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SYNOPSIS: A method has been derived for treating the triaxial data for sand which is useful for analysing piles and
penetrometers or other situations in which significant stress levels vary from very high to very low. The data is
divided into three categories; namely, the high, medium and low stress zones. These are separately modelled as
zones of plastic hardening, in this case using the FLAC program. The consistency of the modelling is demonstrated
by simulating triaxial tests. Application of this H-M-L model in the analysis of a cone penetration problem has also
been demonstrated. Comparison with centrifuge results has been found to be encouraging, at least qualitatively.

1. INTRODUCTION

The strength parameters of sand (such as angle of
shearing resistance ¢, or angle of dilatancy ) are
dependent on the mean effective stress. Bolton (1986)
attributed this to the crushing strength of soil grains.
Also, since the stresses involved in the penetration of a
cone or a pile can vary from the far field insitu stress
of a few kPa to the near field stress of a few MPa; it is
necessary to have a stress dependent model that can
be used over a wide stress range. The model could
then be implemented numerically either through a
finite element or a finite different analysis.
Nevertheless, no constitutive model for sand has yet
been able to represent its stress-strain behaviour over
a wide range of stresses.

An effort has therefore been made to escape the
“parameter” problem by using raw triaxial data to
define the plastic hardening of sand directly, and to
use this in the numerical analysis of the cone
penetration (Gui, 1995). This paper reveals a method
to model triaxial data of sand over a wide stress range
using FLAC.

2.FLAC

The finite different program used in the following
analysis is called FLAC (Fast Lagrangian Analysis of
Continua). FLAC is an explicit finite difference
programme which is well suited for modelling ill-
behaved non-linear systems. The double-yield or cap

model in FLAC allows the user to represent arbitrary
non-linear softening and hardening behaviour of the
material and is based on the Mohr-Coulomb elasto-
plastic model with a non-associated flow rule.
Parameters are given in terms of the variation with
plastic shear strain of the apparent cohesion c, angle of

+ friction ¢, and angle of dilation v, all defined with

respect to envelopes of Mohr circles. To cater for
volumetric compaction, a volumetric yield function is
also incorporated. On a (q, p’) diagram, Fig 1, the
parameters become Q, m and i as functions of
deviatoric strain €, and p’.,, as a function of €,. The
dilatancy angle i defined with respect to q, p’ axes as
shown in Fig 1 may be related to the plane angle of
dilatancy y by: tan(i) = sin(y).
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Fig 1. Double-yield model in FLAC: (a)shear yield surface; and
(b)volumetric yield surface.
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FLAC adopts the dynamic equations of motion so as
to ensure that the numerical scheme would be stable
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when the physical system which is being modelled is
unstable. For details of the formulation of FLAC,
readers are referred to the FLAC (1993) manual.

3. GENERALISATION OF TRIAXIAL DATA

Due to the difficulties in assigning thousands of
different stress-strain curves to the individual elements
of a numerical model, generalisation of the triaxial
data is necessary. Triaxial data on 95% dense
Fontainbleau sand produced by Luong and Touati
(1983) are used here in the following fashion. Data
points for shear strain at 0.5%, 1.0%, 2.0%, 4.0%,
8.0% and 16% are extracted and plotted in a (g, p’)
space as in Fig 2. It is intriguing to see that everyone
of the (g, p’) curves in Fig 2 does possess a unique
shape as shown in Fig 3.

This unique shape shows that we can divide all the
triaxial data into 3 pressure zones:

Low pressure zone for 6; < 0.5 MPa
Medium pressure zone for 0.5 MPa < ¢; < 6 MPa
High pressure zone for ¢, > 6 MPa

80
= Gy=2MPa 6MPa 16MPa  30MPa
=M // 7 7
S o v
> )
5 404
Q
‘
e
8 204
>
(=}
0
Mean effective stress, p’ (MPa)
Fig 2: Triaxial data plotted in q-p’ space.
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Fig 3: Definition of 1| and Q in q-p’ plot.

In this case, the high stress zone was defined by q, p’
data from tests with 0;=30, 16 and 6 MPa, to which
the best straight line was fitted. The medium stress
zone was treated similarly using data from the 6, 4, 2
and 0.5 MPa tests, and the low stress zone was fitted
using lines drawn between the origin and the data of
the 0.5 MPa test.

Having divided the data into 3 zones, we can define:
q=Q+np’ (1

where m is the gradient of the g-p’ line and Q is the
apparent deviatoric stress, The mobilised angle of
friction ¢, with respect to a particular strain level, can
be calculated using the well known formula (Wood,
1990):

¢ =sin" [3n/(6+1)] (2)

T
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Fig 4: Mohr circle of stress.

From Fig 4, we can derive that:

{01+ c.cotd) = (03+ c.cotd) tan*(45°+¢/2) (3)
Simplifying eqns (3), we get:

O = G; tan(45°+¢/2)+2c.tan(45°+¢/2) )

Substituting q=(6; - 63); and p’=(0; + 203)/3 into eqn
(4), we obtain the cohesion intercept:

¢ =Q/[2 tan(45°+¢/2)(1-n/3)] &)

" Armed with eqns (2) and (5), the relationship between

both ¢ and c and plastic shear strain can be caiculated,
Fig 5 and 6. The dilation angle y is taken for
simplicity to be:

=032 (©)
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Fig 5: Mobilised ¢ with corresponding plastic strain.
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Fig 6: Apparent cohesion with corresponding plastic strain.

though it is recognised that regression lines could
separately have been fitted to the various data of
volumetric strains from the various triaxial tests in the
same way as that used to define c and ¢.

