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Abstract

A study has been made of the micro mechanical origins of hardening in aggregates
which comprise elastic-brittle grains. We consider the compression of an aggregate of
uniform grains and explain hardening at very small strains in terms of elastic contacts
between particles. In the discipline of soil mechanics the terms “yielding” and
“plastic hardening” are used to describe the post-elastic behaviour of granular media.
Here we propose mechanisms of "clastic yielding" which is the onset of fracture of the
weakest particles in the aggregate, followed by "clastic hardening", whereby particles
split probabilistically depending on the applied macroscopic stress and. the co-
ordination number and size -of each particle. This results in the development of a
fractal geometry, and the subsequent unload-reload behaviour of such a material will
be strongly affected by the disparity in sizes of neighbouring particles.

1. Introduction

Figure 1(a) shows a plot of voids ratio e (volume of voids per unit volume of solids)
against mean effective stress p' for a typical compression test on soil. Fig. 1(b) shows
the same data with pressure plotted on a logarithmic scale. Engineers interpret regions
1, 2 and 3 as "elastic stiffening”, "yielding" and "plastic hardening” respectively. The
plastic hardening curve in Fig. 1(b) is remarkably linear: from the earliest publications
in soil mechanics, it has been accepted that the isotropic plastic compression of
granular media satisfies an approximately linear relationship between voids ratio e and
the logarithm of effective macroscopic pressure p'. This linearity applies to a wide
range of granular materials (Novello and Johnston, 1989). Engineers describe the
behaviour in Fig. 1 by writing:

e=£(p) (1)

or for the case of plastic compression (region 3)
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e=e,—Alnp (2)

Equations (1) and (2) are dimensionally incorrect: clearly p' should be normalized by a
parameter X,

e=1f(p'/X) 3)

where X has dimensions of stress, and must, for objectivity relate to the soil particles
themselves.
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Figure 1. Typical compression curves.

2. Elastic stiffening

At very small strains (less than about 10'5), an aggregate of soil particles' behaves
entirely elastically. This behaviour must originate solely from the elastic behaviour of
individual particle contacts. In this case it is clear that the parameter X in (3) should
be an elastic modulus of the particle material. It is found that at very small strains,
neglecting changes of voids ratio, the elastic shear modulus of a soil aggregate
increases with confining pressure p as p”2 (Hardin and Black,1966,1968; Viggiani and
Atkinson, 1995). We therefore write: '

G, < p"*G)? (4)

where G, is the very small strain shear modulus of soil, and G, is the elastic shear
modulus of the particle material. For isotropic soil with constant Poisson's ratio, the
bulk and shear moduli are proportional to one another, so that the bulk modulus has
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the same form of pressure dependence. We now examine the micro mechanical
. . 12
origins of the p ~ dependence.

We first consider a mean-field estimate for the stress-strain response of a random
array of identical spheres under isotropic compression, following Jenkins and Strack
(1993). For an array of particles with an initially isotropic distribution of Hertzian
contacts, the bulk modulus of the aggregate, K is given by:

K, o p'/3G§/3C2/3 (5)

where C is co-ordination number (number of contacts with neighbours). An apparent
discrepancy exists between the power of p found to influence stiffness empirically (4)
and that developed in mean field theory (5). Goddard (1990) develops two possible
explanations. First, the co-ordination number may be a function of mean stress. He
analysed a mechanism in which sample-spanning particle chains buckle under
compression, until sufficient lateral force is provided by the formation of new

contacts. He showed that small rotations at particle contacts increase the average co-
ordination number C such that

Cocgl? (6)

Substituting (6) in (5), it is readily seen that the aggregate elastic modulus then
increases with the square root of the confining pressure.

Secondly, he analysed the contact between a plane and a sphere with an obtuse conical
asperity, and deduced that for an aggregate of particles with very shallow conical
contacts and a fixed co-ordination number, the bulk modulus of the aggregate would
be related to the confining pressure by:

K, = p"*G)? (7

Either, or both, of these mechanisms may be involved in raising the power of p which
is found empirically to influence the small-strain stiffness of soils.

