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ABSTRACT

In recent years considerable difficulties have been experienced in the
development of limit state codes for geotechnical analysis. Much of the
difficulty has been associated with providing clear and unambiguous statements
concerning collapse and unserviceability states and with the related problems
of stress calculation for these states.

This report presents methods of calculation for the stresses developed in
granular £i11 behind retaining structures for particular application to limit
state design. The analysis procedures are complemented by a range of examples

to assist in allowing a clear understanding of these procedures to be
obtained.

FOREWORD BY TRRL

This report must be seen in the context of the considerable controversy and
uncertainty surrounding the possible adoption of limit state methods of design
in ground engineering in the United Kingdom at the present time. Limit state
design methods are the basis of BS 5400 which has been adopted by the
Department of Transport for the design of bridges on motorways and trunk
roads. Thus at the present time, bridge superstructures are designed on the
basis of limit state design methods while their foundations are designed using
a permissible stress/lumped factor of safety approach.

Because of the uncertainty on how best to apply limit state design methods in
ground engineering, the Laboratory has commissioned research on three
different approaches to the problem. This report presents one such approach
on the use of design values. Another involves the use of fuzzy-sets, and
research on this topic has been carried out by Dr D I Blockley at the
University of Bristol (Blockley 1980). The third approach utilises the method
of reliability analysis and has been carried out by Dr G N Smith (Smith 1986).

The three approaches have provided valuable insights in limit state design.
Critical examination of these approaches highlights strengths and weaknesses
of the alternative procedures enabling more soundly based decisions to be made
on the context and form of proposed limit state design methods in ground
engineering.

Dr G P Tilly
Head of Structures Group




INTRODUCTION

This report gives consideration to the stress analysis of earth retaining
structures, with particular regard to bridge abutment walls.

The approach adopted throughout relies on equilibrium analyses to determine
the mobilised strength in the zones of soil around the wall. The strength to
be mobilised can then be compared directly with the maximum strength capable
of being mobilised: this deals with safety against collapse. Furthermore,
mobilised strength can be used - given the appropriate stress/strain data -
to estimate mobilised strains: this leads to a serviceability check. This
objective approach facilitates the optimum design of substructures in relation
to the performance requirements of bridge superstructures.

Previous design recommendations included arbitrary factors of safety against
"overturning about the toe", "sliding", etc, together with nominal values of
earth pressure or permissible bearing stresses. Neither real safety margins
nor the effects of in-service deformations were previously considered.
However, a Limit State approach can be adopted for the evaluation of
geotechnical designs by direct evaluations of both safety and serviceability
through the Analysis of Critical Events. The circumstances pertaining to
these Events need to be detailed, usually by a highway department or other
authority, so as to create a sufficiently rigorous approach. Following the
designation of load combinations, environmental conditions, etc, to be as
hazardous as reason will allow, the rational calculation of effects can then
be addressed by the methods set out in this report.

Chapters 1 and 3 each present basic soil mechanics dealing, respectively, with
the collapse and deformation of retained soil. In the succeeding chapters,
2 and 4, the basic concepts are applied to particular situations relevant to
bridge abutments. Chapters 5 and 6 similarly deal with the collapse and
displacement of spread foundations which might be selected for abutment walls
on favourable soils.
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angles between major principal stress direction and a plane of
stress discontinuity

shear strain, e¢; - €3, (Chapter 1 et seq)

soil unit weight (Chapter 2 et seq)

initial shear strain, eg due to placement process

partial factors used in BS 5400 Part 4 to check on load effects
secant angle of shearing developed on a surface, tan™? (r/d')
direct compressive strain at a point

largest, intermediate, smallest principal strains at a point
axial strain in a triaxial test

volumetric strain

proportional height of action of resultant lateral thrust on a
wall (figure 2.15)

angle, especially of wall rotation, change of angle

equivalent initial wall rotation, corresponding to v;
non-dimensional soil stiffness (equation 3.8)

Poisson’s ratio, (drained, undrained)

soil settlement

bulk density, (dry)

total normal stress

effective normal stress

largest, intermediate, smallest effective principal stress
horizontal, vertical effective normal stress

normal stresses: beneath a strip load, of required overburden,
on a wall

compaction-induced lateral earth pressure

total, effective, bearing capacity

overburden pressure, <D

shear stress (on a strip base)

effective secant angle of shearing, sin!(t/s’)

...in a crititcal state of continued shearing

...at peak strength

...mobilised at equilibrium

¢aop In one dimensional compresion

¢ which can be developed at a soil-structure interface

angle of dilatancy, - sin™! (de,/dy) in plane strain

angle of tilt of a foundation

angles on Mohr circle of stress, figure 2.4

dimensionless factor related to G,,, (equation 3.1)

width of a strip load

distance of wall centre of gravity from the heel (figure 5.1)
depth of deformable soil beneath wall base

Young's modulus '

modulus in one-dimensional compression

soil shear modulus (t/y), maximum value at small strain
shear modulus of soil mineral '

specific gravity (density relative to water) of soil mineral
height of retained soil

second moment of area of a structural section

relative density

relative dilatancy index (equation 1.4)

influence factors for foundation movements (vertical, horizontal,
tilting)
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bulk modulus

earth pressure coefficient, o'y/0’,
K on frictionless wall, in active,
strain conditions

normal and tangential active earth pressure coefficients on wall
developing friction

initial earth pressure coefficient

separation of edge of line load from wall (Chapter 2)

length of wall base projecting beneath the backfill to the heel
bending moment

thrust normal to wall

bearing capacity coefficients

lateral thrust

active thrust due to selfweight, due to uniform surcharge
logarithmic index of grain crushing (Chapter 1); line load per
unit length (Chapter 2 et seq)

magnitude of soil reaction

ratio of stresses across a discontinuity in soil with limiting ¢
(Chapter 1)

overconsolidation ratio (Chapter 4)

saturation ratio

tangential force on wall

thrust due to water pressure

weight

effective base width, reduced due to eccentricity

intercept of envelope of drained effective strength data at o'=0
undrained shear strength

undrained shear strength developed on concrete base

shear stress mobilised in equilibrium

gravitational acceleration

height above the foot of a wall

reduction factors on N, N;, N, due to inclined thrust

number of stress discontinuities to be crossed

mean effective stress at a point

effective stress index of grain crushing

uniform surcharge

mean effective stress in plane considered (dash may be omitted)
maximum shear stress at a point, (¢'; - 0'3)/2

pore water pressure

pore pressure in clay beneath foundation excavation, undrained
pore pressure in clay beneath foundation following backfilling,
undrained

depth

depth of maximum lateral earth pressure due to passage of a
compactor

depth of enhanced lateral pressure due to compaction in layers
(equation 1.4)

passive, one-dimensional



1 PLASTICITY IN GRANULAR SOILS
1.1 Strength
1.1.1 Basic Definitions

It has been shown, Bolton (1986), that the mobilised strength of granular
soils is most practically expressed in terms of the secant angle of shearing
émop defined in figure 1.1 . For this purpose only the major and minor
effective principal stresses o¢;' and o3’ are involved: the effect of the
intermediate principal stress o' is dealt with empirically.

Typical rates of development of shear strain y(= €;-¢3) for axisymmetric
(triaxial) and plane compression on a dense sand are contrasted in figure 1.2,
Also shown is the dilatancy rate, defined as (-de,/de;), for both types of
test. The angle of dilatancy ¥ for a plane test is defined with respect both
to a simple shear test and a Mohr circle of strain increments in figure 1.3.
The value of ¥ is also shown in figure 1.2 for the plane strain test.

It will be seen that the maximum angle of shearing ¢,,, is mobilised at the
same instant as the maximum rate of dilation. After this point of peak
‘strength there is usually strain softening followed by localisation of strains
in shear bands which are only of the order of 10 particle diameters in
thickness. Even small relative displacements across the band then cause
extremely large shear strains within it, which are effectively impossible to
measure. However, in terms of boundary displacements, the soil usually appears
to soften swiftly to its critical state, at which shear can continue at an
angle of shearing ¢..,, without further change of volume.

1.1.2 Empirical Correlations

A simple idealisation of the effects of dilation is presented in figure 1.4,
showing the relative displacement of interlocked saw-blades. The angle of the
blades to the slip surface is ¥, and a coefficient of friction ¢..,, is invoked
on the teeth. It will be seen that for slip to take place between interlocked
blades, the angle of shearing ¢ measured with respect to the serrated edge is
given simply by

¢ - ¢crit. + ¥ (1.1)

Of course, soil particles have many more degrees of freedom and will actually
move in three dimensions. Rowe (1962) and Horne (1965, 1969) outlined a
stress-dilatancy theory for aggregates of rigid rotund particles, which took
account of some of these extra considerations. The outcome was expressed in
terms of principal effective stress ratio

g = (g ) . (1 - dey) _ (1.2a)
o'y o' 3erit de,y

taking compression positive. This can equally be written

(1 + singd) = (1 + sind i) . (1 + sinp) (1.2b)
(1 - sing) (1 - singgy) (1 - siny)
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tan(45+¢/2) = tan(45+¢.pi/2) . tan(45+p/2) (1.2¢)

Figure 1.5 shows that equation 1.2 can be approximated in the fashion of
equation 1.1 :

¢ = bersr + 0.89 (1.3)

There is an enormous amount of corroborative evidence of the applicability of
equation 1.2, and therefore of the approximation 1.3, to the shear and
dilatancy of all manner of particulate aggregates. Of equal interest, however,
is the prediction of either ¢ or ¥ in a particular case.

A study of the data of 17 sands, which had been tested by different research

workers and reported in the literature, offered empirical correlations based
on the initial relative density ’

Ip = (enax-€)/(emax-€min)
and the current mean effective stress
p' = (0'y+0'340'3)/3
First a relative dilatancy index Iy was defined which combined the influences

on dilatancy of soil density and the crushing of asperities caused at high
stress:

Iz = Ipln(p'./pP') -1 (1.4a)

where p’'. is a constant for a particular soil, related to the crushing
strength of its grains. This can alternatively be written

Ig = Ip(Q - Inp*') -1 (specifying p’ in kPa) (1.4b)

It was found that the strength and dilatancy of quartz or feldspar sands at
different densities and stresses could best be linked using the value p’ =
22000kPa, or Q=10. Data from Billam (1972) indicated that for more crushable
materials the value of p’, or Q was smaller: for limestone particles a fit was
achieved with p’ ~3000kPa or Q=8. Data from Lau (1988) show that for finely
ground silica flour the residual crushing strength of the grains is rather
greater, with p’.=~100000kPa or Q=11.5 .

Having established a value for Iz it was then demonstrated that the following
empirical relations were observed.

For plane strain
Pnax-Perit = 0.8¥5,x = 5Iy  degrees (1.5)
For axisymmetric (triaxial) strain

Pnax-Perie = 3Ig  degrees (1.6)



And for both types of test

(-dey/dey)nny = 0.315 (1.7)

The degree of correlation achieved may be appreciated by taking as typical
examples the triaxial data of De Beer (1965) on Berlin sand and Ladanyi (1960)
on Mol sand. They are compared in figure 1.6 with relations 1.6 and 1.4 using
a value p’.= 22000kPa appropriate to these quartz sands,together with ¢ . .~
33° for Berlin sand and 32.5° for Mol sand.

Norris (1977) correlated ¢.,, positively with the angularity of the soil
grains. There is also circumstantial evidence that feldspar grains tend to
have larger values of ¢..;, than quartz grains, but this may equally be due to
their coincidentally higher angularity. In any event, the lowest value for 17
sands from around the world was 30° for rounded uniformly graded Ottawa sand:
other values ranged from 32° for Mersey River sand to 37° for a glacial
outwash sand. It is preferable if ¢..;, is found either from testing loose soil
samples, or from an extrapolation of a set of results of ¢,,, versus peak
dilation rate to deduce the intercept at zero dilation rate. However,
Cornforth (1973) has suggested that ¢, can also be equated to the angle
of repose of a loosely tipped heap of dry material, within an accuracy of
about 1°. Indeed, there is hardly much more error in simply assuming that ¢..,,
for a typical sub-rounded uniform quartz sand is 33°,

Clearly, ¢.ris offers an easily measured, reliable, and safe lower bound to the
strength of granular soils. From the previous discussion it should be obvious
that predicting ¢,,, requires extra knowledge of placement density and failure
stress level, in addition to some knowledge about the relative crushing
resistance of the grains. According to Iwasaki et al (1987) anisotropy also
reduces ¢,,, for shearing parallel to the bedding, to the extent that the
simple shear strength of their Toyoura sand fell towards the triaxial strength
for samples deposited vertically in the usual way. They also found for Toyoura
sand that there was relatively little gain in ¢,,, below p’=150kPa. Using
p'=22000kPa, for example, this would set an upper limit to Iy of

Ip = S5Ip - 1 (1.8)

applicable where p’< 150kPa. This conservative limit would, for example,
underestimate the triaxial angle ¢ ,, of dense Berlin sand compressed normal
to the bedding with p’ = 50kPa by about 3° : see figure 1.6 .

Finally, if there is the possibility of progressive failure, or if it is
required that soil constructions are to be robust in the face of unforseeable
loading incidents, then it will be necessary to assume in design that shear
localisation will be capable of reducing ¢,.. to é..;: as shown in figure 1.2.
Since localisation is invariably observed in the retained soil when an active
wedge causes outward sliding of a retaining wall, it will be necessary to
ignore the dilatant component of strength of the backfill when this mode of
collapse is under consideration.

1.1.3 Example: derivation of values for ¢
Let us find design values of the angle of shearing resistance of a quartz

sand, appropriate to its use as fill behind a 7m high retaining wall,
compacted to a specification of 95% maximum dry density.
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First, set a design value of 93% maximum dry density to give a margin for
compaction control. Then translate this into a relative density. Taking
typical values G,=2.65 , ens,=0.8 , e€y=0.5 , we get py pay~1767kg/m® so for
design pg= 0.93 x 1767= 1643kg/m® giving e= 0.613 and Iy= 0.62 .

Now calculate the largest mean effective stress applicable to the problem.
Taking a typical moisture content as 10% , the field bulk density will be,
nominally and approximately, 0.95 x 1767 x 1.1 = 1847 kg/m®. The greatest
vertical stress, taking pore pressure to be zero , will then be 1.847
x 9.81 x 7 = 127 kPa at the wall base. In the case of active wall failure an
earth pressure coefficient of 0.25 may be applicable. The mean stress will
then be approximately :

p' = o'y, (14K)/2 = 0.625 o', = 79 kPa

This is less than 125 kPa (as will usually be the case in active retaining
wall calculations) so no further accuracy is required and we will use equation
1.8 to derive a design value of

In=5%0.62 - 1=2.1

Taking the axisymmetric rather than the plane strain correlation, to account
conservatively for the possible effects of anisotropy, we use equation (1.6)
to get

Poax - Perit = 3 x 2.1 = 6.3°

A conservative value for ¢.., Is 32°, so a design value for ¢,,, will be 38°.
In collapse calculations we should use ¢ = 32° to allow for localisation in
shear bands. In serviceability calculations we should consider the
stress-strain curve of a compacted granular soil with I = 0.62, p’' = 79 kPa
which we predict would have ¢,,, no less than 38°. For example, if we accept
an earth pressure coefficent in one-dimensional compression K, = 1 - sing,,
we would obtain K, = 0.38 .

