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ABSTRACT

A study has been made of the micro mechanical origins of the irrecoverable compression of aggregates
which comprise brittle grains. The terms *“yielding™ and “plastic hardening” are used in the discipline of
soil mechanics to describe the post-elastic behaviour of granular media. These “plastic”” phenomena are
here related to the successive splitting of grains. } .

Grains are taken to split probabilistically, the likelihood increasing with applied (macroscopic) stress,
but reducing with any increase in the co-ordination number and with any reduction in particle size. When
the effect of the co-ordination number dominates, a simple numerical model confirms published findings
that a fractal distribution of particle sizes evolves from the compression of an aggregate of uniform grains.

Taking the production of new surface area from the particle size distributions produced by the numerical
model, a work equation is used to deduce the plastic compression of voids, for one-dimensional compression
of the aggregate. This too is shown to be in agreement with experimental data, and in particular confirms
the linearity of plots of voids ratio versus the logarithm of stress. The gradient of these plots is for the first
time related to fundamental material parameters. Copyright © 1996 Elsevier Science Ltd

Keywords: A. fracture, A. fractals, B. constitutive behaviour, B. granular material, C. probability and
statistics. . . :

1. INTRODUCTION

From the earliest publications in soil mechanics, it has been accepted that the one-
dimensional plastic compression of granular media satisfies an approximately linear
relationship between voids ratio e (volume of voids per unit volume of solids) and
the logarithm of effective macroscopic compressive stress & :

e=¢ey—Alné. (1)

This linearity applies to a wide range of granular materials (Novello and Johnston,
1989). However (1) is dimensionally problematical—one might have expected that
the stress & should be made non-dimensional by dividing it by a material parameter
with dimensions of stress. Furthermore, the micro mechanical origins of the com-
pression index A remain to be clarified. There is now strong evidence (Lee and
Farhoomand, 1967 ; Billam, 1971; Miura and O-Hara, 1979; Biarez and Hicher,
1994) to show that large strain deformations of granular media are accompanied by
grain crushing. Suppose, therefore, that grain crushing lies behind the phenomenon
of the plastic compression of brittle, granular media.

The crushing of particles in a granular material must be related to changes in the
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particle size distribution (Hardin, 1985). There are two approaches for predicting
particle size distributions: constrained and unconstrained comminution models.
Unconstrained models assume that each particle acts independently of its neighbours.
Gilvarry (1961, 1964) showed that if particles contain a Poisson distribution of flaw
sizes, the distribution of fragment sizes following a succession of independent fractures
is given by :

O, ,=1—e, 3]

where @, _, is the cumulative fraction of the initial volume corresponding to particles
of size less than d, and x is a measure of mean edge flaw spacing. Epstein (1949)
developed an unconstrained model by assuming each particle to have the same
probability of breakage, independent of its size or history, and that the distribution
of pieces resulting from repeated fracture of a single particle was independent of its
size. He showed, using the Central Limit Theorem, that any initial particle distri-
bution, no matter how skewed, will eventually tend to a log-normal distribution.

Turcotte (1986) found that for many granular materials, the particle size dis-
tributions are self-similar and not log-normal. Sammis et al. (1987) found this to be
true for gouge material, and stated that the weaker larger particles had not disap-
peared. Consequently they developed a constrained comminution model, based on
the idea that a particle’s fracture probability is not controlled by its intrinsic strength,
but by the relative sizes of its nearest neighbours. They proposed that the load
distribution for all particles would be maximised by a self-similar distribution of
particles, arranged such that nearest particles were of different sizes. Once self-simi-
larity is achieved, particles at all orders would have the same probability of failure
and hence self-similarity would be maintained.

Palmer’s model for the fractal crushing of ice (Palmer and Sanderson, 1991)
assumed a probability of fracture which is constant at all orders, and related the
crushing force on a block of ice to the fracture probability, the number of fragments
into which a particle splits (assumed constant at all orders) and the number of
orders. Palmer and Sanderson assumed the fracture probability for a particle to be
independent of its size and number of neighbours, and stated that such a criterion
would lead to a self-similar arrangement in which nearest neighbours are of different
sizes.

It is well known that the crushing strength of a particle is a function of its size
(Billam, 1972 ; Lee, 1992). Furthermore, if a particle has a high co-ordination number
(number of contacts with neighbours), the load on it is well distributed and the
probability of fracture is much lower than that at low co-ordination numbers. In
addition, particles are more likely to crush as the stress on a sample of granular
material increases. As yet, it is not known of any attempt to model grain crushing
based on all three of these criteria.

