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Soil stiffness and damping

M. D.Bolton & J.M.R.Wilson
Cambridge University, UK

ABSTRACT: Fast and slow cyclic tests on sand have revealed that the stiffness and damping of the soil skeleton
are truly hysteretic, and independent of rate of strain. Silicone oil as pore fluid increases damping, but water has
a negligible effect even at frequencies higher than those of typical of earthquakes.A body of hysteretic material is
found to be very sensitive to the frequency of excitation just below resonance.

1 INTRODUCTION

Dynamic analyses of soil usually assume that it can
be treated-as a visco-elastic material. Although it is
recognized: that shear stiffness G must be taken to
reduce with increasing strain, most analysts would be
content to select an equivalent linear elastic modulus,
taking into account the expected magnitudes of initial
density, mean effective stress and shear strain.

Energy absorption in soils leads, in current
practice, to the definition of an equivalent viscous
damping ratio D . This is often determined from the
ratio of amplitudes a of successive cycles of the
decay of a free oscillation, It may be shown that
D=1/(1 + 2r / In(an/ an+1))  for a perfect
visco-elastic element. To be self-consistent, such a
value should be proportional to the frequency of
oscillations of given amplitude. Some authors have
remarked on the absence of such a variation (Iwasaki
etal, 1978) leading them to propose that soils can be
treated not as viscous, but as hysteretic'- absorbing
energy solely as a function of cyclic strain. Others
treat soils as truly viscous and draw a parallel
between dynamic damping and ‘long term creep
(Abbiss, 1986). R

Two fundamental problems emerge. First, total soil
damping should be divided into two components, one
(presumably hysteretic) due to the' aggregate and one
(presumably viscous) due to the pore fluid. Then the
constitutive parameters could describe the trangition
from hysteretic behaviour at low frequencies to partly
viscous behaviour at high frequencies. Second, the
dynamic behaviour of soil systems should be
investigated using a truly hysteretic model for
aggregate behaviour. Only then can predictions be
made of systems in which changes of stiffness lead to
changes of natural frequency, and thereby to changes
of response amplitude which in turn lead to further
changes of stiffness. Instability might occur if the
natural frequency drops to the excitation frequency.
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2 SOIL TESTING APPARATUS

Solid cylindrical soil samples were tested in torsion at
two strain rates, one fast enough to encompass
earthquake effects, for example, and one so slow as
to be quasi-static. Two pieces of apparatus were
used, the Stokoe rig for resonant column tests and the
Wilson rig for slow cyclic tests. Both rigs were
constructed in the Engineering Department of
Cambridge University, the first to a design kindly
supplied by K.H.Stokoe (University of Texas). Soil
samples were all 38 mm diameter and 78 mm high,
and boundary conditions were identical in each
apparatus. If precise parameters had been required for
design purposes, then it might have been necessary to
use larger, hollow cylindrical samples in which the
variation of shear strain with radins would have been
negligible. For the purposes of investigating strain-
rate effects, the simplicity of solid samples was
preferred. ‘

The Stokoe Apparatus is shown in cross-section in
Fig. 1; numbers in brackets refer to the numbered
components. The sample (5) is enclosed in a rubber
membrane placed between a lower platen (3) and a
top cap (6), both of which were roughened to provide
torsional coupling. A cruciform leading arm (7)
carries permanent magnets (8) which can oscillate
freely within coils (9). The coil assembly is mounted
on an adjustable holding ring (10) supported by an
outer sleeve (11). All this is enclosed within a
pressure sleeve (12) and -end plates (1 and 13),
retained by tension bolts (14). Cell pressure is
provided by compressed air. Pore pressures may be
measured by connecting a line (2) through the base.

This resonant column apparatus was used for two
types of test — frequency response tests and free
decay tests — both under the control of a micro-
computer. For frequency response, a fixed amplitude
sinusoidal torque was applied to the sample at a
sequence of frequencies increasing from 20 Hz to



110 Hz in 1 Hz increments so that the resonant
frequency could be established with reasonable
accuracy. An accelerometer fixed to the top platen
was used to record the response in the last 100 cycles
of a 1000 cycle input at each frequency. The signal
was integrated twice to obtain top-cap rotation:
numerical integration was checked electronically.
Both driving current (calibrated against torque) and
acceleration were logged at 32 points per cycle. Free
decay tests were then conducted by opening the
circuit to the driving coils following 1000 cycles of
input at the resonant frequency. Data of the last 5
powered cycles, and the succeeding decay of
vibrations, was recorded. Similar frequency response
sweeps and free decay trials were carried out at
various amplitudes of input current.