1.2 Safe States

If all soil elements can be shown simultaneously to possess safe states, in
which they are seen to be in equilibrium under external actions whilst
mobilizing no greater than their critical effective angle of shearing
resistance ¢.;, then the soil construction will not collapse under those
actions. Any equilibrium stress distribution will serve for the purpose of
demonstrating safety, if

(i) an effective stress analysis demonstrates that ¢.., will nowhere be
exceeded in the soil.

(ii) The stresses on strain-controlled boundaries cannot be less favourable
than those assumed. For example, all boundary friction is to be neglected
unless the existence of relative sliding in a known direction is inevitable
during collapse, in which case a pessimistic angle of interfacial friction is
to be assumed.

If it is accepted that neither localisation of shear strain nor progressive
failure will affect the collapse of a soil construction, then a larger value

9



of ¢ may be used. It will then be essential to select the lowest possible peak
strength using equations 1.5 or 1.6 . This will involve selecting the loosest
possible so0il element under the largest possible effective stress to obtain
a worst credible value for I; from equation 1.4 .It may also be necessary to
make some deduction for inherent anisotropy due to particle orientation, but
only where sliding is possible on planes of bedding.

1.3 Superposition of Limiting Effective Stress Fields

Where it is required to carry boundary stresses in addition to self-weight
stresses, whilst maintaining proof of safety, it is possible for fully drained
soils to adopt a principle of plastic stress superposition. If two
independent plastic stress distributions are known to equilibrate, separately,
the actions A and B respectively, then the simple superposition of those
stress distributions will create a stress distribution in equilibrium which
is itself safe with respect to the combination of the actions A and B,
provided that the plastic strength criterion is a constant angle of shearing.

This superposition principle is easily demonstrated with regard to the
stresses (o;*, 0;*) and (0,®, 0;®) where the directions of o,® and o,* may differ
by some arbitrary angle #, as shown in figure 1.7. Only when # = 0 will the
superposed stress state reach the previous limiting ¢ line, as shown in figure
1.8a. For any finite relative rotation of the individual stress components,
the maximum compounded angle will comprise non-limiting components and will
itself lie within the previous limiting ¢-line as shown in figure 1.8b . It
can be shown, for example, that when ¢* = ¢® = 30 and the relative rotation
6 = 30°, the maximum angle mobilized after superposition is always greater
than ¢¢ = 25.7° recorded when the two separate stress components are equal
in magnitude. If s* >> sB or sP >> s then ¢€ +¢A or ¢®, and the potential for
overconservatism reduces. If s* = sP and # > 30 the combined maximum
mobilized angle of shearing resistance reduces quite rapidly through 21° when
§ = 45° and towards zero at # = 90 when the two shear stress components
annihilate each other.

1.4 The Effective Stress Discontinuity
In assembling equilibrium stress fields it is useful to consider the
conditions which would permit two differently stressed zones to be in contact.
Figure 1.9 depicts two such zones A and B, each mobilizing a limiting
friction angle ¢, and in equilibrium across the stress discontinuity DD which
mobilizes a smaller angle §. The stresses are characterised by the magnitudes
of the major principal components o,*, 0,8 and their directions a and B
relative to the discontinuity. The mean plane stresses s* and sP are used in
the derivation.
In the Mohr circles,

angle DAc*;, = 2x (x/2 -a) = =« - 2a

angle DBo®;, = 2x (x/2 -8) = =« - 2a
Now let us find auxilliary angle Q.

AM = OAsin ¢ = shsin ¢
But AD = AM

10



.. AD = s?*sin ¢
Likewise DB = BN = sBsin ¢

So considering triangle OAD for example,

AD . = _0A
siné sin
siné . _s*

sinl = sing s
0 = sin?! (siné/sing) (1.9)

We can now determine a and § in terms of O using the angles of triangles OAD
and OBD respectively.

T -2a = Q4+ 6§

Ca=x -0 -8
2

2
and 28 = Q- 6§
B=8-4
2 2 (1.11)
The rotation # in the major principal direction is simply
f = a-8 = =x/2 -0Q (1.12)

Lastly, the stress increase from A to B can be determined using the sine rule
on triangle ADB.

shsing = sBsing

sin28 sin(x - 2a)
s - sin(x - 20) = sin(@ + §) (1.13)
sA sin2g sin(Q2 - §)

It follows, by similar triangles, that each corresponding stress is increased
by the same factor R so that, for example,

R= s® = g% = sin(@+ §) (1.14)
sh oA sin(fl - §)

Different combinations of § and ¢ provide different stress increments. For
example,

¢ = 35.3°, § = 30°

11



gives
0 = 60°, 8 = 30°
a - 45° g = 15°
and R - 2

so that when the major stress is "refracted" away from the normal, its
magnitude increases. These conditions are set out in figure 1.10 .

In the absence of self-weight, discontinuities such as these can be assembled
so as to enclose elements of uniform stress which are in equilibrium at their
boundaries. Particularly useful patterns are the fan and the kite, shown in
figure 1.11 .

The fan comprises discontinuities radiating at intervals of # (equal to the
directional jump) so that each is correctly inclined to provide a similar jump
in stress magnitude. Sufficient discontinuities can be chosen to rotate the
major principal direction by any chosen amount.

The kite is a figure enclosed by a and B discontinuities. A succession of
coaxial kites has the effect of producing a quasi-radial stress field, with
no net rotations along the axis but with stress magnitudes altering in
geometrical progression.

In particular problems, the magnitude of the rotation of major stress
direction from one place to another will often be clear. For example, a 90°
rotation will occur from the active zone beneath a smooth footing to the
passive soil zone just outside its edge. For this reason, the most useful
particular stress discontinuities are those which mobilize particular values
in the various soil zones, and which rotate the stress direction by some
sub-multiple of 90°, such as 30°, 15°, 7%° etc; see table 1. It will be seen
that 30° stress jumps mobilize § = 0.85¢ on the discontinuities, whereas 15°
jumps mobilize § = 0.96¢ and 7%° jumps mobilize § = 0.994. The proportion
§/¢ may be used as an indicator of the degree to which strength is being
sacrificed on the boundaries of elements, and therefore of the degree of
underprediction of strength which might ensue.

1.5 Effective Stress Characteristics

Plastic stress characteristics can be thought of as infinitesimal stress
discontinuities, 6+ df#. Then, from equation 1.12,

8 = x/2 - df (1.15)
and from equation 1.9
sinfi = cosdd = siné/sing
so that § = ¢ (1.16)
Then equations 1.10 and 1.11 give
a = x/2 - (x/2 - d8)/2 - ¢/2

12




or a = xn/b - ¢/2 + d8/2 + w/b - /2 (1.17)

and B = (x/2 - d8)/2 - ¢/2

or B = =x/4 - ¢/2 - d8/2 » n/4 - ¢/2 (1.18)

Furthermore, equation 1.13 yields

s! + ds' = sin(x/2 + ¢ - df
s' sin(n/2 - ¢ - dé)

= cos(¢é - d8)
cos(¢ + db)

= cosd + sinédd
cos$ - sing df

= 1 + 2tang df

ds’ = 2 tang df (1.19)
sl

These conditions represent the familiar a and g stress characteristics
depicted in figure 1.12, along which

ds' = + 2 tan¢ df }a
-]

sl (1.20)

In moving along the a - direction, the path is jumping over a sequence of
infinitesimal B - discontinuities, and vice versa. The + and - signs for a
and B lines in equation 1.20 are easily derived from the necessity to hold to
a consistent definition for rotation § - anticlockwise positive - irrespective
of whether stress is increasing or reducing. It may be perceived from table
1 that 7%° stress jumps conform quite closely to stress characteristics. A
solution in terms of 7%° jumps will therefore be almost "exact" in the sense
of mobilizing the full plastic strength everywhere, and achieving failure
geometries and loads similar to an ideal characteristic solution of the type
of Sokolovski (1960) though in the absence of self-weight. An additional
advantage, however, will accrue from the constancy of stress within any
element, and the regular geometric stress factors: these will greatly
facilitate ad-hoc stress analyses using finite stress jumps.

13



2. ACTIVE EARTH PRESSURES IN GRANULAR BACKFILL
2.1 Rankine’s Active Stress Field

The simplest example of a safe stress field is Rankine’s active earth pressure
condition, in which any possible friction on vertical surfaces is ignored.
This generates a simple system of vertical principal stresses so that,
following the limiting Mohr circle of effective stress in figure 2.1

. Sin¢ = ST = Illv_ihl& - U_'V;L'h (2.1)
0s (o'y + 0'p)/2 o'y + o'y
Therefore
o'y (1 - sin ¢)
e A (2.2)
o', (1 + sin ¢)

where K, is referred to as the active earth pressure coefficient. To show
conclusively that collapse cannot occur the value ¢..;, should be used for
¢. The vertical effective stress is simply determined by resolving vertically
for self weight vy and uniformly distributed surcharge q, taking possible pore
water pressures u into account :

g, = 9z +q-u (2.3)

2.2 Wall Friction Effects

The effect of wall friction is most easily demonstrated for the case of a
vertical wall mobilising a friction angle § as it supports an "“active"
rectangular mass of weightless granular material subject to a uniform
surcharge q as shown in figure 2.2. A valid net of stress characteristics is
shown in figure 2.3 , with corresponding Mohr circles of stress in figure 2.4.
There are three regions : a uniform stress zone W near the wall, a fan zone
F, and the usual active Rankine zone A.

Taking the earth pressure coefficient to be K, normal to the wall, the
Tresultant inclined stress is K secé.q .Figure 2.4 then shows that in zone W
the mean stress is given by

s’ - sinfd (2.4)

K, secé q sinA
where 0 = sin?! (siné/sing) (2.5)
and A = Q-8 (2.6)

Also, the major stress in zone W is rotated through an angle from the vertical
aw - A/2

It follows from equation 1.20 that for a rotation 4, through the fan zone F,

s'y/s'y = exp(28,tang) (2.7)
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where q)s'A = (1 + sing) (2.8)

Finally, by combining 2.4, 2.5, 2.6, 2.7 and 2.8 we obtain

K, = cosésinAexp(-Atané) (2.9)
sinl (1 + sing)

Some values for K, are arranged in table 2.1. Since superposition can be
applied safely to a constant-¢ soil, K, can be used in figure 2.5 to solve the
influence of a heavy layer of thickness dz at height z above a point A in dry
granular soil on the point of collapse,

do, = K,ydz

Integrating these effects for every layer
h
o = f K,ydz = K,vh
o

It is therefore proved that K, from equation 2.9 can safely be used as the
earth pressure coefficient for any similar problem of surcharge or self-
weight. The difference between the safe expression in 2.9 and the well known
numerical solutions for self weight published by Caquot and Kerisel (1949)
approaches a maximum of 2% at full wall friction.

It is also obvious that the beneficial effect of full wall friction is only
equivalent to the extra provision of 5° to ¢. Furthermore, the degree of
relative sliding necessary to create full wall friction is not necessarily
present behind a cantilever L-wall. For these reasons alone, Rankine’s simple
stress distributions may be preferred as the basis for safe state calculations
of granular backfill. Moreover figure 2.4 shows that the source of lateral
stress reduction with wall friction is the reduction in vertical stress in the
soil near the wall. Since the design of the wall structure will require the
production of an equilibrium stress diagram which includes the effect of the
weight of the backfill acting on the wall base, there are also some practical
advantages in adopting the safe strategy of ignoring wall friction.

2.3 Effect of Surface Loads on Fully-Drained Granular Soil
2.3.1 Veightless Soil

Consider a uniform weightless soil half-space capable of mobilizing some
effective angle of shearing resistance ¢. Figure 2.6 demonstrates the
essential steps in generating a limiting stress field in equilibrium under a
long strip load which applies a normal stress o;, to the surface. The major
principal stress under the centreline of the load must remain vertical, by
symmetry, and to be consistent with "active" conditions. The major principal
stress on the horizontal plane outside the load must remain horizontal, since
no shear stress is permitted on that surface, and the limiting state will be
"passive” under the required overburden o,/N,;. Between the active and passive
surface zones there must be a plastic fan which rotates the stresses through
90°. Beneath the fan, a succession of close-packed kites will permit the
stress to spread and reduce roughly in inverse proportion to the radius.

Figures 2.7, 2.8 and 2.9 show nets of stress discontinuities each for
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¢’ = 32°, drawn with stress deviations of 30°, 15° and 7%° respectively. The
major principal stress in any element can be found by dividing the applied
stress o, by a factor R® where n is the total number of the stress jumps
required from beneath the load to reach the element - counting positive
clockwise across the f lines and anticlockwise across the a lines. The
stress ratio R is 1.8324 for 30° deviations, 1.3800 for 15° and 1.1770 for
7%°. 1t is therefore possible to deduce the required overburden o, by the
side of the load, using each of the nets in turn. Since ¢, is the minor
principal stress

o, = K, gy (2.10)
Rn

where K, = (1 - sin32°)/(1 + sin32°) = 0.307

We thereby obtain for o.: 0,/20.0 for the 30° net, 0,/22.5 for the 15° net and
0,/23.0 for the 7%° net. We know that the "correct” solution is op/Ng where

Ny = exp(ntand) (2.11)
K,

giving 0,/23.2. Ve therefore know that in this region of the nets the degree
of over-conservatism (in the sense of requiring more overburden than strictly
necessary) is 14% for the 30° net, 3% for the 15° net and 1% for the 7%° net.
Of course the stress changes by the factor n? in an artificial fashion around
an internal intersection of stress discontinuities. Such errors are highly
localised, and tend to even out when the stress is integrated in order to
find the thrust on a surface. This can be seen in figure 2.10 in which is
plotted the horizontal stress on the centreline as a function of depth, for
each of the nets of figures 2.7, 2.8 and 2.9 . The largest lateral stresses
exerted on any vertical plane in the soil are precisely those on the
centreline. It can easily be shown that the popular alternative calculation,
using an elastic half- space solution to obtain o, and deriving o, by

multiplying by K,, underestimates the lateral stress by a factor of about 0.6
at all depths z > B .