The study of large populations, based on simple propositions for the behaviour
of individuals and the interaction between neighbours, can reveal the unexpected
emergence of ““rules” governing the behaviour of the population as a whole (McGlade,
1993). Here, the existence of approximately linear compression lines for granular
materials when voids ratio is plotted against the logarithm of applied stress, is the
emergent property of interest.
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In order to establish a demonstration of the principles involved, a highly simplified
two-dimensional numerical model (GRANALOGY) is introduced. The initial sample
of material in the model comprises uniformly sized grains. The grains are allowed to
split, probabilistically, depending on the applied stress and the co-ordination number
and size of each particle. These grains are seen as triangular laminae in the model,
but are intended to represent real soil particles, in rather the same way that Palmer
and Sanderson (1991) used a hierarchy of splitting cubes to model the crushing of
ice. The particle size distribution is seen to evolve with increasing applied macroscopic
stress, and the resulting distributions are analysed and discussed. Information regard-
ing the evolution of particle distributions is expressed in terms of their co-ordination
number, size, surface area and volume. This is then translated back into terms which
are meaningful with respect to a real aggregate of grains with voids. The energy
absorbed in the creation of new surface is taken from the model and inserted into a
3D work equation which also includes the frictional dissipation due to the rearrange-
ment of particles. This is solved for one-dimensional compression to calculate the
reduction in voids ratio with increasing applied stress. The resulting curves are com-
pared to experimental data and, finally the compressibility of the aggregate is related

“to the more fundamental properties of the particles themselves.

2. THEORY

The initial sample of granular material appears as an array of 50 identical isosceles
right-angled triangles (Fig. 1). Each particle (triangle) can then split into two identical
self-similar triangles, and so on. This geometry has no particular significance, except
to allow the fragments to be geometrically similar, but of different sizes. It should be

Fig. 1. Initial array of 50 identical right-angled isosceles triangles.



2082 G.R. MCDOWELL et al.

noted that this model does not deal with local equilibrium or kinematics, but simply
with the probability of splitting of grains of known co-ordination.

The model for breakage is based on Weibull statistics of fracture (Weibull, 1951).
Weibull recognises that the survival of a block of material under tension requires that
all its constituent parts remain intact. Weibull stated that, for a block of material of
volume ¥, under an applied tensile stress o, the “survival probability” P(V) of the

block is given by : ;
V o ¢ ‘
P, = ex —1 . 3

Vo is the volume of material such that

P =ew{~(Z)'] @

where g, is the value of ¢ such that 37% of the total number of tested blocks survive.
The exponent m is called the Weibull modulus, which increases with decreasing
variability in strength of the material. For chalk, brick, stone, pottery and cement, m
is about 5. A similar value would be expected for carbonate sands, which have similar
intraparticle porosity values. The engineering ceramics have values for m of about 10,
and the variation in strength is much less.

If particles are geometrically similar, and also have the same number and dis-
tribution of contacts, the size of the zones of the tensile stress induced in them will
scale with their volume. In that case Weibull applies. If particles are all initially size
dy and we assumie that there is some characteéristic mobilised tensile stress ¢ within
each of them, then the probability of survival for a particle of size d is given by :

n-enf-( 2]}

For real three-dimensional grains we must take w = 3, whereas in the simple arrange-
ment of triangular laminae, “volume” is represented as plan area and w = 2. Equation
(5) gives the variation in particle strength with particle size. When a spherical grain
is loaded diametrically under a pair of forces F, the characteristic tensile stress induced
within it can be defined as

F

= ©)

g =

following Jaeger (1967). This is also consistent with the definition of the tensile
strength of concrete in the Brazilian test. Lee used this to calculate the tensile stress
at fracture as

£

? ’ (7)

O'f=

which he found to be a function of d:
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where typical values of b, he found, were —0.357, —0.343, —0.420 for Leighton
Buzzard sand, oolithic limestone and carboniferous limestone, respectively. Equations
(5) and (8) are equivalent in the sense that if a standard probability of survival is used
to define o, for various batches of grains of different diameter d, it will be found that

d”ef" = constant, ©
so that
oyocd™m, : 10)

taking w = 3 for solid particles. Apparently, a value of m in the range 5-10 covers’
Lee’s data for rock grains.