3. Clastic yielding

For particles of a specified material and of a given size, there is a statistical variation
in strength (Moroto and Ishii, 1990). This statistical variation is inherent in the
strength of ceramics (Ashby and Jones, 1986). For a sample of uniform grains under
compression, the sudden decrease in the rate of hardening which is evident in region 2
of Fig. 1, must be due to the fracture of the weakest particles in the aggregate. We call
this "clastic yielding". In this case the parameter X in (3) should relate to the tensile
strength of a particle. Lee (1992) measured the tensile strengths of particles by
loading grains diametrically between flat platens. When a spherical grain is loaded
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diametrically under a pair of forces F, the characteristic tensile stress induced within it

can be defined as
F

Y =7 ®)

Lee used this to calculate the tensile stress at fracture as

e

o, =

®

where fracture is interpreted as "particle splitting”. We therefore write X = o, for
irrecoverable strains in region 2 of Fig. 1.

4. Evolution of an aggregate

The crushing strength of a particle is a function of its size as a consequence of the
statistical variation in the strength of ceramics. Furthermore, if a particle has a high
co-ordination number, the load on it is well distributed and the probability of fracture
is much lower than that at low co-ordination numbers. In addition, particles are more
likely to crush as the stress on a sample of granular material increases. We now use
these three criteria to model the evolution of an aggregate of elastic-clastic grains for
the simple case of one-dimensional compression.

4.1 A SIMPLE NUMERICAL MODEL

In order to establish a demonstration of the principles involved, a highly simplified
two-dimensional numerical model was developed (McDowell, Bolton and Robertson,
1996). The initial sample of material in the model comprises uniformly sized grains,
which appear as an array of 50 identical isosceles triangles (Fig. 2(a)). Each particle
(triangle) can then split into two identical self-similar triangles, and so on. The
triangular laminae used in the model are intended to represent real soil particles, in
rather the same way that Palmer and Sanderson (1991) used a hierarchy of splitting
cubes to model the crushing of ice. The grains are allowed to split with a probability
which increases with the applied macroscopic compressive stress ¢ and reduces with
either an increase in the co-ordination number C or a reduction in particle size d
(Weibull, 1951). The model does not deal with local equilibrium or kinematics, but
simply with the probability of splitting of grains.

The survival probability P (d) for a particle of size d was calculated as:

) m
P.(d)=exp —[—5—] ~(E($—C/—;c—i—”—20-));— v (10)
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The Weibull modulus m is a measure of the uniformity of the material, and c isa

characteristic tensile strength of a particle of size d,. - The factor a can be used to vary
the degree to which the co-ordination number C affects the probability of fracture, and

may be related to particle angularity.
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Figure 2. Initial and fractured array of triangles.

For normalisation of the behaviour, the tensile strength o,, of the initial triangles was
set at unity. The initial value of o was chosen so that only one triangle is likely to

break. The stress was then successively incremented and particles were selected for
fracture according to (10).

Fig. 3(a) shows the particle size distribution which evolves from taking m=5 which fits
statistical data, and using a=5 which guarantees that co-ordination number is a
dominant factor. Fig. 3(b) shows the variation of uniformity coefficient U with
increasing macroscopic stress (U=d,/d,,, where d, is the particle size which 60% by

mass of particles are finer than) and Fig. 2(b) shows the resulting array of broken
triangles. ’

4.2 EMERGENCE OF FRACTALS

Fig. 3(a) shows that the curve which evolves of percentage by "mass" (i.e. "area" in
the 2-D simulation) of particles smaller than d, versus d on a logarithmic scale is an
exponential, which implies a fractal geometry. For a fractal distribution in two
dimensions, the percentage by mass of particles smaller than size d, M(L<d) is given
by:

M(L <d)ed*™P (11)

D is the fractal dimension, and usually has a value between 2 and 3 for granular
materials (Turcotte, 1986). For a corresponding 2-D simulation, the fractal dimension
should lie between 1 and 2. For m=5 and a=5, D was calculated to be 1.36. Only the
smaller particles are fracturing each time the applied stress ¢ is incremented, because
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the high co-ordination numbers of the larger particles give them low probabilities of
fracture. ~As the final particle size distribution is approached, the uniformity
coefficient approaches a constant value as shown in Fig. 3(b). The form of the curves

in Fig. 3(a) is consistent with data for one-dimensionally compressed Ottawa sand
(Fig. 4).
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Figure 3. Evolving particle size distributions and uniformity coefficient.
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Figure 4. Evolving particle size distributions for Ottawa sand (Fukumoto, 1992).