The Wilson Apparatus is shown in cross-section in
Fig. 2. The soil sample (1) is retained between
roughened platens on the top-cap (4) and pedestal (2)
which incorporates a torsional load cell (3). The
bearings (6) on the top platen assembly permit
vertical movement without axial rotation. Torque is
applied to the lower platen by the stepper motor (7),
relative rotation being measured by an LVDT (8).
Experiments were performed under compressed air
within a pressure vessel (9). Both load and strain
control were effected through a micro-computer. One
motor step corresponded to about 10-5 nominal shear
strain. LVDT and load cell readings were averaged in
the interval 1 to 2 seconds after each step, and
recorded with 12 bit accuracy.
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Fig.1 Stokoe resonant column apparatus

3 CYCLIC DATA FOR DRY SAND

Samples of Leighton Buzzard (14/25) sand were
prepared dry by axial pouring: Only one void ratio
out of 22 fell outside the range 0.575 + 0.025. All the
data to be presented therefore refer to quartz sand at a
relative density of about 75%.

Fig. 3 compares the "backbone" data of torque
versus shear strain obtained for repeated cyclic
loading, in dynamic and static tests on soil tested dry

(Bolton and Wilson, 1989). Torque T and rotation 6
were measured directly in the static tests. Shear strain
in Fig. 3 was referred to the circumference of the
solid sample (y = 6/4). The resonant column tests
were analysed by treating the system as having one

degree of freedom, 6. The moment of inertia I of the
top cap was about 100 times greater than that of the
soil, so the sample only contributed stiffness and
damping. Atresonance, the inertial torque driving the

oscillation can be taken to be I8. The measurement of

0 at the observed resonant frequency therefore led
directly to the establishment of a point on the
backbone curve. Each point in Fig. 3 represents the
amplitude of shear strain variations measured after
several cycles of torque of a given amplitude. It is
therefore possible to move along the backbone curve
only if there are no additional plastic strains involved
in the creation of the steady cyclic response.
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Fig.2 Wilson apparatus for slow, cyclic torsion
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Fig. 4 shows that the imposition of a cyclic torque
may produce a permanent plastic deformation, which
in the case of dense sand 1s of the same order as the
steady cyclic response. These permanent plastic
strains are not discussed in the present paper.

Figure 3 demonstrates a good correspondence
between the backbone curves of samples tested quasi-
statically (0.001 Hz) and samples tested dynamically
(45 to 95 Hz). It follows that dry sand must be
regarded not as viscous but as hysteretic. The power
dissipated in such a body is then proportional to the
area of the steady hysteresis loop, muliplied by the
frequency of vibration.Hardin and Drnevich, (1972)
show that the damping ratio D is given by

AL / (AnAT) where Ay is the area enclosed by the
loop and AT is the area enclosed by the triangle the
base of which is the rotation amplitude and the height
of which is the torque amplitude. The two methods of
deriving damping ratio, via decay decrement for
dynamic tests and via hysteresis loop area for static
tests, are used in Fig. 5 to portray energy dissipation
in dry sand. This confirms that damping in dry sand
is purely hysteretic and independent of testing
frequency.

4 CYCLIC DATA FOR SATURATED SAND

Dynamic torsion tests were carried out on samples
poured dry as before, but subsequently saturated with
pore fluid. The degree of saturation was established
by performing B-tests, in which the ratio of pore
pressure response to cell pressure increment was
measured over a range of increments. Isolation of the
sample was also checked, and it was found necessary
to bathe the outside of the membrane in the
appropriate cell fluid to avoid air migration into the
specimen from the pressure chamber. Water
saturation in two early tests was not perfect as
revealed by B-values less than 0.9. Improvements
were made by first flushing the sample with carbon
dioxide, then applying a strong vacuum before
drawing de-aired water through the sample, prior to
testing under a back-pressure of 200 kPa. Oil-filled
specimens were similarly saturated with silicone oil
of viscosity 100 times that of water. B-values of
0.90 to 0.99 were then achieved. All the samples
were drained during testing.

Fig. 6 compares the dynamic torsion data of dry
(D), water- (W) and oil-saturated (O) samples at
mean effective stresses of about 100 and 300 kPa. It
is evident that the presence of these pore fluids had
litde effect on secant soil stiffness at shear strains up
to 10-3. Damping provides the most accurate measure
of non-linearity, however, and Fig.7 shows that
water failed to make any extra contribution, whereas
silicone oil increased the damping ratio by a factor of
2 to 3. Figures 5,6 and 7 are based on the data of
Wilson (1988) supplemented by the findings of a
confirmatory study by Skinner (1990). In both
studies, the damping with pore oil varied more than
usually from sample to sample.
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Fig.6 Backbone data, dry and fluid-saturated sand

Since the situations in which soil damping will be
required in practice are rather varied, it is necessary to
consider the possible combined effects of fluid
viscosity and applied frequency for which a pore
fluid may exert some influence on damping, It may
then be possible to judge whether any measured
effects are likely to be the result of hydrodynamic
drag, or some other cause.