Once particles begin to split it is necessary to modify (5) to account for variable
co-ordination number. The mobilised tensile stress at a characteristic point in a
particle must be a function of the macroscopic stress & and the co-ordination number
C. Jaeger (1967) analysed circular particles under combinations of surface forces and
showed that the maximum tensile stress in a particle reduces as C increases. C = 1 is
meaningless for particles carrying contact forces, and C = 2'is impossible in our
simple model of close-packed triangles for which C takes its minimum possible value
of 3 in the initial case of an array of identical particles. A regular cubical array of
spherical particles, all of diameter d, under uniaxial macroscopic stress & would
create a minimum possible co-ordination and would effectively load each particle
diametrically with a compressive force F = 6d°. This would lead to the induction of
a tensile stress within each particle equal to the macroscoplc compresswe stress on
the aggregate

c=¢ ' (11)

following (6). In order to achieve an equivalence between the 2D analogue and this
simple 3D example, it is necessary to have ¢ = & for C = 3. We might therefore write :

g

T “

where the a-factor can be used to vary the degree to which the co-ordination nuniber
affects the tensile stress induced in a particle. For example, a large value of C will be
more helpful in reducing the induced tensile stress for a rounded particle than for an
angular particle, as indicated diagrammatically in Fig. 2. It may be possible, then to
relate o to the shape factor for a particular granular material.

Finally, the criterion for 2D fracture is given by putting (12) into (5) for w = 2:

d\? (G/o)™ , \
P,(d) = exp{ - <;,—) ((Z/f'_ 2))} | (3)

where

a=om. (14)
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X

B
- B .
New contact force X . X adds to tension
tends to suppress tension -. . induced by A
induced by A o ,

Fig. 2. Large co-ordination numbers are less helpful for more-angular particles. -

Figure 1 should be accepted as a logical map of the neighbourhood relationships of
particles which satisfy (13) with regard to their probability of survival under macro-
scopic stress &. This statistical model permits us to calculate the work done due to the
creation of surface area as particles break. Although the model does not simulate
voids, or the kinematics accompanying the closure of voids, it is possible simply to
add the component of energy dissipation due to fracture into an established consti-
tutive relation which does model the deformation of a porous aggregate. For this
purpose, a work equation (Roscoe et al., 1963 ; Schofield and Wroth, 1968)

qoel+p’ oeb = Mp’ ¢l (5)

is useful. The left hand side represents the work done per unit volume by deviatoric
stress ¢ and mean effective stress p’ (with corresponding irrecoverable strain
increments Je2 and 8¢?). The right hand side was identified as internal frictional
dissipation. Schofield and Wroth’s splitting of strains into plastic and elastic com-
ponents can best be visualised in Fig. 3, where a one-dimensional compression of
voids ratio Je is similarly decomposed into def and de’. B
If stress is monotonically increased from & to &+ d5, log & increases by da/a while
a'total change of voids ratio de is observed, Schofield and Wroth invoked a potential
elastic recovery of voids de°. They assumed local gradients 4 and « for the total and
elastic strain legs in Fig. 3 and therefore calculated de = 1da/s, d¢° = k d5/5, and
deduced that the irrecoverable plastic component of voids ratio reduction is
de? =(A—x)da/a. We will adopt the same approach, but will calculate the plastic
component directly by defining

se? = Ads/s, (16)

and will shortly derive the conditions necessary for A to be a constant.
The assumption inherent in this approach is that recoverable strains are a function
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local slope A,

"]

. 14—?.‘ logo
&
Fig. 3. Schofield and Wroth’s decomposition of voids ratio reduction into elastic and plastic components.

3

of proportional change in stress, &,/ in Fig. 3, and not a function of the absolute
value of stress. .

We now add a term on the right hand side for the creation of surface energy due
to fracture, and get : ' DA s

- TdS L ‘ A
V4o’ an
where dS is the change in surface area of a volume V’, of solids distributed in a gross

volume of V(1 +e) where e is the voids ratio, and I is the “surface free-energy”. For

th? special case of uniaxial deformation with effective axial stress & and corresponding
axial strain £ we obtain :

' qoel+p’ bsF = Mp’ del +

rds o
AT ‘A

where K, is the lateral/a?(ial effective stress ratio. For the equiliBri_um of self-similar
arrangements of rough rigid particles, it must be anticipated that K, would be As‘diely
a function of the internal angle of friction, ¢. In soil mechanics it is 'ac(:épted :thét
K, ~ 1 —sin ¢ (Wroth, 1972). Substituting

. . ~-‘ - 2 .
e gdg? =§M(1+2Ko)6d§”+

de?

de## = — —— :
, & (ite)’ o 19
we obtain . ‘v o
‘ TdS :
dep = — .“‘ - )
N A 0

where p is a function of ¢ alone. Equation (20) may be expected to produce a
reasonable approximation for confined one-dimensional compression. Miura and O-
Har'a (1979) showed in triaxial compression tests that for decomposed granite soil,
the increase in surface area of the soil particles.was proportional to the plastic work
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done over most of the range of stresses considered. This is consistent with equation
(20) and so the proposed relation can be used with confidence to establish the
reduction in voids ratio e with increasing applied macroscopic compressive stress .