As with Palmer and Sanderson's fractal model, the range of particle sizes increases
with applied stress. The probability of fracture f for the smallest particles of size d_
must be the same each time they fracture. Consequently, Palmer's fractal probability

of fracture f can be related to Weibull's survival probability in (10) for the 2-D
crushing of triangles:
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2 m
a Y (o/5,,)
1-f=P =exp{—| ~ | ~—"— 12
ren-ue {2 o
so that
2..m
d‘z"cm = constant (13)
d()ct,o

A repetition of numerical simulations using different Weibull moduli m, confirmed
that equation (13) holds (McDowell, Bolton and Robertson, 1996).

5. Clastic hardening

It is now shown that the evolution of a distribution of particle sizes with constant
uniformity coefficient is consistent with the form of the plastic compression curve in
region 3 of Fig. 1(b).

5.1 ANEW WORK EQUATION

We modify a work equation proposed by Roscoe, Schofield and Thurairajah (1963)
and Schofield and Wroth (1968) to include energy dissipated in fracture and get:

rds
V.(1+e)

qdel + p'de) = Mp' 8¢ + (14)

The left hand side represents the work done per unit volume by deviatoric stress g and
mean effective stress p’ (with corresponding irrecoverable strain increments 884” , SEVP ).
The first term on the right hand side was identified as internal frictional dissipation,
and the new term is the energy dissipated in the creation of new surface area dS for a
volume V, of solids distributed in a gross volume of V (1+e) and I' is the "surface
energy”. For the case of one-dimensional compression, we decompose the
compression of voids ratio de into elastic and plastic components d¢” and 8¢,
following Schofield and Wroth (1968) who showed that if stress is monotonically
increased from ¢ to o+do, log ¢ increases by do/c and the plastic component of
reduction in voids ratio is given by:

de? = Ado /o (15)

where A is expressed in terms of Schofield and Wroth's parameters A and k by A=A-x.
We will shortly derive the conditions necessary for A to be a constant. Equation (14)
gives for the case of uniaxial compression, '

de rds

e 16)
(i-n), (
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where u is solely a function of the angle of friction ¢. The form of (16) is consistent
with available triaxial data for decomposed granite soil (Miura and O-Hara, 1979).

5.2 POWER LAW COMPRESSION

Equation (16) was used in the numerical model to calculate the hypothetical reduction
in voids ratio as the smallest particles fracture with increasing macroscopic stress.
Fig. 5 shows the resulting plot for m=5, a=5. It is evident that an approximately
linear-log compression curve develops. This is due to the formation of a fractal

geometry. Equation (11) can be used to calculate the total sectional surface area for
all the particles in the 2-D sample:

S(L>d,)e<d)P (17)

Substituting (13) and (17) into (16) gives the plastic reduction in voids ratio with
applied stress increment do:
m

deP =—AG 2 (D-1)-1 9.9.

(18)
c
In the particular case
D=1+2/m (19)

equation (18) reduces to equation (15) and can be integrated to give an-equation
similar in form to (2). In three dimensions (19) becomes

D=2+3/m (20)

For most soils, m will be between 5 and 10; D is often around 2.5 (Turcotte, 1986;
Palmer and Sanderson, 1991), and these values fit (20) rather well. It is therefore
proposed that the difference in linearity between normal compression curves for
various soils of equal fractal dimension is due to the difference in the variability of the
tensile strengths of the particles themselves.

It is now evident that the development of linear-log plastic compression lines in soils
has a sound basis in the evolution of a fractal distribution of particle sizes and a

constant uniformity coefficient. This is consistent with data for petroleum coke
(Biarez and Hicher, 1994, Fig. 6).

' 5.3 PLASTIC COMPRESSION INDEX A AND COMPRESSION INDEX A,

McDowell, Bolton and Robertson (1996) showed that the value of A in (18) has the
right order of magnitude, comparing with available data for sands and clays.
Schofield and Wroth's elastic parameter k can be added to the plastic compression
index A to give the compression index A. Clearly, x will be a function of the nature of
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particle-particle contacts (Hertzian, conical), but the precise micro mechanical origins
of x are not explored here.
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Figure 5. Compression curve Figure 6. Typical e-log ¢ plot for
for m=5, a=5. petroleum coke.