The second yield function for volumetric yield requires
a relationship between the volumetric strain €, and the
mean effective stress p’. The values shown in Fig 7 are
taken from Luong and Touati (1983). It must be
pointed out that due to the limitation of the cap
model, no plastic volume loss would be predicted
during a constant-p’ test on normally consolidated
soil. This conflicts with reality. It was decided to
select the plastic volume change after both
consolidation and shear stages of the tests, for entry to
the model. The consequence is that we will over-
estimate volume loss during isotropic consolidation,
and then under-estimate volume loss during shear.
However, soil reaching a critical state should be
modelled reasonably well with respect to overall

- volume change.
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Fig 7: Volumetric strain with corresponding mean effective
stress.

The elastic Young’s moduli measured from the triaxial
tests were 0.48x10°, 1.86x10° and 6.8x10° kPa for
low, medium and high stress zones respectively.
Poisson’s ratio v was taken to be 0.25.

4. MODELLING OF TRIAXIAL TEST

Seven simulation analyses have been performed using
FLAC. The confining pressure ranges from 500 kPa to
30 MPa. Only half of the sample is modelled and it is
divided into 50 elements (5 x 10). The top and bottom
platens are fixed in both X and Y directions. A strain
controlled test at a rate of 5x10° m/step is then
applied to the sample.

.FLAC results together with Luong and Tuoati’s

(1983) experimental results are presented in Fig 8 to
13.
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Fig 8: Result for high stress tests.
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Fig 9: Result for medium stress tests.

It can be seen that the deviatoric stress q versus shear
strain g, profiles match very well for all the tests in Fig
8, 9 and 10. Maximum deviation in deviatoric stress
observed is no more than 10%. For the prediction of
€, as expected, the results only match in a global
sense.
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Fig 10: Result for low stress tests.
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Fig 11: Volumetric strain for high stress test.
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Fig 12: Volumetric strain for medium stress test.

For 0; = 2 and 4 MPa, Fig 12, FLAC predicted well
the maximum volumetric strain in contraction.
Thereafter, the values remain constant (no dilation).
This is due to the input parameters we specified
earlier. For these two tests (6; = 2 and 4 MPa), the ¢
profile for medium stress test, Fig 5, indicated that
there should be no dilation. Clearly, not all the
subtleties of the influence of grain crushing on soil
dilation have been captured.
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Fig 13: Volumetric strain for low stress test.

FLAC manages to predict both the contraction and
dilation of the sampie in the low stress test, Fig 13.
Considering that the input parameters are derived for
o; = 500 kPa, the predictions are deemed to be
acceptable.

5. MODELLING OF CPT

Having derived the H-M-L madel, we can then apply
it in the numerical simulation of a cone penetration
test. The idealised numerical model is divided into 3
zones as in Fig 14.
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Fig 14: Idealised H-M-L zones in a CPT analysis.

The penetrometer is assumed to be installed deep in
the ground by placing it in a pre-bored hole. The initial
insitu stress is assumed to be undisturbed by the
previous penetration. Using FLAC, a plastic
indentation analysis is then carried out and the
resulting pressure is identified with the cone
resistance. An incremental displacement of 5x10°
m/step is adopted in the analysis. The mean effective
stress for each element is taken to be the average of
O1, O, and G;. Trial and error is necessary in order to
define the boundaries for all the pressure zones. A
details description of the simulation procedures can be
found in Gui (1995).

FLAC results together with a cone profile from a
centrifuge test on dense Fontainbleau sand are plotted
in Fig 15. Qualitatively, the H-M-L model produces a
similar profile to those obtained in the centrifuge, at
least for the first 10m of penetration. A
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Fig 15: Predicted and experimental cone profile

The overestimation of the cone resistance may be due
to the fact that an element beneath the cone is not
subjected to a true triaxial condition, making the
triaxial data unrepresentative of the true strength of
the soil. Furthermore, the use of a more realistic shape
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of yield surface could influence the calculation since
volumetric contraction could occur at lower stress
ratios. Finally, the rate of post-peak softening of sand
in the low stress zone will inevitably be related to the
geometry of rupture bands which will relate to the size
of soil particles, and will depend on the precise failure
kinematics.

- The advantage of this direct style of modelling is,

however, that the sensitivity of the final resistance to
the properties of the sand (stiffness in the far field at
small strain and small stress levels, strength in the
medium field with dilatancy at middling stress levels,
and volumetric contraction due to crushing at high
stress levels in the near field) is easily determined.
Only then can proper calibration between CPT data
and sélected “soil parameters” be made.

6. CONCLUSION

In general, the H-M-L model gives a good prediction
of deviatoric stress and strain. Due to the limitation of
the cap model, the prediction of the volumetric strain
is only deemed satisfactory. The application of this H-
M-L model in the numerical simulation of the cone
penetration or pile problem has been proven to be
successful.
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