3. NUMERICAL ANALYSIS

The initial array of 50 triangles is shown in Fig. 1. The initial co-ordination number
of the triangles at the edges was set to three, so as to have the same chance of splitting
as the particles in the bulk. For normalisation of the plots, the tensile strength o, of
the initial triangles was set at unity. Suppose a value of 5 is chosen for m. In order to
explore how the voids ratio changes with & at low values of 3, it is useful first to
calculate the stress such that only one triangle is likely to break. The initial survival
probability for each triangle in the array should then be 0.98, and (13) gives the initial
applied stress as:

_ I :
a= {ln<m)} = 0.458228 form=>5. | @2y

This has been selected as the starting pbint for the following analyses. It is essential
to increment & in very small amounts, but it is not necessary to use the same size of
increment d, for small and large . Consequently, the increment was performed as:

é(Ing) = 0.01. 22)
In other words, the increment operationis:
6 =06*1.0L. : 23)

For each increment of &, the program calculates the probability of fracture for each
triangle. The program was written such as to generate a random number between 0
and 1, for each triangle under a current applied stress . For example, if there were
100 triangles, all with a fracture probability of about 0.2, then if a random number
between 0 and 1 is generated for each of the 100 particles, it would be expected that
20 of the outcomes would have a value of 0.2 or less. So if the condition for breakage
is: : ' ‘

if random number < probability of fracture, select particle for fracture

then the desired effect is achieved. This is the method adopted for selection for
fracture. For each value of &, the particles were selected using the above method, and
subsequently allowed to fracture. It was desired that this process be repeated until no
more particles split. However, this was found to be too time-consuming, so the process
was allowed to continue until the number breaking was less than 2% of the total
number of particles. This was considered to give adequate accuracy.

The outcome of this procedure is almost exactly equivalent to invoking independent
stochastic variations in both the forces acting on each particle, and in the strength of
each particle. It is a feature of discrete element computations of elastic ‘particles
(Cundall and Strack, 1979) that contact forces vary strongly from particle to particle.
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plan area, d 2 /25 "mass” M of particle

possible fracture increases
sectional surface area by d2

sectional surface area § = (2 +/2 )d
Fig. 4. The increase in sectional surface area when a triangle of shorter side d splits is d\/i

Strong columns of forces which-are capable of transmitting the major compressive
stress in the aggregate, form at intervals of a few particle diameters. Zones between
columns are very lightly stressed. However, the organisation of columns must change
yvhenever any particle fractures, so the snapshot of order at any instant should be
irrelevant, and the process can be modelled as spatially random when integrated ovler‘
hundreds of fractures. :

In calculating the reduction in voids ratio for each increment of stress, it was noted
that the new sectional surface area produced when a triangle splits, is pr;)portional to
the size of the triangle itself (Fig. 4). ,

If the orders of particle size are listed as r = 0 for the largest particle (size d,) and
r = s for the smallest (size d), then (20) becomes ’

r=

I 5
(1 - #) 4 Vs ,;o def’ 7 (24)

de oc

where B, is thp number of particles of size d, which are splitting.
It was de01ded' to plpt the particle size distribution after every 35 increments of
§tres§, Le. every time g increased by a factor of about \/E( 1.01%° ~ ﬁ). The change
in voids ratio and uniformity coefficient, U(U = dy/d,,, where dgy 1s the particle size

wglich 60% by mass of the particles are finer than) were output after every increment
o1 4.

4. ANALYSIS OF SIMULATIONS

It seemed reasonable to assume a value for m of 5 for soil particles and to vary
parameter a controlling the influence of the co-ordination number on the probability
of fracture. The results given in Fig. 5 are for a = 5. Results for a = 4 are shown in
Fig. 6 for comparison. Wherever logarithmic axes appear in these figures, they are to

the base 2, to match the concepts of binary splitting which underlie the theory. Figure

7 shows the resulting array of broken triangles for a = 4.

