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The method of characteristics is used to establish consistent factors for the vertical bearing capacity of circular and
strip footings on soil which satisfies a linear (c, ) Mohr—Coulomb strength criterion. This method of solution
avoids the assumption of arbitrary slip surfaces, and produces zones within which equilibrium and plastic yield
are simultaneously satisfied for given boundary stresses. Although similar solutions have previously been pub-
lished for circular footings, their application has been hindered by errors and confusions over terminology. These are
resolved, and the method of solution is explained. It is confirmed that Terzaghi’s approach to the superposition of
bearing terms containing N, N,, and N, is both safe and sufficiently accurate for circular footings, as for strip
footings. The values to be adopted are tabulated as functions of ¢. Differences between the factors applicable to cir-
cular and strip footings far exceed the allowances of the empirical shape factors in common use. Some new shape
factors are suggested that better represent the relationship between the limiting equilibrium of circular and strip
foundations. Some current shape factors attempt to allow simultaneously for the differences in equilibrium solutions
and the differences in axisymmetric (triaxial) and plane strain soil parameters. This cannot succeed, since the rela-
tionship between strength parameters depends strongly on relative density. The new bearing factors facilitate a
more rational approach in which soil parameters appropriate to the geometry can first be determined and then used
to find appropriate bearing capacity factors.

Key words: bearing capacity, axisymmetry, method of characteristics, footings, plane strain.

La méthode des caractéristiques est utilisée pour établir des facteurs consistants de capacité portante verticale
de semelles circulaires et filantes sur un sol qui satisfait un critére linéaire (c, ¢) de Mohr-Coulomb. Cette méth-
ode de solution évite I’hypothese de surfaces de glissement arbitraires, et produit des zones a 1’intérieur desquelles
I’équilibre et la déformation plastique sont simultanément satisfaites pour des contraintes aux frontitres données. Quoique
des solutions similaires aient été publiées antérieurement pour des semelles circulaires, leur application a été
entravée par des erreurs et des confusions sur la terminologie. Ces problémes sont résolus et la méthode de solution
est expliquée. Il est confirmé que 1’approche de Terzaghi 2 la superposition des termes de portance contenant N, N,,
et N, est en méme temps sécuritaire et suffisamment précise pour les semelles circulaires, comme pour les semelles
filantes. Les valeurs a adopter sont mises en tableau en fonction de ¢. Les différences entre les facteurs applicables
aux semelles circulaires et filantes dépassent de beaucoup les tolérances des facteurs de forme empiriques d’usage
courant. L’on suggere de nouvaux facteurs de forme qui représentent mieux la relation entre 1’équilibre limite des
fondations circulaires et filantes. Des facteurs de forme courants tentent de tenir compte en méme temps des différences
dans les solutions d’équilibre et des différences dans les parametres de sol axisymétriques (triaxiaux) et en défor-
mation plane. Ceci ne peut pas réussir puisque la relation entre les paramétres de résistance dépendent fortement de
la densité relative. Les nouveaux facteurs de portance facilitent une approche plus rationnelle dans laquelle les
parametres de sol convenant 2 la géométrie peuvent d’abord étre déterminés, et utilisés par la suite pour trouver les
coefficients de capacité portante appropriés.

Mots clés : capacité portante, axisymétrie, méthode des caractéristiques, semelles, déformation plane.
[Traduit par la rédaction]
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Introduction

The derivation of bearing capacity for foundations on

frictional soil relies first on the establishment of strength
parameters based on effective stresses, and then on the use
of bearing capacity factors. This paper uses the established
approach of modelling the strength envelope by a simple
constant-¢ relation: this is later expanded into the more
general (c, ¢) envelope. The objective is to derive corre-
sponding estimates of bearing capacity factors in both plane
and axisymmetric load cases.

The currently accepted calculation procedure for bearing
capacity factors is the method of characteristics (Sokolovskii
1960). This assumes that limiting stresses have been reached

Printed in Canada / Imprimé au Canada

at every point, and solves for plastic equilibrium in the
vicinity of the applied load. The arbitrary assumption of
the shape of a slip surface, made in the limit equilibrium
analyses of Terzaghi (1943) and Meyerhof (1951) for exam-
ple, is avoided. Doubts regarding the method of character-
istics in this application include:

(i) the difficulty of assigning boundary conditions against
footings, especially where the mobilization of tangential fric-
tion should be such as to oppose relative motion and when the
kinematics of plastic soil strain is itself uncertain, and

(ii) the difficulty of accepting the assertion that certain
zones (e.g., in the far field, or in a wedge “trapped” beneath
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the centre of a footing) are not in a limiting state simply
because the characteristics have not been extended that far.