Nets of 7.5° discontinuities are drawn in figures 2.11, 2.12, 2.13, and 2.14
for soils with ¢ = 30°, 35°, 40°, and 45° respectively. These solutions depend
on the co-existence of a line load with sufficient surcharge o, immediately
around it just to hold it in equilibrium. The actual overburden pressure o,,
due to the weight of the pavement, must equal or exceed the required surcharge
o, ,and any excess must be accounted for.

The simplest way of achieving this is to deduct from the lateral stress
implied by the plastic stress fields, shown in figures 2.9, and 2.11 to 2.14,
the uniformly distributed active stress K,o, which would have been created by
the required surcharge. What then remains may be taken (for superposition
purposes) to be solely the effect of the line load. The full overburden
pressure o, corresponding to the weight of the pavement must then, of course,
be treated as additional uniform surcharge in the usual way, with a check
performed to test that it at least provides the required overburden. We know
that

(o, + Q/B) /o0, = N,
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so that

—90
B(N,-1)

Oy -

(2.12)

Figure 2.15a shows a weightless granular fill subject to a uniformly
distributed surcharge o, over its entire surface, and an additional strip load
Q per unit length distributed on the surface of the fill over a width B , and
with its centreline a distance L from a vertical wall. It is required to
analyse the wall at a depth H beneath the surface. Figure 2.15b shows a 15°
plastic net for this case, and the resulting wall stresses o, , 7, due to Q
and o, are plotted in 2.15c. In d the active lateral stresses which would be
due to o, alone are plotted, and in e the difference between ¢ and d, which
may be taken as the net effect of Q alone. Recall, however, that further
superposition of at least stresses d will later be necessary.

Figure 2.15f then defines net thrust coefficients K, and K., and a height of
action h = pH , all of which may be found numerically by integrating the net
stresses in figure 2.15e .The Q-component of bending moment at depth H may
then be expressed as M = nK QH.

Values of K,, K, and n are drawn out as functions of H/B for a range of values
of L/B, for each separate value of ¢ (30°, 32°, 35°, 40°, 45°) , in figures
2.16 to 2.20 respectively.

Since many loading cases will involve the imposition of a strip load on the
fill immediately adjacent to the wall, this particular case (L/B = 0.5) is
picked out from the preceding figures and re-presented in a compact form in
figure 2.21 . It is then apparent that both K; and n are rather insensitive
to values of ¢ in the range 30° to 45° while K, remains roughly proportional
to K,. This permits the use of the following approximate curve-fitting
expressions,

For L/B = 0.5 :

K, = 0.16 + 0.19 1n H/B 1 <H/B<G6
(2.13)
K, = 0.5 6 < H/B < 32
n=0.5 H/B < 1.7
(2.14)
n=0.43 + 0.13 1n H/B 1.7 < H/B < 32
K, = K, (0.9 + 1n H/B) 1 < H/B < 6
' (2.15)
K, = 2.7K, + 0.151n[ H/(6B) ] 6 < H/B < 32

For relatively wide superimposed loads (H/B < 1) it will be necessary to treat

the load as a uniformly distributed surcharge,

and to use section 2.2

(equation 2.9 and table 2.1) for earth pressure coefficients with wall

friction.

A simpler alternative is to neglect wall friction in these

circumstances, when a uniform active zone would offer:

K = K, H/B
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K, =0 (2.16)
n =0.5

The adoption of different degrees of wall friction for the various load
components is not illogical. It is convenient to select lateral stresses due
to strip loads on the basis that the wall has the same friction as any other
plane through the soil, so that the foregoing stress analyses may be made
independent of the wall interface. It is, however, essential when all the
various components of stress have been superimposed, that the mobilised wall
friction 6§ does not exceed its permissible value. This can generally be
assured by discounting wall friction with regard to the components due to
uniformly distributed surcharge and the self-weight of the fill.

Certain features of figures 2.16 to 2.21 may initially seem counter-intuitive.

(1) For relatively narrow strip loads (H/B large) the thrust coefficient K,
can exceed K, by a factor of three. In the past, many analysts have
ignored the stress concentrations beneath strip loads and have
underestimated their effects.

(ii) It will be noted that for combinations of moderate L/B and large H/B
the coefficient K, exceeds 0.5. Now the shear force transmitted to each
side by the strip carrying Q is only 0.5Q. The explanation for the
anomaly is that the surcharge o, required around the foundation "arches"
or spreads its effect sideways, just as the strip load does. This
creates extra shear force on vertical planes remote from the strip,
which is included in the coefficient K,. The quoted values are safe.

(1ii) The position of the resultant thrust can be lower than 0.5H, even
though the effect of a strip load should be to tend to create
"pressure-bulbs" at higher elevations close to the load. This occurs
most noticeably at L/H =1, H/B = 1 so that a gap of H/2 exists between
the edge of the wall and the strip load. In this geometry, relatively
little extra stress is created on the top half of the wall.

2.3.2 Example: superposing load and self-weight effects

Figure 2.22 shows the three-dimensional problem of a 45 unit HB bogey on the
pavement adjacent to a 10 m long abutment wall unit. The total nominal load
of 900 kN on the two axles is to be factored by 1.3 for ULS design according
to BS 5400 Part 2. In plan view, the load is spread over an area C = 3.5 m
along the wall by B = 2 m normal to its face. In this example, as an
arithmetical simplification, HA loading equivalent to 1.3x10=13 kN/m?
surcharge is to be carried in a 6 m wide strip in the remaining part of the
carriageway. No pore water pressures are anticipated. The objective of the
calculation is to estimate the bending moment at the base of the wall stem,
appropriate to a plastic hinge analysis.

The first step is to demarcate a strip of wall to carry the effects of the HB
vehicle. Elastic diffusion of load through the asphalt pavement corresponds
approximately to a 1:2 angle of spread over a 0.5 m depth of bound material.
The equivalent bearing area on the £ill is therefore C' = 3.5+ 2 x 0.5
X0.5=4m B’ =2+ 0.5x0.5=2,25m: this is shown in figure 2.23 . For
convenience of analysis, lateral spreading of load in the fill will be
restricted to the direction normal to the face of the wall. Conservatively,
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frictionless planes 4 m apart will be considered to divide the wall into two
sections, 'a’ influenced and 'b‘’ uninfluenced by the HB vehicle.

The second step is to select a soil ¢ value: taking ¢.y: = 32° in this case
will certainly be conservative. If a more angular crushed rock were available,
$criy would be greater. Furthermore, the design scenario is one of wall
rotation about a hinge at the base and this will tend to cause uniform soil
strains, so that dilatant peak values of ¢,,, would be likely to be retained
up to significant wall movements, before the soil strain began to localise
permitting softening to a critical state. Nevertheless, if a robust design is
required which is insensitive to fill type or wall movement, an assumed value
of ¢ = 32° will be necessary.

It follows that K, = 0.31 . We can now read off values from figure 2.17 using
L/B = 0.5 since the load is adjacent to the wall, and H/B = 7.5/2.25 = 3.33.
Taking into account the logarithmic scale for H/B on figure 2.17, we find that
3.33 is at (log3.33 - log3)/(logs - log3) = 37% of the interval between 3 and
4. Then we find:

K, - 0.61, K, = 0.38, n = 0.60
In the HB loaded section, figure 2.23a, we obtain

Q=1.3x900 /4 = 293 kN/m

so that the bending moment due to the load,

Mg = KQnH

- 0.61 x 293 x 0.60 x 7.5 = 804 kNm/m

In addition, the effect of the pavement taken as an equivalent surcharge
q, = 11 kPa , will be

Mg, = 0.5K,qH?
= 0.5 x 0.31 x 11 x 7.5% = 96 kNm/m

And the self-weight term will be

M, = 0.167K,yH® = 0.167 x 0.31 x 18 x 7.5° = 392 kNm/m
In section 'a’ therefore,

M, = Mg + Mg, + M, = 1292 kNm/m
In section 'b’ however,

My = My + M, = 601 kNm/m

Taking into account that there are 4 m of ‘a’ and 6 m of 'b’ , the average
design bending moment to be resisted at the base connection is

M= (4x 1292 + 6 2575 ) / 10 = 878 kNm/m

Certain formal checks are now necessary.
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(1) Check required surcharge in section ‘a’
From equation 2.12 and table 2.10 ,

o, = 293 = 5.9 kN/m?
2.25 (23 - 1)

Since q = 11 kN/m? > 5.9 kN/m? this is admissible.
(ii) Check required on wall friction in section ‘a’
The total normal thrust

N = K.Q + K,qH + 0.5K,yH?

- 0.61 x 293 + 0.31 x 11 x 7.5 + 0.5 x 0.31 x 18 x 7.5
= 361 kN/m
The total tangential force
T=KQ=10.38 x 293 = 111 kN/m
Therefore, the mobilised angle of wall friction
§ = tan™! (111/361) = 17°
The permissible angle will be at least 25°, so this is acceptable.
(1ii) Check of local load effects in structure.

Only the average bending moment was calculated, whereas the loading on the
structure, being different in sections 'a’ and ’'b’ is asymmetric. Further
calculations of local bending and twisting moments may be necessary. These
load effects are then multiplied by partial factor yp; = 1.1 and compared with
ultimate resistances based on strengths factored down by appropriate values
Yo, according to BS 5400 Part 4

2.4 VWater Pressure

The use of granular backfill will usually ensure that no significant ponding
of pore water will occur above the level of the weepholes in the wall stem.
In these circumstances it will be sufficient to consider that the long term
piezometric levels in the backfill, and beneath the wall base, will be
hydrostatic with an elevation equal to that of the weepholes. Figure 2.24
indicates the typical water elevations which should be used to calculate water
pressures u for substitution in equation 2.3 to calculate the vertical
effective stresses due to selfweight and uniform surcharge. -

Where the base of the wall can be provided with drain holes at intervals, and
the bottom surface can be drained without ponding, even these small water
pressures can be reduced to negligible levels. The base drain may consist of

a) a longitudinal drainage trench laid to a fall
b) lateral trench drains at sufficient intervals
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c) a well compacted or stabilised drainage blanket.

Since the safety and serviceability of the completed structure will depend
completely on the ability of the drainage system to prevent the build-up of
water, it will be necessary to take suitable precautions where particular
water hazards may occur. These additional evasive measures may include: -

a) a permeable filter,such as an appropriate geotextile, to prevent the
ingress of fine grained soil fractions into material which is intended to
remain more permeable.

b) a blanket drain of selected drainage material placed either above or below
the wall base, and possibly extending beneath the backfill interface.

¢) an impermeable barrier such as asphalt, concrete, or plastic sheet, to
prevent the infiltration of surface water on the retained hinterland, coupled
with corresponding surface drainage measures.

Where, for any reason, anticipated water pressures larger than those
indicated in figure 2.24 can not be forestalled,it will be necessary to
construct a flow net consistent with the hydrogeological conditions. Figure
2.25 shows a situation in which continuous infiltration and downward
percolation cannot be prevented in the hinterland of natural ground, although
the rectangle of granular fill is acting as a drain.

It will be clear that, in this case, water pressures in excess of those of
figure 2.24 occur in the "active" zone of natural soil against the granular
backfill. They cause the selfweight thrust on the wall/backfill monolith to
be increased.

Stress analysis is difficult in cases such as this, but it is possible to make
straightforward calculations using Coulomb'’s trial wedge method, as shown in
figure 2.26. The use of Coulomb’'s technique gives answers to active thrust
problems which are acknowledged to be close enough to the truth, and close
enough to the results of more detailed stress analyses, to require no further
correction. Reasonable assumptions do additionally have to be made regarding
the distribution of stresses corresponding to the calculated thrusts. It will
be as important that the eccentricity of the foundation reaction is correctly
estimated as it is that the magnitude is properly calculated.

It can easily be verified that the mean water pressure on a plane inclined at
6 radians within a height H in figure 2.25 is approximately 0.2vHf. The
effect can be shown to be to increase the horizontal component of the thrust
on the retaining wall by between 0.05y,H2 and 0.075v,H? approximately. The
lower value applies where one of the two required slip surfaces is free to
form at any desired angle within the drained fill: the higher value applies
where the rectangle of fill is either relatively narrow or relatively strong
so that slip surfaces within it are constrained or eliminated. These thrusts
may, with sufficient accuracy, be taken to act uniformly on a vertical plane
through the heel of the wall, They may be assumed to be transmitted
ultimately down to the base, except where this is so short that an active
wedge behind the stem would project beyond the heel.The corresponding change
in the vertical component of thrust from the backfill onto the retaining wall
can generally be safely neglected,

Superposition of isolated loads can be treated as before, so long as the soil
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response to the loading is fully drained. Where excess pore pressures may be
created in clayey fills it will usually be necessary to undertake both drained
and undrained analyses so as to examine the possible range of soil behaviour.
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3 STRAINS IN GRANULAR BACKFILL
3.1 Shear and Volumetric Components

Many types of apparatus are available for testing the response of soils to
imposed stresses or strains. Samples may be cubical or cylindrical, may
deform with rigid or flexible boundaries, in axisymmetric or plane strain,
plane stress, or indeed in an arbitrary stress or strain path through the use
of computer control. However, the standard test remains the triaxial
compression test on a solid cylindrical sample.

Soil responds in quite distinct ways to increases in mean effective stress and
shear stress. All soils tend to reduce in volume and increase in strength and
stiffness when their mean effective stress is increased. On the other hand,
an increase in shear stress will provoke a progressively reducing shear
stiffness leading eventually to a shear failure.

For this reason, the data of soil tests are often interpreted solely in terms
of shear stress and strain. Volumetric stiffness, when required, is usually
measured indirectly through the one-dimensional compression modulus E, = 1/m,
measured in an ocedometer. The measurement of volume changes in a triaxial test
could suffer from membrane penetration errors. Direct strain measurement
between internal markers fixed to or beneath the latex membrane can, however,
give reliable data: Symes and Burland (1984).

For an elastic material, the ratio of oedometer modulus E, to bulk modulus K
is exactly 2 at a typical Poisson’s ratio v of 0.2, and tends to 1 as v tends
to 0.5 .

