the largest particles
occupy 20% by volume (a/b=0.6), the increase in
global pressure to cause yield is dp=-0.486 p,. This
corresponds to an overconsolidation ratio of py/(1-
0.486)p,=1.944, which is of the same order of
magnitude as predicted by Al-Tabbaa's two surface
model.

After first yield, as the global pressure is
reduced, the width of the plastic zone increases as
the elastic-plastic interface moves outwards to radius
¢ (Fig. 2(b)). For c<b, the total circumferential
strain at r=b since initial unloading is related to the
total changes in oy(b) and oy(b) via Hooke's Law.
The current radial and circamferential stresses in the
elastic zone are given by Lamés equations, subject to
the boundary conditions:
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(iii) compatibility at the interface, #],_, = u, has the
same value in both the elastic and plastic zones.

The displacement u. at the interface, following
unloading, may be calculated from Hooke's Law and
from the deformation of the plastic zone. Consider
the assumption that the plastic zone deforms with
constant rate of dilation, defined in terms of total
strain increments (Hughes et. al., 1977):

8¢, +2855 = —v*|8e, — 5¢,| (10)

where v* is a function of the yield stress ratio 3/ 0a.

Substituting (1) and (2) into (10) and integrating, it
is evident that the presence of the rigid kernel (#,~0)
ensures that there is no radial displacement
anywhere within the plastic zone. The dilatancy rate
must therefore be defined in terms of plastic and not
total strain increments. Following Rowe (1972) we
write:
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where gy is the critical state angle of friction for
constant volume shearing. However, by adopting
(11), it is not possible to calculate the stress-strain
relation for the kernel cell analytically. We first
perform an underestimate of the volumetric
expansion of the kernel cell by assuming that
volume changes are solely elastic everywhere: there
is no extra dilation in the plastic zone. This allows
the stress-strain relation for the unit cell to be
derived in closed form (McDowell, 1997).

When the kernel cell becomes fully plastic, by
assuming that only elastic changes in volume occur,
the volumetric strain increment for the cell can be
related analytically to increments in global pressure
(McDowell, 1997):
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Figure 3 shows the unloading curves predicted by
the kernel cell (assuming no plastic volume changes)
for a typical normally consolidated sample of
speswhite kaolin. The effect of increasing the
percentage by sample volume of large particles is
shown by increasing the a/b ratio from 0.6 to 0.8.
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Figure 3. v-p plots showing the effect of a/b ratio.

2.3 Reloading

If the aggregate is now isotropically reloaded, the
response will be initially elastic, so that the radial

and circumferential stress increments will be given
by (3), (4). The volumetric strain increment for the
unit cell is then given by (6). Comparing (6) and
(12), it is evident that for K<1 (always true), the
stiffness  of the non-dilatant fully plastic soil is
always less than that of the elastic soil, except for
the limiting case of a/b=0 (no kernel) when the
stiffnesses become equal. The reload line therefore
lies above the unload line in v-p space, so that
hysteretic behaviour is predicted. Reverse kinematic
yielding is assumed to occur when:

O-r/o'a = l/K (13)

On initial reloading, &, /0, takes a maximum value
of (1+k)/(1-k2) at r=a. So if reverse kinematic
yielding is to occur at all, it can be seen that

K>v/(t-v) (14

For reasonable values of Poisson's ratio v=0.25 and
K=1/3, typical of a quartz sand, (14) predicts reverse
kinematic yielding after an infinite increase in global
pressure. It is evident that whatever values of v:and
K are chosen, large increases in global pressure will
be required to cause reverse kinematic yielding.
However, the inhomogeneous stresses in the kernel
cell may induce "clastic yielding", which is the onset
of particle fracture (Bolton and McDowell, 1996).
We might adopt the criterion that crushing occurs if
the major principal stress exceeds p,. In this case, it
can be shown (M(gDowell, 1997) that clastic yielding
occurs just before the major stress reaches the
preconsolidation pressure py. It is found that
crushing first occurs at r=a, next to the rigid kernel.
This reinforces the tendency for the smallest
particles next to the kernel, which have the lowest
co-ordination, to have the highest probability of
splitting. Furthermore, it is conceivable that when
the global pressure reaches the preconsolidation
pressure pg, clastic yielding will have led to an
overall reduction in voids ratio after the unload-
reload cycle, so that a ratcheting phenomenon is
predicted (Fig. 5).

3 DILATANCY

It would be expected that incorporating a dilatancy
rule into the model would increase the predicted
volumetric expansion of the kernel cell for the same

reduction in global pressure. If the ratio of plastic
radial and circumferential strain increments is

/8 =-2p as

then (11) can be written:
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where K is related to the mobilised angle of friction
for kinematic yielding by (7). The stress-strain
relation for the umit cell now has to be found
numerically. Fig. 4 shows the effect of introducing
dilatancy. The dotted line shows the numerical
solution using the kaolin parameters and a/6=0.6, for
K=04375 (no plastic volume change) which
corresponds to a critical state angle of friction of 23°.
The plot compares exactly with the closed form
solution in Fig. 3. Fig. 4 shows an additional plot
for p=2/3, which corresponds to an increased angle
of shearing resistance of 33°.
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Figure 4. v-p plots showing the effect of dilatancy.

The introduction of dilatancy increases the curvature
of the unloading curve, and this is an important
feature of the kernel cell model. If when a normally
consolidated soil is unloaded, no plastic volume
changes occur (no dilatancy), then the volumetric
strain of the soil must be elastic. The ideally elastic
moduli of soils vary with confining pressure p as p'?
(Viggiani and Atkinson, 1995), so it follows that

dv/d(inp) < vp¥? a7n
In this case the slope of the unloading curve in v-Inp
space decreases with decreasing p, and the curvature
is "in the wrong sense", comparing with Fig. 1.
However, it is likely that kinematic yielding will
first occur at a much lower OCR than predicted by
the kernel cell due to local deviatoric stresses in the
aggregate after normal compression, so that the
perfectly elastic portion of the unloading curve may
not be not visible in Fig. 1. Fig. 4 shows that
dilatancy would have a remedial effect on the
curvature predicted by (17). The kernel cell
therefore suggests that the process of dilatant
shearing during isotropic unloading may be
responsible for the form of the unloading curve in
Fig. 1.
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4 CONCLUSIONS

The kernel cell provides a useful and interesting
commentary for the unload-reload behaviour of soils
(Fig. 5), such that the unloading curve in v-p space is
due to kinematic yielding, and the reload line is due
to elasticity followed by clastic yielding, which leads
to compaction on cyclic loading if the pores are
drained or partial liquefaction if volume is
constrained to be constant.
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Figure 5. Typical unload-reload cycle produced by the kernel
cell model.
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