Methods such as the finite element technique can account
for kinematics and equilibrium everywhere, and can be used
to derive bearing capacities in close agreement with sim-
pler solutions, albeit with more computing effort (Griffiths
1982). Since the demonstration of limiting equilibrium fol-
lowing Sokolovskii (1960) is more strenuous than that fol-
lowing Terzaghi (1943), and computationally easier to handle,
it seems sensible to select the method of characteristics as the
standard calculation approach, to be checked independently
by back-analysis of case studies wherever profitable.

The objective of this paper is not to offer empirical evi-
dence, however, but to discuss the extension of the method
of characteristics to axisymmetric (circular or, approxi-
mately, square) footings. It is not widely known in engi-
neering practice that characteristic solutions have been found
for axisymmetric footings by Cox et al. (1961) and Cox
(1962), providing estimates rather different from the appli-
cation of commonly used shape factors to multiply plane
solutions. Solutions by the method of characteristics should
logically form the basis of engineering judgement for circular
footings such as spuds for offshore rigs, as they do with
plane problems. Engineers could then rely on the analysis to
represent the difference between equilibrium equations in
the two cases and could fall back on empirical judgements,
which will certainly prove necessary for the assessment of
appropriate soil strength parameters.
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F1G. 2. Cylindrical coordinate system and stress components.

\
The method of characteristics

Sokolovskii’s (1960) solution for strip footing was gen-
eralized by Shield (1955) to include the axisymmetric case
for Tresca (cohesive) material. Cox et al. (1961) got axisym-
metric solutions for a general (¢, &) material, albeit weight-
less, and Cox (1962) included self-weights. Here Cox used
a very strange substitution, namely c* = ¢ + o tan ¢, where
0, is an arbitrary surcharge defined as the atmospheric
pressure (=100 kPa), and a dimensionless parameter G =
vB/(2c*). The apparent misunderstanding of the physical
principle of effective stress does not alter the mathemati-
cal acceptability of Cox’s solution; it simply hinders the
use by engineers of the original paper because of the likeli-
hood of misinterpretation of the terms. Furthermore, Cox
always lumped together the surcharge (N ) and self-weight
(N,) effects, which avoids Terzaghi’s (1943) superposition
assumption but makes the results very hard for the engineers
to interpret.

Larkin (1968) took a more meaningful set of nondimen-
sional parameters, normalizing stresses by dividing by 0.5yB
and distances by dividing by 0.5B, but producing results
for plane strain that differed by a factor of 2 from those of
Prandtl (1920), which are known to be exact.

Taken together these extensions of bearing capacity theory
are unnecessarily complex and confusing and restricted to far
too narrow a range of & compared with what might be
needed in practice. Although the mathematical formulation
for axisymmetric solutions was correct, engineers in practice
have continued to rely on empirical shape factors. The results
of applying the method of characteristics to plane or axisym-

~ metric footings will be recast below in a form that should

prove useful in practice.

The following assumptions are fundamental to this
approach:

(i) The soil is rigid—plastic so that change-of-geometry
effects such as settlement causing additional surcharge are not
included, and imperfections in plasticity because of strain
softening and progressive failure are ignored.

(ii) The soil obeys the Mohr—Coulomb yield criterion,
so that its states of plastic equilibrium are consistent with a
straight strength envelope acting as a tangent to the Mohr
circle of stress drawn for the principal plane containing the
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major and minor effective stresses (Fig. 1a). The cohesion
intercept will be dealt with later. For now, the shear
strength 7; is related to the mean stress s by 7; = s sin .
(iii) The intermediate principal stress is taken to be irrel-
evant to the yield criterion, but it enters axisymmetric analy-
ses as the hoop stress o, which influences radial equilibrium.
The Harr and von Karman (1909) hypothesis states that o,
should be equal to one of the two principal stresses lying
in the axial plane, i.e., either ¢, = &, or 0;. It is assumed
here, following Cox et al. (1961), to be equal to the minor

dg, 07, o,-0, or, do, T,
1 Ly —4 -1 =0, = —=
i or 0z r - or 0z r Y
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principal stress, i.e., as small as possible. Lau (1988) has
evidence from finite element analysis of punch indentation
that supports this assumption, which must generally be either
true or safe, since it will be shown that the effect of o is to
increase the bearing capacity.