The most readily applied interpretation of shear tests remains the Mohr circle
analysis of stresses and strains in the deviatoric plane containing the major
and minor principal stresses. Figure 1.1 shows the definition of the greatest
shear stress t, and the average effective stress s’ in the deviatoric plane,
mobilised in a triaxial test at a particular shear strain

Y= €1 - €3

-and a volumetric strain,

€, = €1 + €5 + €3
which would be negative in the case of dilation.
These conventional definitions do not involve the intermediate principal
stresses. The habitual observation that strength and stiffness is greater in
plane than in axisymmetric strain is, therefore, either conservatively
ignored or dealt with empirically. The mean effective stress p’ in plane
strain is usually taken to be equal to mean stress s’ in the deviatoric plane.
3.2 Cycles of Shearing
Figure 3.1 shows a typical shear stress-strain curve for a previously
unsheared sample of granular soil. The virgin response OA involves a
relatively large amount of irrecoverable plastic strain, chiefly associated

with sliding at particle contacts as the grain structure accommodates to new
stress states. The rebound - reloading stiffness AB,BC is evidently rather
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larger than the virgin loading stiffness. It is also seen that the initial
rebound-reloading stiffness is not simply elastic, or even simply hysteretic,
since q¢c > v,. Only after a few load cycles does the behaviour shake down into
a stable hysteresis loop DE. The number of cycles necessary to achieve cyclic
stability increases as the shear stress amplitude approaches the static shear
stress limit t_,,, and is always greater for loose soils than for dense.

Since soil backfill will have been subjected to many cycles of loading and
unloading during its compaction, it will be sensible to treat its condition
as stably hysteretic - at least for stress excursions upto the magnitudes of
those induced during compaction. It has been found, Hardin and Drnevitch
(1972), that the relation between cyclic amplitudes of shear stress and strain
for a wide range of quartz and feldspar sands can be represented with
reasonable accuracy by a hyperbolic relation, fitted to the soil state as
shown in figure 3.2 .

Strain cycles with amplitudes below about 1073 (or one thousandth of one
percent) receive an approximately linear response with a maximum shear
modulus, which is a function only of void ratio e and mean effective stress
s’, and which can be written for quartz or feldspar sands

Cuax = A(Ggrain s")¥/(1 + €)? (3.1)

where A is a dimensionless factor depending on the nature of the asperities
at points of grain contact and the organisation of contact forces, the
function 1/(1 + e)? accounts for the usual 2-fold reduction in G, over the
range €py;, tO €pey, and (Gyran s’')* is a dimensionally correct function of
intrinsic grain stiffness and the mean soil stress in the plane of shearing.
For typical quartz and feldspar sands this can be simplified to

Gpax = 50000(s’)%/(1 + e)3 (3.2)
where G and s’ are both measured in kPa.

For many purposes it is sufficient to describe the large strain response in
terms of a limiting shear stress t,,, = s’sing,,,, achieved asymptotically.
In fact, of course, t,,, is reached at a finite shear strain of between 1072
and 10°!. In the development of that peak strength, volumetric dilation will
have been increasingly evident, reaching a maximum rate at the same instant
that the shear strength reaches a maximum, as was shown in figure 1.2 . At
this juncture the soil may rupture, with subsequent deformations intensified
in localised shear bands. These large post-peak strains permit the void ratio
of the soil to increase (in the case of an initialy dense soil) to its
critical state value e.,, at which the dilation capacity will be exhausted.
The shear strength will then have fallen to t. ,; = s’sing.;,. The selection
of appropriate values for ¢,., and ¢..;, was dealt with in section 1.1 .

Equations 1.5 or 1.6 for ¢,,, together with 3.2 for G,,, allow the hyperbolic
approximation in figure 3.2 to be written

t = Gpax_ Y (3.3)
(1 + Gpax 7/ Cmax)

The correct datum for shear stress and strain is the instant of the last load
reversal. If the shear stress at that instant was t; then a modification to
equation 3.3 is necessary for subsequent strains v
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(t - ) = Crax Y (3.4)
[1 + Gpax?/ (tgax - )]

It should be recalled that equation 3.2 for G, will only hold
(approximately) for the stable hysteretic response of soil which has been
repeatedly cycled. The initial stiffness Gp,, relevant to virgin loading may
be lower by a factor between about 2 for dense soils and 5 for loose soils;
Duncan and Chang (1970).

3.3 Effects of Wall Rotation : a Simplified Approach

Equation 3.4 can be converted into a relation between earth pressure
coefficient and the rotation of a wall about its base, using the simple
displacement field of Bransby and Milligan (1975), shown in figure 3.3 . They
showed that the implied shear strain in the assumed 2zone of uniform
deformation OAZ is related to the rotation # about the toe of the wall by the
expression

¥y = 2 secy § (3.5)

where ¥ is the soil’s angle of dilation, introduced in figure 1.3 . Although
this involved the neglect of wall friction, it was also shown that the same
displacement field could be observed with rough walls. Also, the relation
between v and # was found to be valid for flexible walls, where
zero-extension lines parallel to OZ could be drawn at (45 - ¥/2) to the
vertical to derive a curved ground surface ZA’ compatible with a curved wall
surface OA’.

It is now possible to derive the K,f# relation for a smooth rigid wall rotating
about its toe. In this particular case there is no rotation of principal
stress, so the alternative "elastic" and "plastic" approaches to earth
pressure prediction discussed by Wroth (1972) are almost exactly equivalent
if the same stress-strain data are used to derive the parameters. If the
vertical effective stress at depth z remains constant at yz , then when the
lateral earth pressure coefficient is K, from figure 1.1,

t = yz(1 - K)/2 (3.6)

Substitution in equation 3.4 gives

4 secy G .. 8
Ky - K)yz = 1+ _4 secy Goax 8
(Ky - Kyymie)vz
where the initial earth pressure coefficient is K.

This can be written

K= Ki - (Ka - K‘lm.L (3.7)
1 + (K - Kyjmiedcosy
Al

where
A =4 Gpy /(72) (3.8)
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Kimig =~ Ky =~ ‘(1 - singg.) /(1 + singg,,) for 6 >0

Kiimit = Kp = (1 + sindpe,)/(1 - sindpe,) for <0

Equation 3.2 for the G, ,; of cyclically pre-strained sand can be inserted into
3.8 to give

A = 140000¢1 + K)* (3.9)
(1 + e)? (yz)¥

It is now clear that equations 3.7 and 3.9 represent a highly non-linear
expression for the earth pressure coefficient K as a function of #, and one
which properly should be solved incrementally.

The degree of non-linearity can, however, be reduced by recognising the
following simplifications.

1) The effect of variations of K on Gg,, is through the term (1+K)¥ relating
to the current mean stress. This term is able to vary only from about 1.2 to
1.1 during outward rotation from an initial state with a typical K, = 0.45 to
a fully active state with K, = 0.2 . Even if inward rotation upto K, = 5 were
being considered, (14K)*¥ would only vary from 1.2 to 2.4 . The more serious
problem with passive rotation would be the likelihood that the soil would
regain a virgin plastic state, so that G would have to be significantly
reduced in any event, perhaps by a factor of 10. It follows that the value for
A in 3.9 might simply be calculated on the basis of a current value for K, and
used directly in the non-incremental expression 3.7 for K. This simplification
is tantamount to assuming that the earth pressure coefficient in a particular
case is dependent on the total wall rotation and the current stress level, and
not on the precise path they took. Indeed, for the purposes of a rough hand
calculation it will be acceptable to base the value for A on a moderate value
for K, say 0.5, and then to iterate once, deriving a first value for K from
3.7 and inserting it again in 3.9 for A, then deriving a better value for K
from 3.7 .

2) Although dilation varies with shear strain in the general fashion of figure
1.2, the angle of dilation ¥ is found to be confined within the range +25° for
all granular soils at all stages of test. This restricts cosy to the range 0.9
to 1.0. In these circumstances cosy may be taken to remain unity with
negligible error, once again eliminating strain path difficulties.

It follows that a sufficiently accurate representation of wall rotation
effects is given by '

—_— Ky = Kyimied

where the non-dimensional soil stiffness A is given by equation 3.9 .
This relation is sketched in figure 3.4a for outward wall rotation from a

sequence of initial values K; between 0.4 and 3.2, and for relative densities
of 20%, 60%, and 100%, relevant to a point at 4 m depth in a soil with the
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following properties :

Gy = 2.65 S; = 0 (dry)
epnax = 0.85 €pin = 0.55
Perit - 32°

and using the larger plane strain ¢ value given by equation 1.5 .

The relevant values of A involved in the production of these curves are listed
in table 3.1 . In a typical bridge abutment of 8 m height, the soil at 1 m
depth should behave about three times stiffer than the soil at 8 m. The z¥
term in the shear modulus means that the abscissae of figure 3.4 can be
construed as 0(4/z)¥ except where stress level effects might affect the
maximum shear strength (e.g. for large passive rotations of a wall against
dense sand).

Figure 3.4a shows that there is relatively little reduction in earth pressure
at an outward rotation of 1075 radians. Fully active conditions are mobilised
at a rotation of about 1072 radians, after which the soil would be vulnerable
to rupture along a slip surface with a consequent increase of earth pressure
towards critical state conditions. The rotation necessary to halve the
difference between K, and K,(min) is in the range 10™* to 4 x 107%.

An estimate of the effect of inward rotation producing passive pressure is
shown in figure 3.4b . There is negligible increase in earth pressure at a
rotation of 1073 radians. At 10™* the absolute changes in K are commensurate
with the active case, but they now appear negligible in relation to the
eventual attainment of K,. Fully passive conditions are only mobilised at an
inward rotation of about 1072, The rotation necessary to halve the difference
between K, and K, is approximately 6 x 107*. It is essential to recognise that
these predictions are for pre-cycled soils with no tendency to progressive
failure. Three effects would tend to soften the rate of passive mobilisation
compared with figure 3.4b.

1) On the first passive cycle, the soil would soon escape beyond its
compaction pre-loading and behave more like a virgin material with extra
irrecoverable strains upto 5 times greater than those indicated.

2) Volumetric compression was neglected in the present formulation, but this
could be significant for loose soils.

3) Progressive failure would tend to interupt the progress towards K (max) for
dense soils and lead to lower critical state pressures.

3.4 Initial Strain

Equation 3.10 expressed the change of earth pressure coefficient against the
shear strain (or equivalent wall rotation) occuring since the last strain
reversal. Stiffness then reduces as strain increases, although this is partly
disguised in figure 3.4 by the choice of a logarithmic strain axis. It is
clear, however, that the analyst must have regard to whether some process -
such as wall rotation - will continue a previous strain path referred to some
previous strain datum, or will reverse the path and set the strain datum back
to zero.
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If soil is lightly dumped behind a rigid retaining wall, there will be
vertical compression due to the self-weight of the overlying fill. This
vertical compression includes shear strains which will act as the datum for
any future outward wall rotation (which also tends to cause vertical
compression), whereas inward wall rotation will imply a reversal of strain
path with the datum reset to zero.

The strains due to one-dimensional compression under self-weight alone can be
estimated. Figure 3.5 shows a layer of soil of depth dz being placed. The
effect at depth z is of an increment of shear stress

dt = (do, - doy)/2 = (1 - K)pg dz/2 (3.11)

If the soil responds with its maximum shear modulus then there will be a
corresponding increment of shear strain

dy = _dt = (1 - K)og dz
Caax 2 Gpax

On substitution of equation 3.2 for G,,, and using

s’ = (1 + K;)pgz/2

and p =G,/ (1 + e)
we obtain

dy = 4,43 x 1073(1 - K.Y G.°35(1 + e)2:5 dz
(1 + K°)0.5 z0.5

On integration to find the magnitude of initial shear strain due to one-
dimensional compression following placement of height z of fill

vy = 8.86 x 1073(1 - K)GO:5(1 + e)2-4 20.5 (3.12)
(1 + Ko)o.s

Remarkably, it is found that using

Ko = 1 - sing .,

together with equation 1.6 for 4,,, , and using typical values ey, = 0.5 and
€nax = 0.8 for the calculation of relative density Ip, the functional
dependence of y; on e completely disappears, and 3.12 reduces to

vy = 2.5 x 107 /2 (3.13)

The initial shear strain following compaction is much harder to estimate,
since it will depend on the precise stress history of an element of soil that
will have suffered continuous cycles of compaction stress, reducing in
intensity as its burial causes the mean stress to rise. At relatively shallow
depths the cyclic component may be dominant, and the strain datum might be set
to zero. As elements are buried, the tendency for compression under
self-weight will tend to overwhealm the cyclic component, and the strain datum
might approach the value calculated in equation 3.13 . If there is any doubt,
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the conservative step is to invoke initial strains since their effect is to
reduce soil stiffness quite considerably. It will usually be necessary,
therefore, to assume that there has been initial shear strain due to
placement, which will affect subsequent outward deflections, and that this
will be approximately as given in equation 3.13 leading to the introduction
of an equivalent initial wall rotation of #; = 1.25 x 10™* /z. This is
marked on figure 3.4a as the datum following placement. The accompanying scale
for subsequent soil strain is distorted, being the original logarithmic scale
decremented throughout by v; .

3.5 Predictions of wall rotation effects.

The accuracy of equation 3.10 and figure 3.4, optionally modified by 3.13, may
be demonstrated through comparisons with published tests. Figure 3.6 shows
some of the data of Terzaghi (1934) in which a dry, uniform, angular sand was
subjected to outward rotation about the base of a stiff retaining wall, over
a height of 1.5 m. In test 2 the sand was reported as being compacted in 150
mm layers to 71% relative density using concrete tampers. In test 3 the sand
was simply dumped in place and reported to be at 0% relative demnsity, though
this seems to be unlikely. Each of the test curves of K against # are compared
with two predictions, based on an effective depth of 1 m and on initial shear
strains of either zero or 2.5 x 10™*, and fitted to the observed initial
pressure coefficient.

It will be seen, firstly, that both pairs of predictions overestimate earth
pressure coefficients at wall rotations of 1073, This can be attributed to
some or all of the following factors :
- the neglect of wall friction in our prediction.
- the probable underestimation by Terzaghi of relative density,
following an underestimation of the maximum void ratio of the
sand; 0.85 would be uncharacteristically low for angular,
uniform, sands.
- the probable underestimation ¢.;, = 34° based on Terzaghi’s
observation that this was the angle of repose; at least 37° would
be expected for an angular sand.

Ultimately, at rotations of about 1072, the dense soil dilated towards a
critical state and its earth pressure coefficient began to increase again.
This is one of the problems to be faced in designing for collapse limit
states.

None of these factors should seriously have affected the initial K,# behaviour
relevant for serviceability, however, and it may be seen that the initial
gradients in the two tests conform quite well to expectation. The uncompacted
fill in test 3 behaves as though it had an initial shear strain y; = 2.5 x
107*. The compacted fill in test 2 fits the prediction based on zero initial
strain.

The divergence between predictions for v, = 0 and for v, = 2.5/z x10™* is
evidently significant. If there is any doubt about the strain history of a
soil bed it will be necessary, in design, to assume the worst case. Figure 3.7
shows data of three model studies in which outward wall rotation was imposed
on uncompacted sand. Although the relative densities of these sands covered
a wide range, the heights of the models were only in the range 1 to 2m.

In each case, the simple theory adopted here fits quite well, once the initial

29



strain vy, has been accounted for according to equation 3.13 .