5 ANALYSIS OF FLUID DAMPING IN SOILS

It is desirable to have an order-of-magnitude estimate
of the possible effects of viscous damping due to the
pore fluid. Consider first a unit cube of pore fluid of

dynamic viscosity 1, subject to a rate of shear y. The

instantaneous drag on its top surface would be 1y and
the rate of work of this drag would represent the
instantaneous power loss in viscous damping within
the element, which would be

P=mn172 M

Now consider the possible influence of soil
particles. Although there may be no net volume
change, fluid will be forced to flow around the
moving soil particles, as voids open and close. If the

typical velocity of one particle relative to another is

Yd, the root mean square relative fluid velocity
necessary to clear a void for the particle to enter may

be Ayd, where A is a dimensionless measure of the
void constriction, averaged over the gross volume.
For example, if a particle of diameter d moving at
velocity v were constricted only by fluid in 3 "semi-
circular canals” each of effective internal diameter

d/5, the absolute velocity of the fluid would be-
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Fig.7 Daxﬁping in dry and fluid-saturated sand

v.52/3, so that the relative velocity would be about
9v. If the soil had void ratio e, the superficial relative
velocity would be about 9ve/(1+¢) which gives a

value A=3. ,

Random hydraulic gradients of the: order Ayd/k
(where k is Darcy's permeability) will therefore be
induced by the deformation of the soil. If a unit cube
were to be subject to a uniaxial hydraulic gradient i in
fluid of mass density p, the loss of pressure across it
would be ip g The associated rate of dissipation of
energy in viscous friction would be this pressure



differential multiplied by the flow rate, giving i2kpg.
If it is assumed that the same order of dissipation

would occur with random flow , this can now be:

written : ;

P = A2{2d%pg/k , @

Of course, it is advisable to substitute a more
fundamental group of parameters for Darcy's
permeability k. This can be done through
Poiseuille's idealisation of laminar flow in tubes, in
conjunction with Allen Hazen's empirical correlations
for sands:

-3 42
k = l_g_fl__pg. 3)

where all quantities are in SI units (m, kg, s, N) and
the order of magnitude is consistent with
measurements on the dense sand under investigation.
On substituting (3) into (2), we obtain

P=103A2n 12 4

which is perhaps four orders of magnitude larger than

that for a simple fluid element, given in equation (1).
It remains to find the energy dissipation Ey per unit

volume due to viscous damping over one cycle of

shear strain Y =¥, sin wt so that ¥ = ¥, ® cos ot
and

Ey =x 1030 2720 : )

Hysteretic energy dissipation Ep, has already been
shown to be the area of the effective stress-strain
loop, and damping ratio D has been defined as 1/4%
times. the total dissipation per cycle divided by the
energy Eq defined as the area of the triangle beneath

the radius from the origin to the turning point (Ta,Ya)

of the loop (sometimes loosely termed the strain
energy stored per cycle). We can write

E;=0.5 T2 72=0.5 G 7,2 ©®

where G is the secant modulus at the turning point.
Then if damping ratio D is partitioned into Dy due to
true hysteresis and Dy due to viscosity in the pore
fluid, we obtain:

D =Dy + Dy = (Ep + Ev)/(4nEp )]
or
D =Dp + 0.5 x 103 x2’3é’- ®)

It would seem useful to preserve the dimensionless
terms of (8) and to define a dimensionless fluid
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dissipation factor Fy such that the fluid component of
damping ratio.is given by

Dy=F, ¥ ©

where Fy has been estimated to be about 0.5x104. If
we substitute notional values 1 = 10-6 kNs/m2 for
water, ® = 1507 corresponding to 75 Hz, and G =
105 kN/m? for small amplitude vibrations, we get a

predicted viscous damping component Dy=~2 x 10-5
which would be entirely negligible.

Fig.7 confirms that water filling the pores of sand
in the resonant column tests had a negligible effect on
the damping ratio. However, Fig.7 also shows that
oil of only 100 times greater viscosity does have a
significant effect. Three remarks may be made.