Figure 5(a) shows Fhat Fhe curves of percentage by number of particles larger than
d, versus d on a logarithmic scale look like exponentials, as demonstrated by Fig. 5(b)
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Fig. 5. Particle size distributions and compression data form = 5,a = 5. : Fig. 6. Pacticl size distributions and compresio data for m = 5, & = 4

when the percentage by number of particles is, al§o plotted on a logarit:t hmi(? ?calet.‘ D is the fractal dimension, and has usually a value between 2 and 3 for granular
This implies a fractal geometry. Fo_r.a fl.raqtal distribution, the number of particles o ’ ’ materials (Turcotte, 1986). The constant of proportionality, 4, is avoided in the
size L greater than size d, N(L > d) is given by : literature, and it is necessary to ask whether it varies with loading. Figure 5(c) relates

 N(L>d)=4d"". - (25) the logarithm of the absolute number of particles larger than d to the logarithm of d.
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Fig. 7. Fractal array of fractured particles when a = 4.

Equation (25) corresponds to the sloping cut-off to eagh of .the curves in Fig. 5(c),
such that the slope and intercept at every stress level is identical, and (25) formg an
envelope with a unique value of both 4 and D for every test. Only the smaller p_artlcles
are fracturing each time the applied stress & is incremented, bé.:c'a‘use the high co-
ordination numbers of the larger particles give them low probabilities of fracture. If
the smallest particle size under a particular value of stress is d,, then

N(L > d,) = Ad;”. (26)

Hence the fraction of particles of size greater than d, @, .18 given by :

-D
o, = YLD _ <i> , @
N(L>d,) d,

The nature of (27) ensures that the curves in Fig. 5(a) are'at equal horizontal spacings.
If the logarithm of (27) is calculated, and plotted as in Fig. 5(b), then the value of the
fractal dimension, D, emerges again as the slope. For m =35 and a=5, D was
calculated to be 1.36, whilst for m =5 and a = 4, D was found to be 1.45. Thl.S. is
reasonable because the fractal dimension can be calculated from the' fractal probability
of fracture p, and the number of fragments n produced when a particle breaks. Palmer
and Sanderson (1991) showed that if the particle sizes are numbered from d, for the
largest particle to d, as the smallest particle, then:

Mz (V7oL o
N(L > diy) dis . hp
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where w = 2 in two dimensions and w = 3 in three dimensions—see (5). Hence D is
calculated as

lnp
D= w<l + m) | (29)

In two dimensions, D is expected to lie between 0 and 2, and for the fracture of three-
dimensional grains D is expected to lie between 0 and 3 (as indicated by Palmer and
Sanderson).

Palmer and Sanderson’s model suggests that the number of orders of particles
produced increases with applied stress. So it is with the model presented here. As the
applied stress & increases, the probability of fracture for the smallest particles must
be the same each time they fracture. Consequently, Palmer’s fractal probability of
fracture can be related to Weibull’s survival probability in (13) for the 2D crushing

of triangles:
ds > (O_-/ O-O)m
l—-p=P,=exp{—(—] ————>. : 30
p=r=omi~() (€235 @
Equation (30) suggests the following relation between finest particle size and apphied
stress:
de™ 1 ‘ o
> =Inj - |=f 31
djog [1 —p] / ,(_ )
where
p=n®?-D_ (32)
Equation (31) can be written as:
d?_,&™ = constant, (33)

where 0 < j < s and j is a constant. This rule predicts that size distribution curves in
Fig. 5(a) should be of constant shape, translating to the left by equal amounts as
stress increases by equal increments. In this sense, fractal self-similarity has emerged
from the initially uniform triangular array by the stage of curve C in Fig. 5(a), when
the normalised compressive stress is about unity (i.e. equal to the tensile strength of
the particles). A similar early transition into fractal numbers is found in Fig. 6(a).
Furthermore, a repetition of these numerical simulations using different Weibull
moduli m, confirmed that the spacing of distribution curves increased with increasing
m exactly as predicted by (31).

The cumulative mass fraction curve in Fig. 5(d) appears to show that as the grain
size distribution curves evolve, they are tending towards a stable exponential curve.
This is to be expected. If there are a differential number of particles SN of size between
d and d+4d, then from (25),

ON = ADd="~'5d. (34)
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Integrating equation (34) between particle sizes d and oo, (25) is obtained. The
corresponding differential mass 6M is:

SM =0.5dN-d* =0.54Dd"' " éd. 39

The term “mass”, which here refers to the plan areas of particles in thf:: 2D.simulatio'n,
as shown in Fig. 4, has been used so as to link with literature on particle SlZ'C analys1s.
Iﬁfégrating (35), the mass of particles finer than a particle size d, M(L < d)is obtained
as: )

ADd*P

= 36
22-D) . (36)