The mathematical formulation can now broadly follow
Larkin (1968). The equations of equilibrium for a toroidal ele-
ment (Fig. 2) can be written in cylindrical coordinates r, 0,
z as

g

The four stress components can be expressed in terms of mean stress s and the inclination { subtended to the z axis by the
major principal stress (Fig. 1b): ;
[2] o, =s(1-sin ¢ cos2¢), o, =s(1+sin ¢ cos 2¢), T, =ssindsin 24, Gy =043 =s(l-sind)

2 7

The characteristic lines that will embody the solution are lines « and B on which ¢ is mobilized. In the literature they
are often referred to as slip lines, but their significance is in rel\ation to the equations of equilibrium, not those of dis-
placement. The geometry dictates that their slopes can be written
dr w ¢

3] —=tan(¥-m where =———
(3] iz (b —mmn) =y
and m takes the value +1 for an o line and —1 for a B line (shown in Fig. 1b).

These equilibrium and yield equations are a set of hyperbolic partial differential equations that reduce to two ordinary dif-
ferential equations expressing the increase in stress along each characteristic line (m = 1) in terms of the changing incli-
nation { and position (r, z):

[4] dscos¢p+m2s sind)d\11+n-f:[sind>cosd)dr+m(sin2 b—sind)dz]l=y(-msind dr+cos b dz)

The factor n has been introduced for convenience; in axisymmetric analysis for circular footings it takes the value +1,
whereas it happens that plane solutions for long strip footings are given if » is set to zero.

Method of computation
Following Larkin (1968) the variables will now be normalized according to a scale length of 0.5B, so we will take

5 = . = R = e
51 = 0.5By 05B 05B

Equation [4] can now be written in finite difference form, suitable to the solution of the intersection of én « line, which passed
through a known “point” (R;, Z;, %, ¥,), and a B line, which passed through another known “point” (R,, Z,, 3.,, 1s,). Shi (1988)

suggested the following substitution:

23, , . .
[sindcosd(R—R)+(sin? -sind}(Z—Z))]-(R-R)tanp+(Z-Z)+3, +23, tandis,

B (R+Rj)cosd
(61
B=——22-
(R+R,)cosd
The finite difference equations can now be written as
(7] (R-R)=(Z-Z))tan(y, —m),
A3, + B3 -
8] 3= 2 L — B-A

which are suitable for iteration.

If in Fig. 3 points P and Q are known, and W is to be
determined, R, and Z, can be found from [7] and then W
and % can be calculated from [8], by putting ¥, = ¥ and
U, = Y. However, in general, the characteristics are curved
and the solution can be improved by updating for ¥, putting
Uy = (U + $p)/2 and ¢, = (U + Yy)/2 and repeating until
there is convergence (within some target accuracy) to a sta-
ble set of values (Sokolovskii 1960).

[sindcosd(R~R,)—(sin2 db—sind)(Z—-Z,)]+(R-Ry)tandb+(Z-Z,)+3, -23,, tan Gy ,

(R-Ry)=(Z~Z,) tan(b, +1)

Proceeding from the known boundary condition (normal
stress o) on the free surface KS (Fig. 4), the entire stress
field within KLMO can be determined. Firstly, a value for Ry
is assumed. Secondly, the boundary KS is subdivided with a
set of equally spaced points. The solution then marches in
towards the footing boundary. When the calculation is com-
plete, it should be checked to see if the B characteristic
starting from K actually finishes at O. If not, Ry is adjusted



NOTES 1027
A
' R
| w2 s K1 K
° R
1 4
L K3  Passive X2
M X
) Fan
Active L
L2
z
F1G. 4. A typical stress characteristic mesh.
z T -~

F1G. 3. Computation scheme of new point W from known
points P and Q.

according to whether it is too far or too near. The whole
calculation iterates until an acceptable closing accuracy is
achieved.

A very coarse mesh, applied to a plane strain case with
weightless soil in Fig. 4, will be used to illustrate the march-
ing scheme used in the computer program CONPHI.