First, if the typical extra damping ratio is Dy=~0.05
with oil of viscosity n| = 104 kNs/m2, we deduce that

A=15 if (8) applies. This value is much higher than
that which was inferred using the damping
mechanism of flow in channels. It is possible that the
greater dissipation is due to fluid being expelled from
points- of contact between soil particles, but the
roughness of the asperities suggests otherwise.
Second, Fig.7 shows that Dy is roughly
proportional to strain amplitude. The progressive
reduction in G evident in Fig.6 is not sufficient to
explain this phenomenon through (9). The only way
of retaining the fluid viscosity explanation would be
to infer that Fy, increases with shear strain, due to the
progressive disturbance of the soil fabric. A more
persuasive explanation would involve the surface
lubrication of sand particles due to adhesion of
silicone molecules, leading to the destabilization of
contacts under tangential forces, and the enhancement
of hysteretic strains (and therefore damping) for the .
aggregate. It is then necessary to ascribe greater
curvature to the backbone curves of sand with oil;
Fig. 6. By this argument, oil viscosity effects would
only enter at frequencies much higher than 100 Hz.
Third, those who model earthquake effects by
centrifuging 1/n scale soil models at n gravities,
replacing ground water by an oil of n times the
viscosity, and replicating field accelerations but at n
times their frequency, should be aware that
significant differences in damping ratio have been
found in oil and water-saturated elements of sand
tested under identical conditions. It would be prudent
to check observations on oil-saturated models using
an alternative water-saturated model. It would still be
necessary to reduce soil permeability by a factor n:
this could be attempted by scaling soil particles down

in size by Vn. A cyclic test would be necessary to
confirm that the alternative soils possessed similar
stiffness and damping parameters.

Care should be taken not to extrapolate damping
ratios beyond the range of soil and fluid states, and
excitations, for which they were measured. Further



work is obviously necessary. It is, however, clear
that water-saturated sand is purely hysteretic at typical
earthquake frequencies.

6 FREQUENCY RESPONSE

It has been shown that water-saturated quartz sands
behave purely hysteretically at frequencies upto about
100Hz, and it has been hypothesised that the same
would apply beyond 1 kHz, and irrespective of
particle size. Bolton and Wilson (1989) have shown
that the frequency response of a hysteretic soil system
is highly sensitive just below resonance, and that this
effect may be predicted for a single-degree-of-
freedom system using established techniques of non-
linear vibration analysis. Many resonance problems,
whether of machine bases subject to out-of-balance
forces or of piled foundations in earthquakes, might
be regarded directly as capable of representation as

1°F systems. Others, such as dams in earthquakes,

might be treated as 1°F systems if their mode of
vibration could be predicted with sufficient accuracy.

The 1°F analysis of a solid circular cylinder of
hysteretic soil in first mode torsional vibration may
therefore be taken as an example of a wider class of
investigation. The equation of motion may be written:

19 + f(6, sign 6) =Ty cos t (10)

where (0, sign 6) represents the torque necesSary to

achieve a top-cap rotation @ on a stable hysteresis
loop obtained after sufficient cycles of load: Fig.4.

The sign of  arises through the necessity to
dist}inguish the upper (loading) and lower (unloading)
paths.

This can be compared with the motion of a standard
linear visco-elastic system by using a decomposition
suggested by Kryloff and Bogoliuboff, and given in
English by Minorsky (1947):

10 + 0 + k0 + E(6, sign 6) =Tacosat  (11)

Best-fit equivalent linear parameters ¢ and k can then
be chosen to minimize the r.m.s value of the "error"
E, given by -

E=f-cH-k0 12)

following Iwan and Patula (1972). Since the result

will be a function of the amplitude of rotation 65, the
method should be capable of predicting the non-linear
frequency response, if an acceptable analytic form
can be found for function f. Perhaps the most direct
approach would be separately to fit a family of
functions to each of a nest of stable hysteresis loops
of different sizes. This would, however, be
cumbersome.

Wilson (1988) suggested an alternative procedure
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for the deduction of hysteresis function f from the
shape of the backbone. curve joining the limit points
of stable loops. Following Iwan (1966) the resistance
of the soil is represented by a parallel array of Jenkin
elements, each of which comprises a spring in series
with a frictional slider: Fig.8. Each spring has the
same stiffness K, but the yield rotations Oy of the
sliders are represented by the probability density

function p so that torque T can be written:

oo

0
T=K | 8yp d0y + KO [p dey (13)
0 0

The first term represents the elements which have

already yielded (i.e. 6>8y) and the second represents
those that still retain their elastic stiffness K

(i.e. 8<By). Net stiffness is due only to the second

term, so that on differentiating twice we get, first:
dT/99 =K fp doy (14)
0
and then,
- @2Ty 00 =~ Kp (15)

The probability density function of yield rotations can
therefore be calculated from the curvature of the
backbone curve, divided by its initial gradient.
Hardin and Drnevich (1972) showed that shear
stress-strain curves approximate to hyperbolae, and a
similar relation will now be assumed for the shape of

a backbone curve of T versus 6,

Ko

T = e 16
(1+6/6y) (19

where O is the reference strain, a constant for the

curve, and taken to be a function of soil density and
mean effective stress. Equation (16) can be rewritten:

K 1,1
= - = 17

and Fig.9 shows the fit achieved on a graph of 1/T
versus 1/0 with a reducing sequence of turning points
defining the backbone curve of a static test on the
dense sand under p' =300 kPa, giving K =840
Nm/rad and 0, = 8.4 x 10-3.