ML <d)=

Since ‘4 and D are constant, (36) gives the final mass distribu_tio‘n Vof 'parFicle ’sizes,
which will be approached ds the smallest particles con.tinue breaking on each increment
of applied stress. As a result, the uniformity coefficient approaches a constant value
n in Fig. 5(f). o
a:s ;izv;lot of %oic(l? ratio against logarithm of applied stres§ is .shown in Flg. 5(e).
Initial voids ratio indicates the state of packing of grains which is not recognised by
the simulation ; an arbitrary but typical value of 0.7 was selected. The curve harsithe
expected shape, with less crushing evident at lower stresses, 'and tl.le amount of
breakage increasing as & increases and fractals begin to form. It is possible to express
the form of the curve representing fractal crushing in a closed form. For the dlffcrenpal
number of particles between size d and d+dd, given by (34), the corresponding
sectional surface area 65 is:

S = BADd " 5d, G37)

where § =2+ \/i as shown in Fig. 4. The total sectional area for particles size d and
greater, S(L > d) is:

BADd' P

S(L>d) = D1 (38)
The total sectional area, then, for all the particles in the sampie is:
- S(L>d)= ﬁ—Al%ﬂl;D (39)
Combining (31) and (39), : |
s>y =422 (IJ;D_)/ZIAD dg—v(%)’"w_l)/z, ) (40)

Puttihg‘ (40) into (20), the plastic reduction in voids ratio with applied stress increment,
dais:
r

‘ o (1—-D)/2
de? = = T wer, P2

ADZ dyPopt-Pl (gD -1dg,  (41)

Bl E e
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Substituting for ¥, as the mass of particles of size less than or equal to-d; [equation
(36)] in (41), L L

C de? = _ﬁf(l—D)/z (1 M)J-d (2__D)mo_6n(l—D)/2(6.)m(D—1)/2—1 dﬁ, (42)
— A \
which can be written
G
de’ = —A@)m oD 12 @3)
where _
A = pra-or r (2—D)mh1 ' 44
~ (= )d, op @7
In the particular case
p-24 . 45
7 . (45)

(43) reduces to (16) and can be integrated to give an equation similar in form to (1).

It was found that the value of fractal dimension, D, was strongly influenced: by the
value of a chosen as the power of the co-ordination function, but the value of Weibull
modulus m had no effect. As a result, for a given value of a (i.e. D), it ‘would be
possible to use (45) to deduce the corresponding value of m which gives a linear e—
log & plot. Changing the value of a at this selected value of m introduces curvature to
the plot. This provides a micro mechanical commentary for the empirical observation
that some granular materials do not exactly follow linear compression lines on e—
log & plots. : ‘ '

In three dimensions, the use of w = 3 in (5) and the consistent definition of volume
as a cubic function of linear dimension, causes (45) to become

3 h »
Tm o 0

For most soils, m will be between 5 and 10; D is often around 2.5 (Turcotte, 1986;
Palmer and Sanderson, 1991), and these values fit (46) rather well. It must therefore
be reasonable to propose that the difference in linearity between normal compression
curves for various soils of equal fractal dimension may be due to the difference in the
variability of the tensile strengths of the particles themselves. Equation (44) shows
that the plastic compressibility index A increases with increasing Weibull modulus m
(i.e. decreasing variability in particle tensile strength). Furthermore, accepting that
gy C \/lj from linear-elastic fracture mechanics principles (Griffith, 1920), (44) gives
the dependence of A on toughness, I" as:

A cc T —m@-1/4, 47
which in the case of ideal A-lines which satisfy (45) exactly, leads to the proposition

Ao T. “8)
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It is possible to substitute typical values of parameters into (44) in order to check that
the plastic compression index A has the right order of magnitude. For example, Lee
(1992) showed that the expected strength of a quartz sand particle of diameter 0.5
mm would be g, = 50 MPa; the surface free-energy I' of silicates is of the order of 50
J/m? [Ashby and Jones, 1986], the coefficient p from (18) can be taken to be 0.5 using
M =1 and K, = 0.6, the Weibull modulus m can be taken to be 8 and the fractal
dimension D = 1.25 for the 2D simulation to achieve ideal, linear A-lines. These
substitutions give A ~ 0.1 which is of the correct order, comparing with available
data of both sands and clays.