(1) Passive zone — The boundary conditions at S, K1,
and K are known. K2 is found using K1 and K; K3 is found
from S and K1; L is found from K3 and K2. S, K3, and L
have become the known boundary conditions for the fan
zone.

(2) Fan zone — Node S can be viewed as a degenerate
B characteristic with unique R and Z, but varying { and 3.
The first two terms of [4] demonstrate that the significant
effect in the fan zone is that stress increases exponentially
with rotation Ay of the B line from K3 to L1, for example,
L1 being found from S (at Ay = w/4) and K3. Similarly,
L2 is found from L1 and L, L3 from S (at Ay = w/2) and L1,
and M from L3 and L2. S, L3, and M have now become
the known boundary conditions for the active zone.

(3) Active zone — On the footing contact plane, Z is
known and the value of s, being a function of mobilized
friction on the footing, can at least be assumed. The mobi-
lization of friction depends on the detailed kinematics, which
are a function of dilatancy and are not available in this equi-
librium solution. A simple extreme case is provided by a
frictionless interface, as here, for which ¢ = 0. The solu-
tion for 3, and R at M2 can therefore be found from the
condition at L3; then M1 can be found from M2 and M;
finally, 2 and R can be found at O using M1 together with
the known values of Z and ¢ at O. O is intended here to
close on the centreline.

At this stage, all the variables on the footing contact plane
are known. The bearing pressure o, can now be found by
multiplying % with 0.5By to give s, substituting this, together
with s, into [2]. The mean bearing pressure under the foot-
ing can now be found by numerical integration.

Principle of superposition

The method of characteristics derived above makes it
possible to solve for the bearing capacity of footings tak-
ing surcharge and soil self-weight simultaneously into
account. Terzaghi (1943) assumed that if the bearing capac-
ity of a foundation on weightless frictional soil due to sur-
charge o, could be calculated and expressed as o,N,, and
if the bearing capacity of the same foundation due to self-
weight v alone could be written 0.5'\(BNy , then these com-

Mohr-Coulomb
envelope

Fic. 5. Effects of superposition.

ponents could safely be superposed. Decomposition of the
total bearing capacity into components has, following
Terzaghi, been adopted in practice. The validity and utility
of this practice, and its possible extension for circular foot-
ings, are now examined.

It can easily be demonstrated that superposition must be
conservative for materials that obey a linear Mohr—Coulomb
envelope with constant ¢. Suppose, in Fig. 5, that vector a
represents the stress on any plane at a point inside a soil
body in limiting equilibrium subject to load case A (e.g.,
surcharge plus bearing capacity), while b represents the
stresses on the same plane due to limiting equilibrium in
some other load case B (e.g., self-weight plus bearing capac-
ity). If loads A were separately in equilibrium, as were
loads B, then the combination C = A + B would also be in
equilibrium. Furthermore, the stress ¢ would be the vector
addition @ + b, so if @ and b separately satisfied
Mohr—Coulomb so must ¢. In general, the critical planes
mobilizing ¢ at the point in question will not coincide in
the two load cases, and the maximum angle mobilized on
any plane in case C will be less than ¢: hence the conser-
vatism of superposition.

Davis and Booker (1971) performed rigorous checks on the
superposition assumption for the plane strain case and found
that it was indeed conservative. The error was no more than
20% for ¢ in the range 20°-40°. Cox (1962) made no super-
position assumption for circular footings and used a dimen-
sionless parameter G = 0.5yB/(o, tan ¢) to show that solu-
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tions depended in a nonlinear fashion on the relative mag-
nitude of the self-weight term and the surcharge term. It is
now proposed to treat o, not as atmospheric pressure fol-
lowing Cox, but as an effective surcharge applied to the
plane surface of the soil around the foundation. A new
dimensionless parameter, the superposition factor.
Ty
0.5By

will be used to display the relative importance of surcharge
and self-weight effects, and the total bearing capacity o;
will be related to a combined bearing capacity factor
N, =t
T 05By+0,

Figure 6 depicts the effect of {) on N,, for smooth circular
footings on soil with & = 40°. By converting Cox’s data
into the new format, it can be seen that the new calculation
produces results that are practically identical, although the
numerical solution techniques are d1fferent It can also be
seen that N, remains constant for {) > 10%; this corresponds
to the N limit. Likewise, N,y remains constant at N, for
Q<10- 3 These limits can be used to derive the alternatlve
superposition estimate which errs on the safe side, and never

by more than the 20% error seen in the vicinity of ) = 1. -

Since this result is typical of all those cases that have been
checked, and the complexity of bearing capacity tables is
much reduced if only N, and N, are required in each case, the
general practicability of Terzaghi’s (1943) superposition is
confirmed.

