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LETTER TO THE EDITOR

DISCUSSION ON: A MATHEMATICAL MODEL OF PERMEABILITY
ALTERATION AROUND WELLS

(J. S. Olarewaju, International Journal for Numerical and Analytical Methods in Geomechanics,
Vol. 14, 191-207, 1990)

The paper by Olarewaju! concerns the non-
steady-state flow of water around a borehole, pro-
ducing at a constant rate, where the permeability
close to the borehole differs from that in the bulk
soil. A solution to the transient flow equation for
an axisymmetric reservoir with a permeability.dis-
continuity is presented in terms of modified Bessel
functions. We are currently examining the install-
ation effects of grouted bodies and, as part of this
work, have developed a finite difference solution to
the radial transient flow equation, such a method
being generally more flexible. In particular, this
allowed us to examine the same problem.

The basic task is to solve the radial trans1ent
flow equation:

9P, 1 8Py 0Py
orp?
subject to boundary and continuity constraints,
where Py, is the dimensionless pore pressure, rp, the
dimensionless radius and t;, the dimensionless time

as defined in Olarewaju.! Olarewaju presents, gra- .

phically, solutions for a range of the ratio between
the permeabilities of the inner and outer region,
and also for differing values of the radius of the
transition from one zone to another. Our results
differ from those of Olarewaju by orders of magni-
tude, and it is necessary to consider how the results
may be checked.

Firstly, consider the simpler case of uniform
properties, the solution of which corresponds to
the initial portion of the solution to the composite
case. There is, thus, a single region, of inner radius
rp = 1 and outer radlus ry, equal to the transition
radius,

The transformation R =
reduce equation (1) to
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ln (rD) and A.rD = tD

which is one form of the one-dimensional Terzaghi
consolidation equation. The conditions are, for
0<R<D(=n(,),

Py

—2=_1 atR=0
R
P,=0 atR=D
Pp=0 ati=0

and the problem is to calculate the variation in the
well pressure P,. An approximate solution to this
can be found using the classic method of parabolic
isochrones. At a given time A, the isochrone will
have penetrated to a depth d, as shown in curve 1
of Figure 1. In this problem, the slope o = 1.

This solution will be valid until the isochrone
reaches the outer boundary. From the properties
of a parabola and consideration of flow rates and
volume changes, the approximate solution ex-
pressed in the original variables is

Py = JGtp), O<tp<ir In®(,) (3)

With this approximate solution it is now possible
to proceed. Figure 2 presents our finite difference
prediction of the pressure behaviour in a com-
posite system where the permeability of the outer
region is 10 times that of the inner region, com-
pared with equation (3). The approximate solution
agrees quite well with the finite difference solution
for small time factors, and both agree qualitatively
with the solutions presented by Olarewaju but
with a difference in the time factor of the order of
100 times.

Figure 3 shows the effect of the transition ratio
for a permeability ratio 10, while in Figure 4 the
permeability ratio is -1 and the time t; has been
divided by the ratio of the transition radius to the
well radius. Figures 3 and 4 should be compared
with Figures 3 and 5, respectively, of Olarewaju’s
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Figure 1. Sketch of pressure variaiion in the transformed region
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Figure 2. Effect of the transition radius (permeability ratio = 0-1)

paper. It is clear that, although the finite difference
solutions appear to be similar in form to
Olarewaju’s solutions, they differ quantitatively to
a very great but variable extent.

In the case of uniform properties, if the outer
radius is very large compared to the well radius,
then the well could be treated as a line source. This
problem was solved exactly by Theis,2 and by
Jacob,? the former by analogy with heat flow and
the latter directly. These two solutions are identi-
cal. Although both Theis and Jacob were concer-
ned with transient flow in a confined aquifer where
the strains were vertical, while Olarewaju con-
siders horizontal strains to dominate, the resulting
equation is identical in form. Specifically, it is the
coefficient of consolidation which differs. If the
specific parameters of the above problem are sub-
stituted into the solution of Theis and of Jacob,
then the pore pressure as a function of radius and

time is

2

1 ) x
Pp=—4 — 0577216 - 1 -
b 2{ 05 n (x) + x 231
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where x = r}/4tp,

Although equation (4) might be expected to be
valid only at some distance from the borehole,
Jacob asserts that it can be used to measure the
drawdown at the borehole wall. The specific case
of uniform permeability and an external radius
equal to 100,000 times the inner radius was solved
by both the finite difference method and by this
line source method, the results being shown in
Figure 5. The finite difference solution and the line
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Effect of the radius of the inner zone
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Figure 3. Effect of the transition radius (permeability ratio = 10)
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Figure 4. Effect of the transition radius (permeability ratio = 0-1)
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Figure 5. Radial distribution of pore pressure for uniform permeability
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source solution are almost indistinguishable, even
close to the borehole wall.

The data presented from our finite difference
solution appear to be consistent with the approx-
imate solution based on parabolic isochrones, and
with the analytical solution for a line source, but
not with the data presented by Olarewaju. More-
over, Olarewaju’s data do not appear to be inter-
nally consistent. A number of examples follow.

For a permeability ratio = 0-1 and transition
radius = 10, at ¢, = 103, 'which is a value of t5/a®
of 103, Olarewaju’s Figure 2 indicates a well pre-
ssure of about 3-8, yet his Figure 5 indictes a value
of 2:7; at tp = 10° these values are 16 and 24,
respectively; and at ty, = 10° they are 0-11 and 0-26,
respectively. For a transition radius = 2, t, = 103,
the values are 073 and 098, respectively. A com-
parison for a permeability ratio 10 is not possible,
since no set of data is common to both Olarewaju’s
Figures 3 and 4, but from the latter the pressure at
tp = 10° for a transition radius of 10 is 5-0, whereas
from the former the pressure should be between
43-1 and 69, the pressure at a transition ratio of 2:6
and 26, respectively.

The above discussion concerns the solution of
the radial transient flow equation. However, it also
appears to us that this equation has not been
formulated entirely correctly either by Olarewaju
or by Jacob, since equation (1) is valid for the
excess pore pressures, not for the total pore pre-
ssures. Both authors propose that an increase in
the bore pressure causes immediate flow into the
soil, generating isochrones of pore pressure of the
form shown in Figure 1. However, this is not so,
since any change in the well pressure causes a
uniform increase of pressure throughout the soil
except at other points where the pore pressure is
held constant, such as an external boundary. More
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correctly, a wavefront across which there is a jump
in pore pressure equal to the change in the well
pressure propagates through the soil at the speed
of sound in water. )

If, as proposed by Olarewaju, the outer bound-
ary is impermeable, then this would cause a change
in the pore pressure which was the same at all
radii, causing no additional flow at all. If the outer
boundary is taken as being of fixed pore pressure,
then it is clear that flow will occur first at this outer
boundary, and will only occur at the borehole once
the isochrone reaches the inner wall, after a time
lag. The steady-state solution is, of course, the
same. The question then arises as to what value
should be assumed for the outer radius, and it
seems possible that this will depend on the speed of
sound and on the time lag, as well as on the
geometry of the site. It is our opinion that more
careful consideration needs to be given to this,
before the above solutions are widely applied.

J. D. MCKINLEY* AND M. D. BOLTONY
Soil Mechanics Group,

Cambridge University Engineering Department,
Trumpington St.

Cambridge, CB2 1PZ

UK.
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