For the two sets of data shown in Figs 5 and 6, it is evident that decreasing the
value of a (i.e. for a given value of m, decreasing ) causes more grain crushing. More
large particles are allowed to break, and the final mass distribution is approached less
quickly because the final uniformity coefficient is larger and the fractal dimension is
higher. The resulting compression is greater, as illustrated on the e-log & plots. This
may be taken to illustrate the difference between a material composed of rounded
particles and one composed of angular particles. Angular particles are inherently
more susceptible to breakage and less influenced by the co-ordination number, and
the resulting compression is larger than for a sample of rounded particles (Lee and
Farhoomand, 1967). This reinforces the idea suggested in Section 2 that the value of
a-could be selected with respect to the shape of the particles. S

5. DISCUSSION

-1t should be noted that the results discussed so far have been for values of @ greater
than 2. It was-found that as a decreased, D increased. At a value of g — 2, D was
estimated to be close to 2.0. This corresponds to a situation in which the particle size
and co-ordination number are equally important in determining the fragment size
distribution. Consider a situation as shown in Fig. 8(a) where a particle P of size d is
surrounded by three particles of equal size and co-ordination number [and hence
equal probability of fracture—see (13)]. Now suppose that P splits such as to increase
the co-ordination number of each of its neighbours by one [Fig. 8(b)]. Equation (13)

\

particle P

@ (b)

Fig. 8. Particle P splits such as to increase the co-ordination number of each of its neighbours by one.
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suggests that if each of the particles is now to have the same probability of splitting,
then "
i 2 m d 2 2 m ;
i (0-/60) — L (O-/O-O) , (49)
d) 4=2)* \do ] (3-2)"

ie. a=2. If a « 2, then clearly the larger particles have a greater probability of
splitting, and this will tend to scavenge the larger particles out of the aggregate. For
a > 2, the smaller particles are more likely to fracture, so that some large particles
are retained under the protection of their neighbours. It must be emphasised that all
signs of fractal behaviour do not just suddenly disappear at @ = 2, nor is (49) meant
to be a formal proof of the existence of a watershed. It has simply been demonstrated
that as a decreases beyond a value of about 2, it should be expected that the deviation
from fractal behaviour becomes more and more pronounced. Consequently, on a
log-log plot of the percentage by number of particles larger than a given size [as in
Fig. 5(b)], no unique value -of D can be found. This is reassuring because a value of
D greater than 2 has no meaning for a fractal distribution in two dimensions anyway
[equation (29)]. However, the idea that particle size is more dominant than co-
ordination number in determining the fracture probability of a particle, is considered
unrealistic. Billam (1971) found that for the grain degradation of granular materials,
the larger grains often suffered little crushing, even at very high pressures. Palmer and
Sanderson (1991) also noted that in the case of ice-structure interaction, ice appears
to be pulverised in the crushed zone. They stated that there is no evidence to suggest
that large particles are absent, but that there are simply a large number. of small
fragments which.determine the superficial appearance of the crushed zone.

It should now be clear that the choice of co-ordination number function isirrelevant,
provided the co-ordination number dominates over particles size in.the determination
of the survival probability of a particle. In this case (31)—(48) apply. For the chosen
function of (C—2)%, then, it is necessary to compare the curves obtained for a > 2
with corresponding grading curves and compression plots found by experiment.

Figure 9 (Fukumoto, 1992) shows-the evolving grading curves for one-dimen-

100 T T T T TR
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v3~50' UY=BOOOPS|. E
5 - O, = 5000psi g
& sof .
‘g - -
8 20_ 1

0 [T e 1 1l

0.01 01 1
Grain size (mm)
Fig. 9. Evolving particle size distribution curves for one-dimensionally compressed Ottawa sand (Fukumoto
1992).
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Fig. 10. Evolving particle size distribution curves for one-dimensionally compressed glass beads (Hagerty
: et al. 1993). o

sionally compressed Ottawa sand. The comparison with Fig. 5(d) is good. Similar
evolving curves are given by Hagerty et al. (1993) for glass beads (Fig. 10) and for
Black Beauty Slag. Hagerty et al. also showed that angular glass beads are more
readily susceptible to breakage than round glass beads, with more larger particles
breaking. By choosing a lower value of a (e.g. 2.2), it is possible to model this effect.
Lee and Farhoomand (1967) have presented photographs to show that the number
of fines produced is greater for an angular sand than for a rounded sand, with more
large particles breaking and a higher compressibility. In comparing Figs 5(d) and
6(d), and Figs 5(e) and 6(¢), it is evident that these plots illustrate this difference in
behaviour between angular and rounded granular materials. Golightly (1990) shows
in Fig. 11 a typical e-log & plot for carbonate sands. Figure 12 shows a similar plot
by Biarez and Hicher (1994) for petroleum coke. The plot also shows values of
uniformity coefficient increasing to a constant value at lower void ratios (the change
in curvature of the plot with a reduction in uniformity coefficient at very low voids
ratios is probably due to the communition limit for petroleum coke). The data are
seen to be in good qualitative agreement with Figs 5(e), (f) and 6(e), (f). Furthermore,
it may be perceived that recoverable strains are small in relation to plastic strains,
thus justifying their omission from the e-logs plots derived by the simulation—at
least in this case.