Having established (17) as a good analytical fit to
the backbone data, double differentiation followed by
substitution in (15) gives an expression for the
probability density function of yield rotations:

P = 0e (1 +0/8)3




This then permits the derivation of function f
describing a hysteresis loop with rotation amplitude

8,. The torque following unloading from 0, to
0,>0>—0, can be written in three terms, the first

dealing with elements which were still elastic at 8,
and which are therefore still elastic, the second
dealing with elements which had yielded but which
have now become elastic again, and the third dealing
with elements which had yielded on loading and
which have already yielded on unloading:

6,

o0

a
T =K0 [ p dy + K [ (6—0,+8y)p dby
0a ©x0)2
(04-6)/2

~K/6eypd6y (19)
o .

A similar expression for the reloading leg confers
symmetry, and completes the derivation of the
hysteresis loop. Fig.8 simulates the process with just
three Jenkin elements.

Wilson (1988) goes on to minimise the error term,
equation (12), and to derive the following best-fit
equivalent linear parameters for the case of a
hyperbolic backbone curve:

—A4K

k = 20
o (1+00)2 (20)
4K ( Inod (02+1)
= — - 21
o ( (02-12  oZ(02-1) ) @)
where
0
2=1+-2 22
o + 5 22)

T

Equations (20), (21) and (22) can be used to obtain
the dynamic response from equation (11), treating the
minimized "error" term E as zero. The standard

solution 9 =8, cos(wt - ¢) gives:

\l(T( - 102)2 + c2w?

but both k and co are here functions of 0,. Figure 10
shows the comparison between the dynamic response
measured in resonant column tests on dry sand at a
mean effective stress of 300 kPa, and that predicted
from (23) based on a quasi-static backbone curve. At

each frequency ® and excitation Ty, an iteration was

performed to solve for 6 from (23). Similar results
were obtained for water and oil-saturated sand.

It will be appreciated that the correspondance is
close enough to encourage the similar analysis of
more complex soil systems. Of particular significance

0a (23)
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Fig. 11 Hysteretic system response predictions
(hyperbolic backbone)

is the extreme sensitivity to frequency just below
resonance, and the reduction of resonant frequency
with response amplitude. These predictions using
hyperbolae are similar to those previously reported
using cubic backbone curves (Boltén and Wilson,
1989). Hyperbolae offer significant advantages for
the prediction of non-linear behaviour when the
small-strain stiffness K and system inertia I can be

used to find the small-strain natural frequency e g=0

= VK /1, and where the peak strength Fpax can
separately be estimated. Figure 11 is a dimensionless

plot of dynamic amplification (Oa,m( 0a,0=0) versus

frequency ratio (® / tn,g=0), at various load ratios
(F / Fmax).

7 CONCLUSIONS

Stiffness and damping parameters of sand are
insensitive to whether they have been measured in
quasi-static or dynamic tests upto 100 Hz, and
whether the samples are dry or water-saturated. All
such behaviour is hysteretic, and parameters are
strain dependent but are independent of frequency.

A higher damping ratio has been observed in sand
saturated with silicone oil .of 100 ¢S viscosity, at
about 75 Hz. The effect was approximately to treble
the hysteretic damping measurable on dry sands,
possibly through boundary lubrication. An
approximate analysis of energy dissipation due to
fluid viscosity threw up the dimensionléss group

Nw/G, but was unable to match either the form or
magnitude of the data. For the present, material
damping in oil-saturated sands should be measured at
appropriate strain amplitudes and frequencies.

The dynamic behaviour of hysteretic soil systems is
different from that of viscous systems, even when

best-fit stiffness and damping values have been

selected, In particular, a hysteretic system shows a
sensitivity to frequency just below resonance which
mimics that of a viscous. system with an order of
magnitude less damping. Hyperbolic backbone
curves of excitation- amplitude versus response
amplitnde can be used. 19.make simple predictions.
These were reasonably accurate for a cylinder excited
in torsion.
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