6. The evolution of soils

If the successive fracture of grains is accepted as the mechanism for clastic (plastic)
hardening of soils, particle size disparity must be a hidden feature of all constitutive
behaviour. Fig. 7 depicts the qualitative evolution of a soil aggregate in terms of
changes of voids ratio with mean effective stress.

A suspended sediment O may be deposited under water as an aggregate of soil
particles A. Sands may have been sorted by river and ocean currents and deposited as
a uniform aggregate under still water at a relatively low voids ratio. Clay platelets are
sub-micron in size and electrically active, settling so slowly that they can agglomerate
to form porous macro-particles, here, simply called grains, before they finally
aggregate as a sediment with a very high voids ratio. Point A in Fig. 7 can represent
either grains of sand with internal flaws, or grains of clay composed of electrically
bonded platelets. The soil sediment at A may be described as a "genus”, from which
other soils evolve by cycles of burial and erosion.

As effective stress increases to point B, some grains fracture so that the soil at B will
be seen to be a different "species". The broken pieces pack more efficiently, and the
voids ratio at B is irrecoverably reduced. Between B and C many grains fracture, and
many of the broken fragments fracture again. After the successive fracture of some
grains, the size distribution approaches a fractal for the first time at point C. Although
soil species D evolves to have more fines than species C, each now approximates to a
given fractal geometry which persists as the stress increases.
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At D the effective stress may be taken through an unloading-reloading cycle E, F, G,
H. This cycle will be conducted on the same soil species, since little extra damage
will occur until stresses exceed their previous maximum. As the pre-consolidation
pressure is exceeded at H, the states of fractal evolution on the normal consolidation
line are resumed, to point I. However, the smallest fragments will eventually reach
their comminution limit so that the larger grains split for preference even though they
have more neighbours. The accumulation of unbreakable fines would lead to the
curvature at point J in Fig. 7. Mixtures of grain types can be considered in the same
way. The more crushable grain type would tend to control the compression of the
mixture, until those grains reached their comminution limit. This would explain the

observation that the compressibility of a clay-sand mixture is simply proportional to
the clay fraction.

Soils at points such as B in Fig. 7 are observed to creep, to G for example. This
behaviour can be modelled by allowing the tensile strength of particles in (10) to be
time-dependent. This time-dependence of strength in oxide ceramics arises from the
slow propagation of micro-cracks due to the chemical interaction with water in the
environment. This one-parameter addition creates realistic rate effects linked to the
popular concept of "apparent pre-consolidation pressure". The species after creep to G

is the same as after load cycling to G, and the pre-consolidation pressure is D in either
case.

7. Behaviour of a soil species

The transition from recoverable to irrecoverable behaviour (point H in Fig. 7) would
be characterised in stress space by a "yield surface”. Constitutive models derived
from conventional plasticity theory usually invoke the concept of "isotropic
hardening" which expands the yield surface homologously as the voids are
irrecoverably compressed (e.g. Cam Clay, Schofield and Wroth, 1968). Our view is
that the process of isotropic (or anisotropic) hardening occurs by the successive

fracture of grains and is better termed "clastic hardening" which follows "clastic
yielding".

The behaviour of "over-consolidated soil" at points D, E, F, G, H which would be
"inside the yield surface” can be shown not simply to be non-linear elastic, but to
involve "kinematic yielding" of a soil species, which seems more appropriate than the
previous term "kinematic hardening". Fig. 8 outlines the consequences of a disparity
of particle sizes for the deformation of a species such as D. A hypothetical unit cell is
considered to contain a rigid kernel, representing a large grain surrounded by a fractal
matrix of finer particles. Initial small-strain behaviour will be elastic, albeit
inhomogeneous. The lack of strain within the kernel eventually induces a zone of
kinematic yielding (particle sliding against particle) in the surrounding matrix, leading
to a partial loss of shear stiffness while some normal contact stiffness remains.
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Figure 7. Evolution of soil species.
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Figure 8. Kinematic yielding within a kernel cell.