An extension of the theory to cover the more general
Mohr-Coulomb envelope, T = ¢ + ¢ tan ¢, can now be
made. Here, ¢ and ¢ can be taken as the envelope parameters
on an effective stress diagram that offer a best fit to strength
data over the appropriate range of stress. Prandtl’s (1920) sub-
stitution can be used to find an expression for N,, leading to
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/c

c.=ccotd c

FiG. 7. General Mohr—Coulomb envelope.

the third component of Terzaghi’s (1943) bearing capacity,
¢ N_. Define an equivalent surcharge o, = ¢ cot ¢ (see Fig. 7)
acting over the whole soil surface including that part that
will carry the foundation, causing a hydrostatic stress increase
everywhere. The problem may then be seen as a simple
constant-¢ case with the origin shifted. The total bearing
capacity due to cohesion would then be N o, of which o,
was already acting. The extra contribution is therefore
(Ng = 1)o,. So using superposition we can follow Terzaghi
to ‘write

91 oy=cN,+o,N, +05BYN,

finding N, and N, directly for plane or circular footmgs from
the earlier calculations with () set to 10® and 107>, respec-

tively, and using N, = (N, — 1) cot ¢.

Calculation of values for Nq and Nv for smooth and
rough bases

Computations of Nq and Ny for smooth, frictionless foot-
ings are listed in Table 1 as are solutions for N,, which are
based on an optimistic treatment of friction opposmg the
spreading of soil beneath the footing. All the analyses were
carried out with a mesh consisting of 96 B characteristics
and 220 a characteristics. The rotation step in the fan zone
was 3°. Figures 8-13 show the typical stress characteris-
tics and footing pressure distributions for plane strain and
axisymmetric cases for both N, and N, at ¢ = 40°. In each
case two solutions are shown, a shallow mechanism (after
Hill 1950) consistent with a smooth footing, and a deep
mechanism (after Prandtl 1920) in which it is assumed that
friction against the footing stabilizes a trapped wedge or
cone. Following Meyerhof (1951), it is assumed that the
trapped wedge or cone has a base angle (w/4 + ¢/2) and
mobilizes ¢ on its inclined surface so that it acts as the
final characteristic in the marching solution (see the shaded
areas in Figs. 9, 11, and 13). Each approach satisfies the
condition of symmetry, that the principal stress direction is
vertical on the centreline of the footing. Indeed, the trapped
wedge offers a vertical major principal stress at every point
on its surface.

It is well known (Chen 1975) that both shallow and deep
mechanisms offer the same solution for Nq in plane strain, so
friction on the footing can have no effect, and this is con-
firmed in Figs. 8 and 9. Although the same has not yet been
proved for circular footings, it will be assumed hereafter
that the same identity always holds for N,. On the other
hand, it must be anticipated that the self-welght of the larger
plastic zone will lead to larger estimates of N, for the deep
mechanism. This is indeed found to be the case (see Figs. 10
and 11, for example).
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TaBLE 1. Bearing capacity factors

N, N,
o Smooth or rough Smooth Rough
(deg) Strip Circle Strip Circle Strip Circle
5 1.57 1.65 0.09 0.06 0.62 0.68
10 2.47 2.80 0.29 0.21 1.71 1.37
15 3.94 4.70 0.71 0.60 3.17 2.83
20 6.40 8.30 1.60 1.30 - 5.97 6.04
25 10.7 15.2 3.51 3.00 11.6 13.5
30 18.4 29.5 7.74 7.10 23.6 31.9
31 20.6 340 9.1 8.6 27.4 38.3 «~
32 232 39.0 10.7 10.3 ;318 46.1
33 26.1 45.0 12.7 12.4 37.1 55.7
34 294 522 15.0 15.2 43.5 67.6
.35 333 61.0 17.8 18.2 51.0 82.4
36 38 71 21 22 60 101
37 43 ' 83 25 27 71 124
38 49 99 30 33 85 153
39 56 116 36 40 101 190
40 64 140 44 51 121 238
41 74 166 53 62 145 299
42 85 200 65 78 176 379
43 99 241 79 99 214 480
44 115 295 97 125 262 619
45 135 359 120 160 324 803
46 159 444 150 210 402 1052
47 187 550 188 272 505 1384
48 222 686 237 353 638 1847
49 265 864 302 476 815 2491
50 319 1103 389 621 1052 3403
51 386 1427 505 876 1373 4710
52 470 1854 663 1207 1812 6628
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FiG. 8. Footing pressure distribution (a) and stress characteristics (b) for the plane strain case for N, for a smooth base.