Similar data of Rehnman and Broms (1973) for gravelly sand which had been
compacted in five 400 mm layers with a 400 kg vibratory plate are shown in
figure 3.8, and compared with predictions based on both v; = 0 and v; = 2.5/z
x 107 at an effective depth of 1.33 m. It will be seen that the initial
variation of earth pressure coefficient K is intermediate between the two
predictions, and that K eventually falls lower than either. The presence of
capillary suction due to moisture in the soil may have affected these results,
in addition to wall friction developed at larger rotatioms.

An omission in all these comparisons has been that the variation of earth
pressures over a realistic depth appropriate to bridge abutments has not yet
been included. However, Broms and Ingleson (1971) have presented data of the
lateral pressure changes during the construction and early life of a stiff 4m
high abutment wall, forced to rotate about its base as the expansion and
contraction of the bridge deck was communicated directly to its crest. Two
particular episodes of outward rotation, stages B to C and E to F, are
presented using profiles of pressure coefficient versus depth in figure 3.9a.
In each case the initial distribution of coefficient K was idealised, and a
prediction made of the effects of the observed rotations, which were both of
the order of 1073 radians.

Since the fill had been subjected to cyclic strain both during compaction and
in service, and since clear points of strain reversal had been chosen for the
starting states B and E, the shear strains were based directly on wall
rotations, with vy; = 0. Having the benefit of the highest possible soil
stiffness, a large reduction of earth pressure coefficient was seen in each
case, well predicted by the chart in figure 3.4a . In particular, it is
confirmed that the significant precompression in the upper part of the
backfill requires a significant rotation before it can be eliminated.

For inward rotation, the data of stage D to E in the same study is compared
in figure 3.9b with the predictions of figure 3.4b. Once again, the general
trend is reasonably predicted : scatter in the data makes exact comparison
difficult, however. Since situation E is the instant of maximum lateral earth
pressure it could have been expected that the soil would be approaching a
virgin loading curve with perhaps half the stiffness assumed in equation 3.9.
In the event, there is some over- prediction of earth pressures in figure 3.9b
at 2 and 3.5 m depths, but quite a good correlation at 2.5 and 3 m. There must
be no doubt that figure 3.4b would generally over-estimate soil stiffness on
the first approach to passive pressure, perhaps by an order of magnitude.

The implications for the stress profile of a more typical 8m high abutment
wall subject to rotation following compaction can now be deduced. It will be
supposed that the initial process of compaction has led to lateral pressures
of 25kN/m? between 0.5 m and 3.7 m depth, with a passive type of zone above,
and a zone with K, = 0.38 beneath. The relative density of the fill is taken
to be 60%.Figure 3.10a depicts the reduction of earth pressures with outward
wall rotation, assuming zero initial shear strain. Figure 3.10b includes 7v;
= 2.5 Jz x 10" leading to a much more gradual attainment of fully active
earth pressure conditions. Even under these pessimistic conditions, a wall
rotation of 107 is sufficient to eliminate two thirds of the excess lateral
prestress due to compaction, and to reduce the overall thrust of the compacted
fill below that of loose fill, for example.
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4 PRECOMPRESSION IN GRANULAR BACKFILL

4.1 Significance

The lateral stresses which could be found to be acting in the backfill behind
a retaining wall are difficult to predict with any accuracy. They will depend
not only on the soil properties (¢, etc) but also on its stress history
including the condition of the soil prior to compaction, the type of
compaction plant and the manner in which it is used, and the cycles of soil
loading which have been experienced. Wall movements will have had an equally
significant effect, whether due to flexibility, temperature cycling, or
foundation compliance. In any event, the presence of lateral stresses in
service which are in excess of the "active " value simply indicates that the
wall is not at the point of collapse. If some subsequent live load were to
endanger the wall so that either a sliding, bearing or bending failure were
to begin, it may be assumed that the compaction prestress would be lost as the
relevant soil elements mobilized their available strength against the new
load. This approach is analogous to the treatment of rolling stresses in
steel sections, and is generally valid for ductile materials and structures.

Furthermore, it should be appreciated that precompression can safely be
eliminated from soil serviceability considerations such as in foundation
displacement calculations. Figure 3.10 showed that an outward wall rotation
about the base of 1072 could be relied upon to eliminate typical built-in
stress states entirely. Such a rotation would be typical of the serviceability
limit to be imposed on the design of spread footings.

Other modes of movement are possible of course. Wall translation tends to
result in localisation of strains in shear bands, which enhances the erasure
of stress history. The possibility of such localisation will cause the
designer to use critical state strengths in collapse analyses, perhaps ¢ .4,
= 32° rather than ¢,,, = 38° for a sub-rounded sand fill guaranteed to be at
least at 60% relative density. In proceeding this way, the designer may assume
that he will be successful in eliminating shear bands. It would then be
logical to assume uniformly well-compacted soil for the purposes of a
serviceability calculation, while taking fully softened soil in a collapse
scenario.

The practical significance of a strenuous critical state collapse condition
is made apparent in figure 4.1 .The response of medium dense soil to outward
wall rotation, shown in figure 3.10b for the pessimistic case of pre-existing
strain due to compression following placement, is superimposed onto a simple
Rankine stress profile for fully softened soil with ¢..,, = 32°. If the wall
were to rotate outwards, the initial construction stresses would have fallen
below the critical state collapse condition at a rotation of only 1073, and
would then remain below unless shear rupture occurred and the soil softened.

There is also concern about the effects of inward wall rotation where soil
consolidation might lead to differential settlements as shown in figure 4.2,
for example. Here, the possible passive reaction would tend to counter-balance
the tendency for rotation, so that soil serviceability calculations will tend
to be conservative if they ignore this soil- structure interaction effect.

Precompression due to stress history is therefore of concern principally in
structural serviceability calculations. It will be essential to check that
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compaction stresses will not cause impermissible cracks or deflections in the
reinforced concrete. Subsequent highway loads will also have to be considered.
Finally, an estimate will also have to be made of the effects of any
forseeable long-term ground movements, especially if inward rotation of the
abutment is possible. Wall flexibility will have an important influence in all
these matters, but good estimates of the effects of wall rotation can be made
using the analysis of section 3.3 if suitable allowances are made for possible
deviations in soil stiffness, as discussed in sections 3.4 and 3.5 .

4.2 Stresses Beneath a Compaction Machine

The designer will inevitably be uncertain about the type of compaction plant
which will be used to construct the backfill, and the orientation it might
have with respect to the wall. The best that can be achieved will be an
understanding of the mechanisms involved in the induction of lateral soil
stresses, and the creation of an upper bound estimate which can be verified
through field measurements. This should lead to the adoption of a rational
criterion for excluding excessively heavy construction plant from the
vicinity of the wall.

For the purposes of creating a safe bound, it will be sufficient to analyse
the lateral stresses beneath a roller in a plane transverse to its axis, as
shown in figure 4.3 . It will be assumed that these stresses come to act
equally at every location and in every orientation, while the machine is
overhead. Spread of stress along the wall will conservatively be ignored.

Broms (1971), Ingold (1979), Duncan and Seed (1986), and others have gone on
to use Boussinesq’'s elastic solutions. Although Forssblad (1965) shows some
data in support of this approach, it is well known that the mobilised angle
of shearing deduced beneath the edges of a surface load in an elastic analysis
will, in practice, exceed the soil's capacity. There are also difficulties in
making elastic predictions close to retaining walls since the classical
solutions refer to loads on the surface of an elastic half-space. If it is
required to prevent any lateral movement of a rigid wall, it is necessary to
invoke reflected images of the load on the surface of the "imaginary" soil on
the other side of the wall which, by superposition, annul deflections on the

‘plane of symmetry and double the lateral stresses on the wall compared with

the free field. A wall which was more flexible than the elastic quarter-space
it replaced would attract, correspondingly, lateral stresses smaller than
those of the free field.

Advantage will therefore be taken of the alternative plastic stress
distributions created in section 2.3 and selected to mobilise some desired
angle of shearing.

Consider, for example, a vibrating steel roller. Let the total maximum force
per unit length of roll applied by the joint action of gravity and imposed
cyclic acceleration be Q. Assume that the bearing stress distribution can be
identified with that in an Ny bearing capacity solution with some mobilised
angle of shearing ¢. Here, the penetration of the roller is assumed to be
negligible in comparison to its width of contact B.

Then,
Q = 3BYyN, (4.1)

32




so that

B = J2/N)J(@Q/v) (4.2)

and the bearing stress

o, = QB = J(N,/2)/(QYy) (4.3)

Now assume, following section 2.3, that the stress distribution beneath the
roller can safely be considered to be the sum of Rankine’s active self-weight
stresses and the plastic stress distribution appropriate to the 'N; bearing
capacity solution.

Figure 4.4 depicts the lateral stress distribution beneath the centre line of
a strip load, as a function of the mobilised angle of shearing, compared with
the elastic half-space solution. The plastic stresses were taken from figures
such as 2.11 to 2.14 modified to comprise a larger number of very small stress
jumps, so that smooth curves were obtained. Four features of figure 4.4 may
be noted:

(1) A cut-off at o, = K,0, applies within an active wedge of depth
2, = (B/2).tan(45 + ¢/2)

(ii) The curves for given values of ¢ remain roughly in proportion at all
depths.

(iii) The curves are roughly hyperbolic,

(iv) Lateral stress increments predicted in an elastic half-space reduce
extremely rapidly with depth in comparison with the plastic solutions.

Further insight may be gained by plotting equivalent solutions for vertical
stress increments, against the jnverse of the depth ratio: see figure 4.5 .It
will be seen that with negligible variation the extra vertical stress induced
on the centreline can be characterised, irrespective of ¢ in the range 30° to
45°, as

oy, = 0O for B/z > 1
o, = o, B/z for B/z < 1 (4.4)
The corresponding extra lateral stress will be K,0, which will accordingly be

reduced the higher is the mobilization of ¢. Combining equations 4.2, 4.3 and
4.4 and superimposing self-weight, we obtain the approximate result

on = Koz + KJ(N,/2)/(Qv) for z < J(2/N)J(Q/1)

on = Kgyz + K,Q/z for z > J(2/Nv)J(Q/7) (4.5)
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4.3 Stresses Following Compaction of a Layer

The original lateral stresses will tend to reduce when the roller passes
away. However, this reduction may be quite small in proportion if, as is
usually the case, the bending stiffness of the wall is small in comparison to
the shear stiffness of the retained fill. 1In effect, the wall is unable to
rebound into the stiffer soil and therefore tends to retain the bending
moments it possessed while the compaction plant was working against it. The
lateral compaction stresses are, as it were, locked in.

However, some lateral stress reduction is inevitable in the most superficial
soil zone where the lateral stress would otherwise exceed the "passive” limit.
This was the simplification introduced by Broms (1971) in the first rational
assessment of post-compaction stresses: see figure 4.6. Let us assume that
this possible "passive"” zone will extend to a depth z,, and that

zp, > J(2/N,) J(Q/v). Then, using equations 4.5

Kovzp = Kuavzp + K, Uz,

i.e. zp? - K.Q (4.6)
(Kp - Ka)"

Since K, = 1/K, > 3 it is possible to write

z, = K, (Q/7) (46.7)

It is now possible to see that the assumption z, > ./(2/N.,) J@Q/v) was
justified since K, > ,/(2/N.,) for ¢ > 30°. On back substitution for z, we
obtain

on = Kyyz, = J(Qv) (4.8)

max

a value which would hold when the roller has passed away, irrespective of the
mobilized angle of shearing resistance in the usual range.

A similar result was obtained by Ingold (1979) except that Q in equations 4.7
and 4.8 is replaced by 2Q/x. The effect after finding the square root is that
Ingold’'s formulae are smaller by the factor 0.8. The foregoing approach makes
consistent use of plastic stress distributions in contrast to the mixture of
elastic and plastic assumptions used by Ingold. The similarity between the
two results demonstrates once again that vertical stress distributions beneath
surface loads are dictated chiefly by the conditions of geometry and
equilibrium, rather than the constitutive relation assumed for the material.
Ingold reported that such field data as existed seemed to fit the theory quite
well.

A revised estimate can be made if the elastic rebound of the neighbouring wall
will not tend to lock stress into the soil being unloaded. The earth pressure
coefficient after one-dimensional unloading from effective stress o, to o,
can be written, following Schmidt (1965)

K = K; R* (4.9)

where the overconsolidation ratio
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R'avi/ov_
and where the parameter a can be equated approximately to the angle of

shearing of the soil, ¢ in radians. The initial vertical stress, derived from
the superposition of self-weight onto equation 4.4 is, as before:

ous = 12 + J(N,/2)/(Q/7) for z < B

oy = Y2 + Q/2 for z > B (4.10)
The final vertical stress is simply

o, = Yz
so that the overconsolidation ratio is

R =1+ J(N,/2)/J(Q/(72z?)) for z < B

R =1+ Q/(yz%) for z > B (4.11)
Then from 4.9, for unloading one-dimensionally from an active state,

on = Kayz[1l + J(N,/2)/(Q/(72%)) )¢ for z < B

op = Kovz[l + Q/(vz2)]* for z > B (4.12)

The maximum value of lateral stress after relief can then be shown, for
typical conditions, to occur at z = B so that

on = Koy J(2/M)/(Q/7) [1 + Ny/2)¢

max

or

op = KJ(2/Ny) [1 + Ny/2]1* /(Qy) (4.13)

max
Typical values are
¢ : 30 35 40 45

Oh max//(QY) @ 0.37 0.39 0.48 0.70

Duncan and Seed (1986) went on to study the effect of soil hysteresis on
successive load/unload cycles, but the additional changes are not particularly
significant since they tend to fall between the extremes already established
in equations 4.8 and 4.13 . Taking into account all the uncertainties
regarding the precise use of compaction plant, it may be considered that
sufficient has been done to establish the significant parameters and the
possible range of values of the peak lateral stresses induced by compacting
a single layer.
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4.4 Compaction of Many Layers

Consider the compaction of a perfectly drained well graded granular fill,
up to a unit weight vy = 20 kN/m® , and strength ¢ = 40°, using a vibrating
roller applying a gross cyclic force of 40 kN/m to layers of

150 mm depth. The following dimensions are pertinent: from equation 4.2
B = 0.144m; from equation 4.7, 2z, = 0.217 m. Figure 4.7 displays the
calculated stress distribution in relation to the thicknesses of the layers.
It may be surmised that the effect of compaction over the suface of layer C
is

(i) to thoroughly disturb that layer by the initiation of repeated
large-strain bearing failures

(i1) to compact layer B by repeated small-strain stress cycles, leaving
an average lateral compaction stress o, locked into that layer of
between 0.9/(Qy) and 0.45/(Qy).