From D to E the volumetric expansion will cause the kernel to lose radial stress. AtE
slip will commence in the matrix at the kernel boundary, due to the local mobilisation
of the internal angle of friction between the fine grains. This will successively affect a
larger annulus as the boundary stress reduces further, to point F. On re-imposition of
spherical compression at F the regime of inter-particle slipping is immediately
suspended, since the motion is reversed. The behaviour is elastic on re-loading in the
matrix through G but the inhomogeneous stresses may induce clastic yielding "early”
so that H falls below D in Fig. 7. This system can provide realistic hysteresis loops
such as DEFGH featuring shake-down on cyclic loading, offering compaction if the
pores are drained or partial liquefaction if volume is constrained to be constant.

Deviatoric strain starts elastic but eventually induces slip between the matrix and the
kernel, on patches which are parallel to planes of maximum shear in the matrix.
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Reversal of deviatoric strain re-imposes elastic conditions throughout. Rotation of
principal stress direction causes the slip patches to migrate round the kernel, rather in
the fashion of a carpet-layer “walking out” ridges, offering realistic progressive strain.

8. Conclusions

The successive fracture of grains under stress has been shown to lead to a fractal grain
size distribution using an extension of Weibull statistics. Fractals explain the self-
similarity of soils on the normal compression line which is a line of clastic hardening.
Clastic yielding is distinguished from kinematic yielding which occurs for a soil
species with invulnerable grains, and which is caused by a disparity in particle sizes.
The rich gamut of overconsolidated soil behaviour can be reproduced in a kernel cell
which induces matrix slip in addition to non-linear elastic deformation, due to the
strain discontinuity at the matrix/kernel boundary.

9. References

Ashby, M.F. and Jones, D.R.H. (1986) Engineering Materials 2, Pergamon Press, Oxford.

Biarez, J. and Hicher, P. (1994) Elementary Mechanics of Soil Behaviour, A.A. Balkema, Rotterdam.

Fukumoto, T. (1992) Particle breakage characteristics in granular soils, Soils and Foundations 32, No. 1,
26-40.

Goddard, J.D. (1990) Nonlinear elasticity and pressure-dependem wave speeds in granular media, Proc. R.
Soc. Lond. A 430, 105-131.

Hardin, B.O. and Black, W.L. (1966) Sand stiffness under various triaxial stresses, Journal of the Soil
Mechanics and Foundations Division, ASCE 92, No. SM2, 27-42.

Hardin, B.O. and Black, W L. (1968) Vibration modulus of normally consolidated clay, Journal of the Soil
Mechanics and Foundations Division, ASCE 94, No. SM2, 353-369.

Jenkins, J.T. and Strack, O.D.L. (1992) Mean field inelastic behaviour of random arrays of identical spheres,
Mechanics of Materials 16, 25-33.

Lee, D.M. (1992) The angles of friction of granular fills, Ph. D. dissertation, Cambridge University.

McDowell, G.R., Bolton, M.D. and Robertson, D. (1996) The fractal crushing of granular materials, J.
Mech. Phys. Solids 44, No. 12, 2079-2102.

Miura, N. and O-Hara, S. (1979) Particle-crushing of a decomposed granite soil under shear stresses, Soils
and Foundations 19, No. 3, 1-14.

Moroto, N. and Ishii, T:(1990) Shear strength of uni-sized gravels under triaxial compression, Soils and
Foundations 30, No. 2, 23-32.

Novello, E.A. and Johnston, L.W. (1989) Normally consolidated behaviour of geotechnical
materials, Proc. 12th Int. Conf. Soil Mech., Rio de Janeiro 3, 2095-2100.

Palmer, A.C. and Sanderson, T.J.O. (1991) Fractal crushing of ice and brittle solids, Proc. R. Soc. Lond. A
433, 469-477. ’ ‘

Roscoe, K.H., Schofield, A.N. and Thurairajah, A. (1963) Yield of clays in states wetter than critical,
Geotechnique 13, 211-240.

Schofield, A.N. and Wroth, C.P. (1968) Critical State Soil Mechanics, McGraw-Hill, London.

Turcotte, D.L. (1986) Fractals and Fragmentation, Journal of Geophysical Research 91, 1921-1926.

Viggiani, G. and Atkinson, J.H. (1995) Stiffness of fine-grained soils at very small strains, Geotechnique 485,
No. 2, 249-265.

Weibull, W. (1951) A statistical distribution of wide applicability, J. Appl. Mech. 18, 293-297.