The assumption of a trapped zone is tantamount to solid-
ifying the soil beneath the footing: presumably, friction
mobilized on the base can do no more, but might do less.
Although there is no theoretical justification for the assump-
tion, there is experimental evidence in its favour (for exam-
ple, Ko and Davidson 1973). It will be seen in Table 1 that
the effect of allowing for footing roughness in this way
increases the value of N, by about a factor 3 for strip foot-
ings (equivalent to an increase in ¢ of about 5° overall)

and by a factor 4 for circular footings (equivalent to an
increase in ¢ of about 7°). The values in columns 6 and 2
appropriate to rough strip footings satisfy

(101 N, =(N, —Dtan(1.5¢)

within an equivalent discrepancy on ¢ of £2° for ¢ from
30° to 50°. For example, the value for N, indicated by [10]
for & = 35° would be 42.1 compared with the tabulated
value of 51.0, and 42.1 would be the tabulated result for"
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Fic. 9. Footing pressure distribution (@) and stress characteristics (b) for the plane strain case for N, for a rough base.
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FiG. 10. Footing pressure distribution (a) and stress characteristics (b) for the plane strain case for N, for a smooth base.
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Fig. 11. Footing pressure distribution (a) and stress characteristics (b) for the plane strain case for N, for a rough base.

¢ = 33.8°, which is 1.2° less than requested. The same
approximation [10] also applies to the relative values in
Table 1 for rough circular footings. Meherhof (1961) first sug-

gested an expression such as [10], with a factor for strip
footings of 1.4 rather than 1.5.
The shallow mechanism clearly offers a safe solution to the
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F1G. 12. Footing pressure distribution (a) and stress characteristics (b) for the axisymmetric case for N, for a smooth base.
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F1G. 13. Footing pressure distribution (a) and stress characteristics (b) for the axisymmetric case for N, for a rough base.

problem of vertical bearing capacity, but it will err too far on
the safe side in many circumstances. The only collapse
mechanisms that can operate in a given situation are those
that offer the soil-footing system a kinematically admissible
displacement field. The possible displacement fields should
take soil dilatancy into account and relate principal directions
of compressive stress and strain. Although soil strains are out-
side the scope of the current work, Fig. 14 illustrates some
circumstances in which the shallow Hill (1950) mechanism
might actually operate for foundations that could appear
rough. In these cases the footing can stretch and bend, or
split, so that the soil just beneath the footing, and close to the
centreline on either side, can acquire relatively large lat-
eral displacements as the footing penetrates the soil.

Shape effects

Many semiempirical shape factors have been suggested
for the conversion of values for N, and Ny from plane strain
to axisymmetry. Terzaghi (1943) reduced the Ny term by a
factor of 0.6, but left Nq unaltered. Meyerhof (1963) used a
factor (1 + 0.1K;), where K is the coefficient of passive
earth pressure on both, which enhances the plane factors

by 1.3 at ¢ = 30° and by 1.76 at ¢ = 50°. Other authors
suggest intermediate values.

As Meyerhof (1963) points out, the final estimate of bear-
ing capacity must take account of two effects, the greater
capacity of circular footings on soil with a given ¢, and
the reduced ¢ of soil in axisymmetry (triaxial tests) compared
with plane strain. It is logical to follow Meyerhof’s proce-
dure, selecting axisymmetric values directly from Table 1
in this case instead of applying indirect shape factors, and
attempt to ensure that an appropriate ¢ value is used. Careful
back-analysis of the punching of circular footings such as
spud foundations will reveal whether triaxial strengths are
appropriate. The final outcome might be that the ultimate
bearing pressure of a circular footing is found to be less
than that of a strip footing on the same soil, as Terzaghi
(1943) would have predicted.