(iii) to affect the stresses in layer A relatively little, since the stress
cycles during the rolling of layer C would be smaller than those which
would previously have been caused in A by the rolling of layer B.

This sequence is consistent with the observations of Youd (1972). It is also
interesting to note that the maximum thickness D,of compacted layer
recommended in Table 6/4 of the Department of Transport Specification for Road
and Bridge Works (1987) is almost exactly in proportion to the square root of
the mass per metre of the roller, D = 0.16/(Q/y). It follows that the
proportions D:B:z, which are so significant a feature of figure 4.7 would
remain unchanged whatever weight of machine were selected, if the
specification were adhered to. In each case the mean stress locked into the
next-buried layer, such as B in figure 4.7, will be in the range 0.45/(Qy) to
0.9/(Qy). A middle range vibrating roller could have a mass of 2000 kg/m so
that with a dynamic force factor of 2 it will deliver Q = 40 kN/m and generate
lateral compaction stresses in the range 12 to 25 kN/m?.

As the layers are successively buried, consideration needs to be given to
possible further increases in lateral stress. Figure 4.8 shows a simplified
but acceptable stress path from the compaction point C for a soil near a rigid
wall, or in the free field. Point C is identified as having a lateral stress
o, derived from equation 4.12 and a vertical stress related to the thickness
of a compacted layer. The soil will react with little extra lateral stress
until point D is reached at which the earth pressure coefficient is K,. This
will be, referring to figure 4.9, at a depth

zZo = 0. / (Ky7) (4.14)

Subsequent compression will take place along the K, line if there is no wall
deflection. The resulting stress profile in figure 4.9 is identical to that
first proposed by Broms.

4.5 Effect of Wall Movement
If a wall flexes as soil is compacted against it, two effects may be noticed.

In the layer most recently placed, the wall will tend to spring back into the
soil thus tending to preserve the lateral stress when the machine moves away.
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The compaction stress o, should initially tend towards its upper limit of
0.9/(Qy). Deeper soil layers will, however, relax due to the continued outward
movement of the wall as fresh layers press against it.

Figures 3.10 and 4.1 demonstrated that a rigid wall rotation of the order of
1073 could be successful in reducing typical compaction stresses to a Rankine
profile equivalent to the mobilization of ¢ = 32° or less. This result could
be generalised for a range of initial states using figure 3.4 .

If the designer of a flexible wall is to make use of this concept, the
required rotation must be available subsequent to the placing of material at
a particular level. Consider, for example, a layer at height h in a fill of
total height H, supported by a cantilever wall of flexural stiffness EI, as
shown in figure 4.10. We will calculate the flexibility conditions necessary
to ensure the mobilisation of some particular earth pressure coefficient K.

The local wall slope as the layer is placed at height h is initially

01 - I(IH6
24 E1

The final slope at h as the fill is completed is

6, = Ky[H* - (H-h)*)
24 EI

Then the wall rotation effective in creating supportive soil shear strains
will be

Al = fge-8, = Ky[H* - (H-h)* - h] (4.15)
24 EI

and this symmetrical function is plotted in figure 4.11 . It will be seen that
the local wall rotation exceeds

A6 = 0.02 KyH* (4.16)
EI

for the middle 70% of the wall. The upper 15% will, in any event, be subject
to overstress due to traffic loads. The lower 15% is not in any position
materially to affect bending moments. A criterion therefore emerges for the
flexibility of the wall necessary to reduce the main body of compaction and
K, stresses to some smaller desired earth pressure coefficient. Following

figure 4.1, for example, and allowing at least 1072 rotation to reduce K to
0.31 :

Af > 1072

So, substituting in 4.16

EI < 20 KqH* (4.17)

Taking K = 0.31 and p = 2000 kg/m , v = 19.6 kN/m , we get :
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EI < 120 H* (4.18)

This shows that an 8 m wall with granular backfill compacted to at least 60%
relative density will be sufficiently flexible to shed part of its compaction
stresses, and mobilise ¢ = 32°, if its flexural stiffness EI is less than
about 0.5 x 10° kNm?/m, commensurate with typical reinforced concrete design
to a wall thickness of about 700 mm.

Similar criteria could be set so as to achieve more or less earth pressure
following completion of construction. However, two points should be borne in
mind. First, there is little point in reducing seviceability earth pressures
below collapse values based on ¢..,. Secondly, there will be no possibility
of relieving traffic or compaction stresses in the top of the fill : the
proper design condition will include appropriate live loads on the surface.

The possibility of slippage on the base might equally be used to limit the
possible build-up of compaction stresses through the whole depth of backfill.
There must, however, be no tendency to slip under the effects of superimposed
loads : all that can be achieved is the erasure of historic lateral stresses
greater than presently required to resist current loads.

There may be some advantage in designating a 2m zone near the wall in which
a smaller compactive force Q' is to be used. The compaction stresses should
not then exceed the larger of 0.45/(Qy) for the free field and 0.9/(Q‘y)
for the zone near the wall. It should be recalled that friction on the base
of the fill is the only agency preventing larger lateral pressures in the
hinterland from bearing on the wall itself.

4.6 Effect of superimposed loads

The effect of superimposing a uniformly distributed surcharge q over the
surface of the compacted fill is demonstrated in figure 4.12 . In principle,
the mobilized earth pressure coefficient for on-going plastic deformation
will change from K; to K; < K; as the wall rotates outwards under the extra
stress, and the compaction stresses in the upper region of the fill will
similarly be reduced as shown in figure 4.12a . In practice, the extra wall
rotation may be negligible, or can conservatively be neglected, and the
previous value of K can be retained for those elements responding to the extra
vertical stress. Between depths z;, and z,, however, we have elements which are
still over-compressed, and these stresses can remain unaltered for the
purposes of a simple, conservative calculation. If more accuracy is required,
iteration can be used to derive a new wall rotation from the simple pressure
distribution in figure 4.12b, leading to the derivation of modified pressures,
and so on.

A similar approach can be taken for concentrated loads, but there can be an
allowance for the vertical stress increment reducing with depth beneath the
surface. Since some soil elements will respond quasi-elastically where they
have been pre-compressed, while other elements will be mobilizing
quasi-plastic earth pressure coefficients, the exact stress distribution could
be disputed and either elastic or plastic distributions might be used with
equal justification. If elasticity is used, however, consideration needs to
be given to the possible influence of the wall. Figure 4.13 demonstrates the
use of an "image" load Q* to create a plane of symmetry in the desired
location of a rigid wall. Their superposition in the free field eliminates
lateral movement at the wall, but has the effect of doubling all the normal
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stress increments near the wall. The more flexible the wall, the smaller the
stress it attracts. If the wall were to be as flexible as the soil it
replaces, the free field solution would apply unaltered, and if the wall were
even more flexible the stress increment it would receive would be smaller than
the simple elastic half- space solution.

It would be equally satisfactory to use the plastic distributions of stress
beneath a strip load which were sketched in figures 2.9 to 2.14, or the
simplified version in figure 4.5 . Figures 2.16 to 2.20 showed that there is
little difference between the lateral thrust factors K, appropriate to L/B =
0 and 0.5, and loads are usually required to act in their most damaging
location, closest to the wall.

Consider, as an example, the wall of section 2.3.2 assuming that it has been
shown to be flexible enough to partially relieve compaction pressures and to
mobilise an average earth pressure coefficient of 0.31, commensurate with

¢ = 32° : see figure 4.1 . Assume that a similar ¢ value can be uniformly
mobilised in bearing, beneath a superimposed load. This exactly recreates the
scenario of figure 2.22 and the succeeding analysis, but relevant in this case
to a serviceability check rather than to collapse. Given the same loads, the
same load effects would obviously emerge. However, BS 5400 requires no load
factor on the HB load for a serviceability check, so the calculated load
effects would be corresondingly smaller. In the HB-loaded section 'a’ M,
reduces to 618 kNm/m, M, to 1106 kNm/m and the average bending moment to
787 kNm/m.

It is, of course, possible that calculated load effects at a serviceability
limit state actually exceed calculated effects at collapse. Suppose, for
example, that in the previous case the wall had been effectively rigid prior
to yield of the reinforcement, so that there was no reduction of compaction
stress. Also suppose that the designer wished to permit compaction everywhere
with a 2000 kg/m vibratory roller. Taking a dynamic amplification of 2, this
would apply 39 kN/m so that an upper estimate of compaction stress could be
o, = 0.9/(Qy) = 25 kN/m?, Figure 3.10 indicates that, for no relief of stress
to be allowable, the wall rotation # must be less than 10°* radian, implying
an extremely stiff integral box abutment.

Now consider the possible stress distribution for a section of wall carrying
an HB bogey, shown in figure 2.22 and 2.23a. Discarding the previous load
factor, we have Q = 900/4 = 225 kN/m spread over a width of 2.25 m adjacent
to the wall, applying a corresponding vertical stress of 100 kN/m?. It is now
necessary to select an appropriate value for ¢, recognising that the
decision will not very greatly affect the vertical stress profile which
emerges. An approach is therefore to select a value which would offer an
appropriate lateral stress directly beneath the load. Vertical compression
in a soil which is not free to expand laterally is recognised to generate an
earth pressure coefficient

K, = 1-sind.,, ' (4.19)

where ¢p., 1s the peak triaxial angle of shearing. The earth pressure
coefficient related to the currently mobilised angle of shearing is

Ko = (1 - sindpon) (4.20)
mob (1 + singpp)
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It is therefore easy to equate K, to a mobilized K, to find a particular value
of dnop » ¢ say, which applies during one-dimensional virgin compression. It
is easy to check that

$o = $max - 11.5° (4.21)

satisfies 4.19 within +4% for ¢,,, in the range 30° to 45°. For a soil
compacted, according to specification, to a 95% optimum dry density, the
relative density I, ~ 0.73 . Collapse calculations would certainly require a
further margin for error, but with regard to serviceability it might be
decided to use I = 0.73 in equation 1.8 to get Iz = 2.67 which in equation
1.6 would offer triaxial ¢y = ¢crir + 8°. A sub-rounded sand might then give
#max = 40° and an angular crushed rock perhaps 5° more. It follows from 4.21
that ¢, =~ 30° should suffice for an estimate of lateral stress due to the
load.

Figure 4.14a shows the lateral stress deduced for the HB-loaded section using
the plastic distribution of stress with ¢ = 30°, figure 2.11, and overlaying
a wall of the correct H/B ratio, 7.5/2.25 = 3.33. Having obtained the
increments of stress due to the strip load, it is necessary to calculate the
required surcharge using equation 2.12 :

g, = 100/17 = 5.9 kN/m?
Since this is already incorporated in figure 2.11 it is only necessary to add
5.1 kN/m? to re-create the pavement surcharge of 11 kN/m?. The components of
figure 4.14a can then be assembled. Only then can it be seen that the
precompression of 25 kN/m? is everywhere exceeded. This having been
ascertained, figure 2.16 can be used to derive :
K, =0.65, KL =0.39 , n =0.64
We can then calculate
Mq =0.65x 225 x0.64 x 7.5 = 702 kNm/m
Mg =0.5%x0.33 x 11 x 7.52 = 103 kNm/m
M, =0.167 x 0.33 x 18 x 7.5° = 422 kKNm/m
so that

M, = 1227 kNm/m

which is only 5% less than the previous collapse estimate including the load
factor.

Figure 4.14b shows the lateral stress deduced for section 'b’ with a uniformly
distributed traffic load to add to the pavement surcharge. Here, the sum of
the current lateral stress generators does not exceed the precompression at
depths between 0.2 and 3.0 m. We therefore must consider three components of
bending moment at the base :

M, - 422 kNm/m
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Mp = 0.5 x 0.33 x 21 x 7.5% = 197 kNm/m
together with the precompression component taken directly from figure 4.14b,
Mc=-0.5%x0.3x15x7.1+0.5%2.5%15x6.17
= 132 kNm/m
Summing, we obtain
Mp = 751 kNm/m
which is 25% greater than the previous value calculated for collapse.

The weighted average bending moment calculated for this serviceability check
is then

M= (4x 1227 + 6 x 751 )/10 = 941 kNm/m

which is 7% greater than the collapse value, even in the absence of the
collapse load factor.

Just as with compaction effects, it must be expected that 50% to 100% of the
load-induced stresses will remain locked in when the heavy load has passed.
If it is possible that repeated, abnormally heavy loads could travel in any
arbitrary traffic lane, the precompression assumed for neighbouring sections
should not be less than half the live load increment in the currently loaded
section,
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5 COLLAPSE INDUCED BY SOIL FAILURE
5.1 Free Body Diagram

Figure 5.1 shows a possible free body diagram for an L - wall in limiting
global equilibrium. The self weights W, of the wall and W, of the soil lying
directly above the wall base, together with the superimposed dead load q4 and
live loads q; and Q acting via the pavement on this rectangle of fill,
represent the actions which must be supported by soil boundary stresses acting
on the base. Passive support has been ignored.

The lateral stresses on the vertical plane through the heel should be limiting
stresses. Since foundation collapse would entail substantial movements on slip
surfaces through the fill, earth pressures should be consistent with the
mobilisation of the critical state strength of the soil: they can be
calculated in accordance with chapter 2. It is necessary to know both the
magnitude and line of action of the lateral thrusts. The horizontal Rankine
self-weight thrust ignoring water pressures in the soil and the possibility
of friction on the plane, is

P, = MK,yH?
and acts at H/3 above the base. The Rankine surcharge thrust is

Pq = K,(qq + qu)H
and acts at H/2.

The presence of any line load Q transmitted through the pavement onto the
surface of the fill will also generate normal and tangential thrusts which can
be superimposed on the vertical plane following the method of section 2.3.2
and taking appropriate coefficients from tables 2.2 to 2.9, or figures 2.16
to 2.20. The critical location of loads will be such as to generate thrust on
the vertical plane through the heel without contributing to the weight of the
sliding block which would enhance base friction. Accordingly, the critical
position for a line load would be with its effective edge (allowing for spread
through the pavement) above the heel. Following figure 2.15, therefore, the
appropriate case for calculating thrust on that plane will be L/B=0.5 . Thrust
coefficients K, and K, and height ratio n=h/H can then be read from figure
2.21 or equations 2.13 to 2.15 .

The foundation stresses may be idealised as uniform (r,, o0,) over a reduced
width X on the base so that for horizontal equilibrium of the rectangular
monolith

X = P, + Py + KQ ' (5.1)

and for vertical equilibrium

oX = Wy + W, + qil + KQ (5.2)
and for moment equilibrium about the heel

oX(B - X/2) = W,.C, + W,L/2 + q4l2/2 + PH/3 + PH/2 + K,Qh  (5.3)
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Equations 5.2 and 5.3 can be merged to find X, which can then be substituted
in 5.1 and 5.2 to find r, and oy.