It is appropriate to recall the features of soil behaviour, which have been omitted
from this simple treatment, however :

(i) The initial voids ratio has not been linked to the initial co-ordination number of
particles, nor has the anisoptropic distribution of contact normals explicitly been
considered.

(i) The solution has relied upon the empirical finding 5,/6, = K, = 1—sin¢ for
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Fig. 11. Typical one-dimensional compression curves for carbonate sands (Golightly, 1990).
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one-dimensional compression. Further consideration must in future be given to the
definition of a yield surface which would generalise the results presented here.

(iii) No attempt has been made to describe the unstable release of elastic strain
energy, and the subsequent unstable collapse of grains, which may well be expected
to follow the fracture of a single particle. Instead, the hundreds and thousands of
fractures which are typically produced during the doubling of stress are integrated
and their effects smoothed. Following a local collapse the locally reduced strain energy
must begin to build up again, and it is assumed that the average elastic strain energy
(over a volume much larger than a single particle) will be a smooth function of the
applied stress.

(iv) Recoverable reduction of voids ratio can be added to the plastic reduction
calculated as a result of fracture; Hertzian contact mechanics will clearly assist.
However, it is the plastic voids compression index A which has been calculated here,
and the distinction between A and the total voids compression index 4 has currently
been left unexplored.

Not withstanding these limitations, the probability of fracture of a soil grain has
proved a remarkably fertile starting point for a re-evaluation of plastic hardening in
soil mechanics. Critical state soil mechanics, developed in Cambridge from 1958 to
1969, associated stress and voids ratio. The successive crushing model presented here
additionally associates a distribution of particle sizes to each stress, and postulates
that plastic hardening is due to the increase of specific surface which must accompany
the irrecoverable compression due to particle breakage.

No other treatment of the mechanics of granular media has been able to explain
the existence of linear-log compression lines for soils. It is tempting to apply a reverse
argument and to infer that the characteristically linear e-log& for clays should be
explained in terms of fractal crushing. Clays are widely recognised to form “peds”—
groups of individual particles of size &~ 1 ym which form a large bonded unit of
size ~ 10 um (Fig. 13). Furthermore, studies of pore size distributions (Akagi, 1994)
have shown that compression of the fabric leads to the elimination of the larger
macro-pores while the distribution of micro-pores remains unchanged. All this is
consistent with the view that a clay ped be recognised as the basic granular unit, that
peds should be treated as crushable grains, and that the compression of clays be
regarded as the fractal crushing of peds. It seems to be necessary to view the “plas-
ticity” of soils described by Schofield and Wroth (1968) as a corollary of the fracture
of “grains™.

6. CONCLUSIONS

A conceptual model has been developed for the evolution of a granular medium
under stress as a function of the behaviour of individual grains. A statistical treatment
has been provided in which the probability of fracture is a function of applied stress,
particle size and co-ordination number. A highly simplified numerical simulation
ignores the effects of voids, and the details of equilibrium and kinematics local to a
particle: a conventional continuum work equation is used instead to describe inte-
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ig. 13. Scanning electron micrograph (picture width 50 um) of undisturbed Kaolin, showing a random
distribution of orientated peds (Tovey, 1971).
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grated effects. Nevertheless it has proved capable of modelling significant aspects of
one-dimensional compression of granular materials by particle crushing.

When the effect of co-ordination number dominates over particle size in determining
the probability of fracture for a particle, the resulting particle size distributions are
fractal in nature with realistic fractal dimensions. By choosing appropriate particle
parameters, it is possible to obtain particle size distributions and normal compression
curves which resemble those found experimentally.

The successive fracture of brittle soil particles to form a fractal geometry gives a
micro mechanical basis for the observation that the compression of a granular aggre-
gate is proportional to the logarithm of applied stress. A relationship has been
proposed between the compressibility of a granular material and its more fundamental
particle properties. Theory shows that the compressibility of the aggregate will depend
on fractal dimension D, the particle material toughness I', the variability in particle
tensile strength m, and the angle of friction of the soil, ¢. ‘

The model could readily be extended to investigate the crushmg of a soil composed
of more than one species, and a comminution limit could be added, making it possible
to model the one dimensional compression of granular materials over the fuil range
of voids ratios.
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