In detail, it will be seen from Table 1 that the shape fac-
tors for rough foundations creating deep mechanisms vary
from about 1 at low ¢ values to about 3.5 at high ¢ val-
ues, a range exceeding even the recommendation of Meyerhof
(1963). If it is desired to base axisymmetric values on plane
values and use some simple factor, it will be found for deep
mechanisms that axisymmetric values for N, or N, can best

“»
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Fic. 14. The influence of footing deformability on the soil
mechanism. (a) Prandtl’s (1920) deep mechanism under rigid
footing. (b) Hill’s (1950) shallow mechanism under deformable
footing.

be found by first increasing ¢ by a factor of 1.1, and then

finding plane strain values for this enhanced ¢ value. The
error expressed as an equivalent discrepancy on ¢ is less
than 1° in the range 30-50°. It must be recognized that the
enhancement factor of 1.1 is purely to account for load
spreading in axisymmetry; it is not determining what ¢
value to enter for the soil. In the case of shallow mecha-
nisms, the plane strain value can first be enhanced by scal-
ing up ¢ by 10%, but the resulting Ny value must then be
divided by 2 to get an acceptable estimate of the axisym-
metric capacity according to the values in Table 1.

Coincidentally, a quite different argument is often used
to enhance triaxial ¢ values by a factor 1.1 to estimate plane
strain values under similar conditions of density and stress.
If this were also applied, it would transpire that bearing
capacity factors for rough, rigid footings could be selected
from plane strain bearing factors using a ¢ value 1.1 times
the triaxial value, and irrespective of whether the footing
was a circular pad or a strip. Footing shape would not then
influence the ultimate bearing pressure.

The. first mention of a 10% increase to obtain plane strain
strength from triaxial strength was that by Bishop (1961)
based on some tests on compacted granular soils. For loose
sands the increment is very small, or negligible, as was also
shown. Bolton (1986) showed that for dense sands under
low confining pressures the increment to secant ¢ values
could approach 20%, but it was also demonstrated that
Mohr-Coulomb envelope was curved when a large range
of stress was to be considered. Changes of both ¢ and ¢
would therefore be necessary to capture the difference in
envelope between plane and triaxial strengths relevant to
footings. The selection of appropriate strength parameters
is outside the present scope of investigation. Nevertheless,
the fact that the plane strain factor on triaxial ¢ could lie
between 1.0 and 1.2 means that a careless choice could eas-
ily lead to an error in bearing capacities of a factor of 3.

Conclusions

Two issues are involved in the estimation of the drained
bearing capacities of shallow circular footings. The first
task is the establishment of a calculation procedure, based on
soil strength parameters, which is capable of predicting
bearing capacity. The second task is the establishment,
through back-analysis of prototypes or models, of a means
of defining representative values of soil strength to use in
given circumstances. This paper addresses the first task so
that the second can subsequently be attempted.

A great deal of previous effort has gone into the com-
Jparison between strip and circular footings. Unfortunately,
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empirical investigations conflate the two issues referred to
above: the use of different triaxial or plane soil strength
parameters is confused with the possible existence of dif-
ferent bearing capacity factors. Other problems such as the
nonlinearity of soil strength envelopes will inevitably require
empirical treatment. In these circumstances it is essential
to remove empiricism from the calculation procedure wher-
ever possible.

A coherent analysis of the collapse of plane and axisym-
metric footings has been undertaken. Although it cannot be
claimed that the assumptions which have been made are
inevitable, they are at least consistent between the two cases.
The method of characteristics has been used to confirm the
utility of separating N, N,, and N, components of bearing.
A table of bearing capa01ty factors has been produced for a
wide range of ¢ values. Quite distinct values for plane and
axisymmetric cases are listed; deep mechanisms beneath
rough, rigid footings provide much larger self-weight com-
ponents of bearing capacity than shallow mechanisms beneath
smooth or compliant footings. Bearing capacity factors for
a given angle ¢ are shown to vary over a factor 4 from case
to case. An error of 5° in ¢ produces an error of a factor
of 2 to 3 in each factor.

It is suggested that engineers find bearing capacity factors
directly, rather than relying on shape factors, and should
attempt to define strength envelopes appropriate to the soil
density, stress range, and strain conditions. Further work
on back-analysis is called for to validate the empirical judge-
ments that will be required in the selection of representa-
tive strength parameters.
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