5.2 Undrained Bearing Capacity Calculations

Values of base stresses 7, and o0, can then be inserted into a bearing
capacity analysis which takes account of load inclination, in order to find
what soil strength would need to be mobilised. It is known, for example, that
for undrained bearing failure on soil with shear strength c,, there exists a
set of stresses in plastic equilibrium such that

o = 05+ c [l + 7 - B + cosB] (5.4)
where B = sin? (rg/c,)
and o, = 7D

for a long footing at depth D in soil of unit weight y. Iteration would then
show what value of c,, cg say, must be mobilised to prevent failure under
bearing stresses(r,, o,). This could be compared with the worst undrained
shear strength which might in fact be experienced, consistent with the site
investigation and the level of inspection or testing to be demanded during
construction. Where a softer clay layer lies at some depth beneath the base,
equivalent bearing stresses on that layer can be found by extending the
rectangular block in figure 5.1 downwards, and allowing for the extra active
and passive thrusts on its sides.

Undrained base sliding in the absence of vertical bearing failure must also
be prevented: the direct application of equation 5.1 should show that
T, < cyw.The undrained shear strength on the base will be

cyp = o'gptano; (5.5)

where ¢, is the effective angle of shearing resistance of the interface and
o'w is the undrained normal stress. Also,

o' = Oy -

where u,, the undrained pore pressure immediately beneath the base can be
written, following Terzaghi’'s conventional assumption,

U o= U+ ooy (5.6)

where u, is the initial pore pressure after excavation (presumably negative).
Then

ce = (-up)tand, (5.7)

This expression neglects the tendency of the horizontal shear stress on the
base to create excess pore pressures, which would be supportively negative in
the case of heavily overconsolidated clays for which o << o', .. However,
shear stresses can not alter pore pressures in elastic materials, and since
the base will be designed so as to minimise soil yield it remains possible
that an L - wall with a flat base could "aquaplane” on the high pressure water
released by the consolidation of an underlying clay which was itself
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undisturbed.

Since the initial suction (-u,) after base excavation might be rather
modest,it is unlikely that equation 5.7 will offer sufficient short-term
shear strength to support the lateral thrust of the retained soil. One of two
defensive measures may be taken:

a) Insert a blanket drain beneath the base, and ensure that it is operative
at all stages of contruction and consolidation in service. The shear strength
of the interface will then be the smaller of oytangé; where ¢, is the angle
of friction between concrete and drainage zone, and the minimum shear
strength ¢, of a plane of unconsolidated clay some distance beneath the
drainage zone.

(b) Design some form of shear key, such as that shown beneath the heel in
figure 5.2, so that base sliding cannot take place without the supporting clay
being sheared. The interface then has an undrained shear strength c, over the
whole length from the front of the key to the toe of the wall, which can be
inserted into equation 5.1 . Any form of surface indentation sufficient to
force the clay matrix to deform would have the same effect.

5.3 Bearing Capacity Calculations using Effective Stresses

Every soil should be checked against drained bearing failures. Equilibrium
water pressures, where they might exist, should be taken into account, both
on the vertical plane through the heel, and on the whole length of the base.
The superimposed block of effective stresses (r,,0’,) acting on reduced width
X of the base can then be deduced by adding the effects of these two hydraulic
thrusts into the equilibrium equations 5.1, 5.2 and 5.3. The effective angle
of base shearing

8 - tan_l (fb/a'b)

can then be made to be smaller than the estimated effective angle of shearing
of the interface ¢;, so that sliding can be prevented.

‘The drained bearing capacity of a rough strip foundation of effective width

X is usually written, adapting Hansen (1966),

o'y = 1iNgo's + i N Xy’ (5.8)
where o', is the minimum anticipated magnitude of soil effective stress on the
interfacial plane just beside the base, and vy’ is the effective unit weight
(allowing for buoyancy effects) of the soil beneath the base. The values for
bearing capacity factors Ny and N, can be derived using:

N, = tan® (45 + ¢/2)exp(xtang) (5.9)
N, = 1.8 (N; - 1)tang (5.10)
The values of the reduction factors for load inclination can be taken from:

ig = (1 - tans)? (5.11)

i, = (1 - tan§)* (5.12)



Hansen(1970) offers further semi-empirical factors to cover depth, shape, and
slope, effects.

An iteration can be performed to determine what value of ¢, ¢, say, must be
mobilized to prevent failure under o’y and §. This can be compared with the
value which can safely be relied upon in the foundation zone, considering the
possible variations of both density and stress.

Meyerhof (1950) showed that the mean operative value of the effective stress
as it varies around a failing footing was approximately one tenth of its
bearing capacity,

P'op = 0.1 0’ (5.13)

This can be used to select an equivalent constant value of ¢,,, through
equation 1.6, which was shown to correlate for triaxial compression tests on
typical hard-grained sands. The conservative step of using triaxial rather
than plane strain strengths should more than compensate for the lower shear
resistance of bedding planes which has sometimes been observed.

The hypothesis that the designer must refute is that failure takes place under
collapse load conditions, i.e. that o' = 0,'. This value can therefore be
inserted via equation 5.13 into 1.6 to derive avalue of ¢,,,, which must
not be less than the value ¢, derived by exactly satisfying the equilibrium
condition in equation 5.8 .

This demonstration will have relied upon the correct or conservative
estimation of soil relative density for insertion into the calculation of the
relative dilatancy index in equation 1.4, so that this could be used in
equation 1.6 . However, in the event that that the back-analysis of equation
5.8 with collapse loads happens to give ¢, < ¢, it clearly follows that
complete bearing failure is impossible, whatever the density of the bearing
medium. The value of ¢..,, for granular materials can reliably be taken to lie
between 32° for rounded particles and 37° for angular particles, though at
sufficiently high confining pressures to cause general particle crushing the
extra interlocking due to angularity is no longer effective and ¢..;, appears
to reduce towards 32°. A safe strategy is therefore available for granular
materials irrespective of their density. Note, however, that severe
distortions and settlements would still occur in loose deposits if an attempt
were made to mobilise ¢..,.: serviceability will be discussed in the next
chapter.

For clayey solls, or aggregates which might be more crushable than quartz
sands, it will be necessary to perform triaxial tests which establish ¢,
under the appropriate conditions, replacing the empirical correlation in
equation 1.6 . It may be preferred simply to derive a conservative value by
finding ¢,y from a test on reconstituted virgin (loose) soil.The
back-analysis of long-term retaining wall and slope failures in stiff fissured
plastic clays, for example, has shown that critical state (fully softened)
strengths were all that could be mobilized, notwithstanding that greater
strengths could be observed in monotonic triaxial compression tests on in-tact
material.

Figure 5.3 compares the "secant" strength approach used throughout this report

with the more usual "tangent" method. It will be seen that both sands and
clays can mobilise strengths above their critical state frictional strengths.
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These higher strengths are, in both cases, associated with dilatancy. Highly
over-consolidated clays are strongly dilatant, and therefore very susceptible
to localised softening in rupture bands. The conventional description of the
strength of these clays is in terms of the "true cohesion" ¢’ exhibited by the
best tangent to their strength envelope, and of its unreliable nature. These
are simply contrasting descriptions of the same phenomenon.

It seems likely that the loss of the brittle strength component, however
described, is associated with the cyclic strains induced by seasonal
groundwater variations, permitting degradation of the stiff clay skeleton
through the growth of slickensided ruptures from the seat of pre-exisiting
fissures. Watson (1956) described just such a failure zone behind a retaining
wall at Uxbridge, which failed 17 years after construction. We can deduce from
Henkel’s (1956) back-analysis of the collapse that whereas the critical state
strength was mobilised in the active zone, a proportion of peak strength was
apparently available in the foundation zone. It is not clear whether a further
lapse of time would have permitted the softening of the more highly stressed
foundation zones, had the wall not collapsed when it did. Skempton (1977) does
show, however, that cuttings in Brown London Clay fail in critical state
conditions (¢.r3y = 20°) in the long term.

Less plastic sandy or silty clays are apparently less susceptible to this form
of progressive failure: Skempton (1961). If the designer wishes to employ an
element of the brittle peak component of strength, he can perform triaxial
tests around the mean effective stress given by equation 5.13, and deduce an
appropriate operational secant ¢ value for comparison with ¢, derived from
footing analysis, just as he would for granular soils. This should offer
sufficient guidance regarding the possible vulnerability of the foundation,
though the more usual c’,¢’ approach would obviously give a more accurate
prediction of failure loads if these soil parameters were known to give a
reliable strength envelope over the required range of effective stress. It
would then be appropriate to add a term iN.c’ to the bearing capacity
equation 5.8, where i, = i; and N, = (N; - 1)coté. The strong disadvantage of
this latter approach is that it entails two parameters, whose mutual variation
may not be easy to stipulate in cases where the appropriate strength envelope
was not so clearly defined.
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6 UNSERVICEABILITY THROUGH FOUNDATION DISPLACEMENT
6.1 Displacement Criteria

The U.S. Federal Highway Administration (Moulton et al, 1985) reported on
"Tolerable movement criteria for highway bridges". Their widely circulated
questionnaire to highway authorities in North America elucidated that only a
small proportion of bridge decks had moved, but this group never-the-less
included 314 examples which furnished data on the movement of 439 abutments.
Of these, 58 were full-height abutments, 307 perched, and 16 spill-through.
Regarding the full-height abutments, two-thirds suffered less movement than
100mm vertically and 50mm horizontally. Perched abutments, by comparison,
moved somewhat greater horizontally. Spill- through abutments were more
frequently reported to suffer large vertical movements. The larger abutment
movements tended to involve both vertical and horizontal components, and were
correlated with the presence of fine- grained soils. In terms of foundation
type, the average movement of abutments on piles was similar to that of spread
footings: it should, of course, be recalled that piled foundations would have
been selected more frequently in poor ground conditions.

Regarding the influence of foundation movement on the bridges, FHWA reported
that of the 155 bridges with maximum differential vertical movement of less
than 100mm, 79 experienced no damage whatsoever and the remaining 76 tended
to experience only minor cracking in the abutments. Vertical movements in
excess of 100mm increasingly led to distress in the superstructure. Bridge
superstructures in both steel and concrete were much more susceptible to
horizontal movements: two-thirds of superstructures and one third of bearings
were already damaged by movements in the range 25 to 50mm, beyond which
abutment damage also began to be reported. By far the most frequent sequence
of events involved the inward horizontal movement of abutments, jamming the
deck against the back wall of the abutments, closing the expansion joints, and
causing serious damage to the bearings. Riding quality was invariably impaired
only after deformations which had already compromised the integrity of the
structure.

In assessing whether deformations were tolerable, FHWA investigated whether
any damage which did occur could be ignored, or economically repaired. Damage
was defined as intolerable where whole-life-costs of construction, repair and
maintenance will substantially exceed the costs of a hypothetical, more
robust, alternative. Differential vertical settlements less than 100mm, and
horizontal translations less than 50mm, were found to be tolerable in 90% of
cases where these movements were not coupled. Thereafter, movements were
increasingly found to be intolerable: only 23% of differential vertical
settlements between 100mm and 200mm were thought tolerable, and only 10% of
horizontal movements between 50mm and 100mm. When coupled with vertical
movements, the horizontal movement tolerance seemed to reduce somewhat, though
a translation less than 25mm was almost never found to be intolerable.

The more frequent incidence of damage to concrete rather than steel decks was
more than counterbalanced by their greater reported tolerance of damage,
implying that minor cracking could readily be observed and ignored. In terms
of differential vertical movement expressed as a proportion of span length,
it was found that 97% of the distortions less than 0.005 were found to be
tolerable. Even simply supported spans could be damaged beyond 0.005
distortion. Analytical predictions should take into account: the rate of soil
consolidation, the sequence and timing of construction of embankment, abutment
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and deck, and creep in the concrete.

The bridge designer should generate his own 1list of deformation limits
governing the permitted differential movements of abutments and piers. These
limits should be selected by reference to the tolerance to movement of the
deck and its joints and bearings, the piers and abutments themselves, ‘the
ancillary works such as drains and parapets, and the functional requirements
of the bridge including headroom and riding quality. The FHWA report suggests
that abutments which are to settle more than 0.005 of the span, or to
translate inwards more than 50mm, will require special detailing.

6.2 Control of Foundation Movements

The U.S. Federal Highway Authority have also reported on the performance of
spread footings for highway bridges (DiMillio 1982, Gifford et al 1987). It
was found that footings over inorganic cohesionless materials (defined as
those with a plasticity index less than 5%) never settled more than 40mm and
only settled in excess of 25mm when the soil was very loose. The actual
magnitude of movement was, however, shown to be unpredictable within about
10mm by any of the recognised approaches, of which D’Appolonia (1968) proved
the most reliable. This also has the advantage of being based on the theory
of elasticity: the only step requiring empirical judgement is the selection
of an equivalent soil modulus using available correlations with SPT data, or
CPT data using the analogous method of Schmertmann (1970).

Since no abutments on sand moved further than could be tolerated, however, it
might be concluded that the existing practice of providing a load factor of
three against bearing capacity failure precludes the development of excessive
settlements and renders the calculation of such settlements redundant for this
class of construction. This conclusion may be fortified by the recognition
that the only component of foundation movement capable of damaging the bridge
deck is that occuring after it has been erected. Since granular soils respond
as soon as they are loaded, only the dead and superimposed loads due to the
deck need normally be included in the analysis of deck deformations. Further
considerations are, however, necessary when large cyclic loads, such as those
generated by earthquakes, must be transmitted to loose granular soils: soil
stabilization techniques such as dynamic compaction may then be preferred.

It is interesting to reflect that a reduction of bearing capacity by a factor
of 3 is equivalent, over the likely range of angle of shearing, to a rather
precise reduction in ¢ of 7.5° + 0.5°. The existing design routine is
therefore almost exactly equivalent to designing foundations to mobilise ¢,
= épax - 7.5° in a plastic bearing calculation. The derivation of a safe value
for ¢p.x was covered in section 1.1.3 . The perusal of triaxial tests results
on sands at major effective stress levels upto 1000 kN/m? will confirm that
the mobilisation of ¢,,, - 7.5° generally requires no more than an axial strain
of 0.25% for typical sub- rounded pre-loaded quartz sands: the same figure can
be derived from equation 3.10. This required strain may be seen to rise to
0.5% to 1% for virgin-loaded sands, depending on their density. These figures
may be further increased if the soil particles are more crushable (e.g. more
angular quartz and feldspar, weaker calcareous particles or rockfills subject
to weathering). Since the stress induced under a foundation will significantly
affect only a zone about twice as deep as the base is wide, these figures are
consistent with base distortion ratios (movement/width) in the range 0.5% to
2%, similar to the observations, and broadly acceptable.
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Fine-grained soils, and especially clays, are capable of creating much larger
foundation displacements, with a significant delayed component due to
consolidation which can lead to damaging structural distortions.

The logical relationship between mobilised stress and strain as experienced
in triaxial tests and beneath footings was first explored by Skempton (1951)
in discussing the immediate, undrained, settlement of isolated foundations on
clay. Skempton showed that for a given mobilised strength c,,, derived
directly from the plastic bearing capacity equation as described in section
5.2 above, the foundation settlement ratio p/B could be expected to be double
the axial strain required to mobilise the same strength in a triaxial test.
He also showed that for c ,/c, = 0.5 the axial strain in triaxial tests on
London <c¢lay was about 1%, and that corresponding settlement ratios of
footings were accordingly about 2%. Later work has demonstrated the higher
stiffness of London clay at smaller strain magnitudes ( Jardine et al, 1984),
and the rather greater stiffnesses of low plasticity clays. The compression
data of an undisturbed,triaxially consolidated, sample of London Clay are
shown in figure 6.1 in terms of the mobilized undrained strength ratio versus
axial strain plotted on a logarithmic scale.

The use of a strength reduction factor of 2 also prevents local plastic
yielding beneath the edges of a footing: it is known that first yield of an
ideal elasto-plastic soil subject to a strip of uniform pressure would occur
at a bearing stress of 3.l4c, prior to collapse at 5.l4c,. In general
practice, a reduction factor of 3 on collapse loads has been used to confer
notional serviceability on foundations where stress-strain data have not been
available.

It must, however, be recalled that the spread footing of a bridge abutment is
not isolated: the influence of the embankment fill must always be taken into
account. Figure 6.2 shows an undrained shear strain mechanism for a
semi-infinite uniform surcharge being placed on a limited bed of uniform clay
of depth D. The clay remote from the edge of the surcharge will initially
suffer no strain, but will generate an excess pore pressure equal to the
surcharge o,. Undrained shear strains will occur beneath the edges of the
loaded area however, and they will be idealised as occuring uniformly in two
triangular zones, an active zone OFE and a passive zone OFG, for the purposes
‘of this demonstration. The clay below GO and EO will be taken to be immobile:
the resulting undrained deformation pattern is shown in figure 6.2 . For
simplicity, friction along OF and EF will be ignored for the purposes of
stress-analysis.

Let the edge of the loaded area rotate by angle # : conservation of volume
dictates that both OF and GF rotate by the same amount. By analogy with figure
3.3 we know that the shear strain in both OFE and OFG will be 24. Let the
shear strength mobilised at this shear strain be ¢, and the increment of
horizontal stress oy,. Then:
o, - op = 2c
ah-2c

We therefore derive

a, = 4c
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This offers 4c, as the ultimate bearing capacity, a 22% underestimate due to
the neglect of friction on the plane OF. If this underestimation can be dealt
with simply by scaling all the mobilised bearing pressures by a factor 1.22,
we are left with the result that

Cmop = 0v/5.14

associated with a shear strain beneath the edge of the load of 26 where the
edge rotates through angle #. Now if c_, is mobilised in a triaxial test at
axial strain e¢,, say, then the shear strain will be 1.5 ¢,. It should
therefore follow that 24 =~ 1.5¢,, or

8§ = 0.75 ¢, (6.1)

Although this simplified analysis fails to take account of shear stress
beneath the wall base , it is already clear that the tendency for outward
movement of the soil at edge A is likely to cause the wall to translate by the
same order of magnitude as it settles.

It is suggested, for design purposes, that local base rotations be linked
through equation 6.1 with axial strains observed or inferred in representative
samples forced to mobilise corresponding strengths in triaxial undrained
tests. It may be necessary to identify two zones of deformation, ‘b’ directly
beneath the wall base and a deeper zone 'e’' influenced by the embankment as
shown in figure 6.3. The component of base rotation 4, , due to the vertical
stress component o, would be estimated from the axial strain ¢, observed or
inferred for a triaxial sample recovered from depth B/2 and forced to mobilise
the appropriate shear strength o¢,/5.14 . Zone ’'e’' would extend for a distance
equal to the depth D of deformable material. The tilt 4, of ground adjoining
the wall would be estimated from ¢, in a triaxial sample from depth D/2,
and therefore presumably stronger, forced to mobilise the same shear
strength. The wall would then be expected to move downwards and outwards at
its toe by roughly equal amounts

p =& 0.75] Be, + (D-B)e, ] (6.2)

To these displacements and rotations must be added the effects of the
‘horizontal base shear force and the net moment about the centre of the base.
These additional effects can best be approximated using elasticity theory, as
indicated in the next section. An appropriate elastic modulus may be obtained
from the tangent to the triaxial stress-strain curve leading upto the point
of strength mobilisation deduced from the bearing capacity equation 5.4
Suppose, for example, that a wall is to retain 8m of fill which applies 152
kPa to London clay for which figure 6.1 is taken to be relevant. The mobilized
strength due to vertical surcharge alone is 152/5.14 = 30 kPa. If a wall base
has been designed for shear and moment in the usual way then the local
mobilised strength beneath the base might be 45 kPa. If the clay beneath the
base had ¢, = 100 kPa then these two degrees of strength mobilization would
require 0.18% and 0.61% axial strains respectively. Thé increment of
deviatoric stress between these points is 2 x (45 - 30) = 30 kPa, and the
increment of axial strain is 0.43%. The equivalent modulus for this increment
is therefore 3000/0.43 = 7000 kPa or 70 times the shear strength, which is
often taken as a typical tangent modulus around the working bearing stress of
overconsolidated plastic clays.

The consolidation component of settlement can be estimated in two ways: from
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a consideration of the excess pore water pressures which are to be dissipated
(Skempton and Bjerrum, 1957), or indirectly by estimating the total settlement
using elastic stress distributions together with a drained soil modulus ( or
the oedometer modulus coupled with the assumption of one-dimensional strain)
and then deducting the previously calculated immediate component. In either
approach, the final vertical effective stress will not have to exceed the
pre-compression of the clay if large plastic compressions are to be avoided.
The likely output of the consolidation calculation will be that the delayed
settlement of the heel of the wall will exceed that of the toe, due to the
influence of the embankment surcharge. The expected result will be a tendency
for reversal of tilting, causing lateral earth pressures to rise as the wall
stem pushes into the fill. Once the amount of tilting has been estimated,
chapter 3 of this report will enable an estimate to be made of the possible
increase in earth pressure. However, the interaction between lateral earth
pressures and foundation movements is complex: work on both physical and
numerical models is in hand at Cambridge University.

6.3 Foundation Displacement Calculations

Soils which have been prevented from gross plastic yielding may be analysed
for deformations using carefully measured values of soil stiffness. Two types
of calcualtion are widely used, both based on an assumed elastic stress
distribution

(a) neglecting lateral strain, so that a numerical integration of strains can
take place using oedometer data.

(b)adopting either a closed-form, finite element, or boundary element solution
for displacements, using Young’s modulus data from triaxial tests. The one
dimensional modulus E, (or the coefficient of volume compressibility m, =
1/E,) can be related to the drained elastic parameters Young's modulus E; and
Poisson’s ratio vy, thus

E, = E«(1 - vy (6.3)
(1 + Ud)(l - 2'Ud)

For a typical value v¢ = 0.25, E//E;4 = 1.2

Method (a) 1is applicable only to total displacements, whereas (b) can be
applied separately to immediate or total settlements depending whether
undrained stiffness E, or drained stiffness Ej is used. The settlement p due
to a load Q acting on a footing of width B on an elastic half-space b is of
the form

p o= LQ . (1 -v) ' (6.4)
B E

where I, is an influence factor which depends on the geometry of the footing.
Using the fact that the shear modulus of an elastic material is unique
irrespective of the degree of drainage,

Gu - Gd

It‘follows that
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E. - Es (6.5)
2(1 + vy) 2(1 + vy)

Then the ratio of immediate to long-term settlement

2o = - v2) . __Es
Pa Eu (1 = vzd)
- (1 - v) (6.6)
(1 - Ud)

Using v, = 0.5, we find that p,/pq for a footing on a half-space takes the
narrow range 0.5 to 1, with a typical value of 2/3 when v’ = 0.25. This
proportion falls towards zero as the bed depth to footing width ratio reduces
towards zero and the mode of deformation becomes one-dimensional compression.

With sufficient accuracy, the influence factor I, in equation 6.4 for a
rigid rectangular foundation BxL on the surface of a homogeneous elastic half
space can be taken as:

I, = J(B/1) (6.7)
(1 + 0.05L/B)

The horizontal displacement § due to a horizontal force F acting along the
side B of a rigid rectangular footing BXL on a homogeneous elastic half- space
can be written

6 = LE (6.8)
BE

where

I, = L(B/L) (6.9)
(1 + 0.015L/B)

The rotation w of a rigid rectangle of width B carrying a moment M about the
L axis, standing on an elastic half-space, can be written

w = I, MO - v¥ (6.10)
B? LE
where
I, = 2(1 + tan™! L/B) (6.11)

If the depth of the deforming layer is of the same order of size as the
footing, or the stiffness varies linearly or stepwise with depth, reference
can be made to appropriate tabulations in Poulos and Davis (1974), for
example. More generally, Newmark’s charts can be used with elastic stress
distributions assumed below flexible loaded areas. The settlement of a rigid
uniformly loaded rectangular footing may then be approximated as

Prigid = % [2Pcantre * Pcorner)fiexible (6.12)
There is a particular difficulty in selecting an appropriate modulus for soil,

due partly to the non-linear and path-dependent nature of its stress-strain
relations, and partly to the difficulty of preventing significant disturbance
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of the soil prior to testing. Since stiffness reduces at larger strains, and
the largest strains occur immediately beneath a foundation, it will be
conservative to determine a stiffness modulus appropriate to that zone.
Dividing design displacements by the foundation’s width leads to an estimate
of the maximum equivalent axial strain in an undrained triaxial test, for
example. Some of the implications of the non-linearity of soils for
soil-structure interaction analyses are discussed in Jardine et al (1986).

Figure 6.4 shows the pattern of hysteresis typically observed in an undrained
triaxial compression test in which care has been taken to minimise the initial
bedding error due to inaccurate trimming. The effects of prior stress path
can readily be appreciated by considering the possible range of stiffnesses
exhibited at points X,, X;, X each of which are at a unique deviatoric stress
o, and each of which are in a phase of stress increase. It should be
appreciated that the taking and trimming of a clay sample will inevitably
result in a stress cycle which will, in general, affect the future measurement
of soil stiffness.

The effects of sample disturbance can be accounted for in part by recognising
that the strain-increments occuring after any stress reversal are
approximately independent of previous stress history, offering a unique curve
of secant modulus E, against strain e¢. Figure 6.5 illustrates the method of
updating the origin for strain, and the definition of secant modulus.

Figure 6.6 shows the superposition of the data for overconsolidated kaolin
(OCR = 8) taken from successive cycles of stress reversal, using a plot of
E,/c, against axial strain on a logarithmic axis.The figure also shows
additional data of more plastic London clay and a less plastic silty clay from
the North Sea, in which strains were monitored internally for maximum accuracy
(Jardine et al,1984). To use graphs of this sort it is necessary to estimate
the strain increment after the last stress reversal in the field. The
permitted strain following construction will form part of this, but it may be
necessary to make an allowance for strains which have taken place prior to
construction. Often, however, the foundation will cause recompression of
overconsolidated soils immediately beneath it. In this case this most
significant zone will suffer a stress reversal, so the strain magnitude for
figure 6.6 could be taken directly from a consideration of projected
deflections after construction.
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7. CONCLUSIONS

This report describes methods of evaluating the stresses in the granular
backfill to retaining structures for purposes of limit state design. The
methods presented consider the influence on the stresses of compaction, self-
weight and superimposed loads, as well as the effects induced by various modes
of wall movement. The conditions pertaining to both collapse and
unserviceability of the retaining wall are also considered to enable the
methods to be understood and readily adopted. A number of examples are fully
described and non-dimensional charts presented.
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Table 1 Geometry of stress discontinuities
$ P 30° 32° 35¢ 40° 45°
30° R 1.7676 1.8499 1.9870 2.2620 2.6180
a 47.2 46.3 45.1 43.1 41.1
8 17.2 16.3 15.1 13.1 11.1
$ 25.7 27.3 29.8 33.8 37.8
15°¢ R 1.3468 1.3800 1.4340 1.5388 1.6687
a 38.1 37.1 35.7 33.3 31.0
8 23.1 22.1 20.7 18.3 16.0
8 28.9 30.8 33.6 38.4 43.1
74e R 1.1625 1.1770 1.2003 1.2444 1.2973
a 33.9 32.9 31.4 29.0 26.5
B 26.4 25.4 23.9 21.5 19.0
8 29.7 31.7 34.7 39.6 44.5




Table 2 K, for normal component of pressure on vertical walls

§/¢

0 0.333 0.307 0.271 0.217 0.172
1/3 0.305 0.281 0.247 0.197 0.156
2/3 0.285 0.262 0.229 0.182 0.143
1 0.273 0.250 0.218 0.172 0.134




Table 3 Non-dimensional soil stiffness A

Ip 0.2 0.6 1.0
e 0.79 0.67 0.55
vy kN/m® 14.5 15.6 16.8

Zm K

1.0 0.4 7580 9014 10863
0.8 8594 10221 12318
1.6 10329 12284 14804
3.2 13128 15612 18815

2.0 0.4 5360 6374 7681
0.8 6077 7227 8710
1.6 7304 8686 10468
3.2 9283 11039 13304

4.0 0.4 3790 4507 5431
0.8 4297 5110 6159
1.6 5164 6142 7402
3.2 6564 7806 9407

8.0 0.4 2680 3187 3840
0.8 3038 3613 4355
1.6 3652 4343 5234

3.2 4641 5519 6652
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Figure 3.3 Simple displacement field: Bransby and Milligan (1975)
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Figure 3.10 Typical earth pressures variations on outward rotation
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Figure 4.5 Vertical stress increments due to surface load
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Figure 4.11 Wall rotations following placement of soil



a) Actual b) Idealised

Figure 4.12 Superposition of uniform surcharge on precompressed f£fill

ett— (O

el ()
]

f— O

Boussinesq

| -'»20'
+ -

free field *rigid’
wall
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Section (b) : HA loaded



Lo e

Ko Q

I

H— e RS 2 I
% | \ Ka¥H Ka(q,eq,)

Figure 5.1 Pree body diagram for L-wall with dry granular backfill

fill

Figure 5.2 Shear key for L-wall on clay
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Figure 6.3

Approximate treatment of stiffness variation
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Figure 6.5 Definition of strain origin and secant modulus
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