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Simple prediction of the undrained displacement of a circular surface
foundation on non-linear soil

A. S. OSMAN*, D. J. WHITE†, A. M. BRITTO‡ and M. D. BOLTON†

Textbooks and university courses teach elasticity and
plasticity as separate methods for analysing the stiffness
and strength of a shallow foundation. The behaviour of
real soil is neither linear elastic nor perfectly plastic. In
this paper, two simple techniques for incorporating non-
linearity in routine design have been validated using finite
element (FE) analysis. These two techniques—Atkinson’s
method and the mobilisable strength design (MSD)
approach—assume that the responses of an individual
soil element and the boundary value problem being con-
sidered are self-similar. Using this assumption, the soil
element response can be scaled to predict the response of
the boundary value problem. Atkinson’s method is based
on elasticity whereas MSD uses plasticity. Non-linearity
has been captured in the FE analysis using a power law
soil model. This approach uses minimal parameters, but
is shown to capture accurately the undrained stress–
strain response of typical clays under monotonic loading.
Comparison with elastic and plastic solutions showed that
the FE analysis was accurate to within < 5% at the
elastic and plastic extremes of the loading range. The
responses of the soil and the boundary value problem are
shown to be sufficiently self-similar up to two-thirds of
the failure load for the foundation response to be pre-
dicted simply by a linear scaling of the soil response.
Previously reported scaling factors for vertical loading
are confirmed, and new factors for horizontal and mo-
ment loading are derived. These results show that, for
this particular boundary value problem, soil non-linearity
can be captured with sufficient accuracy for routine
design, without recourse to sophisticated numerical
analysis. These self-similarity methods are simple enough
to be taught to undergraduates, and could be incorpo-
rated in textbooks alongside the core sections on elasticity
and plasticity, providing guidance on the application of
these techniques to real non-linear soil.

KEYWORDS: clays; deformation; design; footings/foundations;
soil/structure interaction

Dans les livres de texte et les cours universitaires, on
enseigne l’élasticité et la plasticité comme des méthodes
distinctes d’analyse de la rigidité et de la résistance de
fondations superficielles. Le comportement des sols réels
ne présente pas une élasticité linéaire et n’est pas parfaite-
ment plastique. Dans la présente communication, on a
validé deux techniques simples d’incorporation de la non-
linéarité dans les études courantes en utilisant l’analyse
aux éléments finis. Ces deux techniques – la méthode
d’Atkinson et la méthode d’étude à résistance mobilisable
(MSD) – partent du principe que les réponses d’un élé-
ment du sol et le problème de la valeur limite à l’étude
présentent une similitude intrinsèque. En appliquant cette
hypothèse, il est possible d’extrapoler la réponse de l’élé-
ment du sol afin de prédire la réponse au problème de la
valeur limite. La méthode d’Atkinson est basée sur l’élasti-
cité, tandis que la méthode MSD fait usage de la plasticité.
On a incorporé la non-linéarité dans l’analyse aux élé-
ments finis en utilisant un modèle exponentiel du sol. Cette
méthode fait usage de paramètres minimaux, mais elle
démontre qu’elle est en mesure de saisir de façon précise la
réponse à contrainte déformation sans consolidation d’ar-
giles typiques sous charge monotone. La comparaison avec
des solutions élastiques et plastiques a démontré que l’ana-
lyse aux éléments finis est précise à moins de 5% aux
extrêmes élastiques et plastiques de la plage de charges.
Les réponses du sol et le problème de la valeur limite
présentent une similitude intrinsèque suffisante jusqu’à
deux tiers de la charge de rupture pour la réaction des
fondations pour qu’il soit possible de les prédire rien
qu’avec une extrapolation linéaire de la réponse du sol. Les
facteurs d’extrapolation indiqués précédemment pour les
charges verticales sont confirmés, et on dérive des facteurs
nouveaux pour la charge horizontale et à moment. Les
résultats montrent que, pour ce problème de valeur limite
particulier, on est en mesure d’obtenir la non-linéarité du
sol avec une précision suffisante pour des études de routine,
sans devoir recourir à une analyse numérique sophistiquée.
Ces méthodes à similitude intrinsèque sont suffisamment
simples pour être enseignées à des étudiants universitaires,
et pourraient être incorporées dans des livres de texte
conjointement avec les sections principales sur l’élasticité
et la plasticité, en fournissant des indications sur l’applica-
tion de ces techniques sur des sols non-linéaires réels.

INTRODUCTION
The load–displacement behaviour of a surface foundation
resting on uniform soil is the most fundamental geotechnical

boundary value problem. In undrained conditions the soil is
often characterised by an elastic stiffness and an undrained
strength. Using these soil parameters, established analytical
solutions are available to calculate the stiffness and capacity
of a circular surface foundation, under vertical, horizontal or
moment loading. Linear elasticity is used to calculate stiff-
ness, and plasticity theory is used to calculate capacity.

These elastic and plastic solutions, following the early
work of Boussinesq (1885), Prandtl (1921) and others, are
reproduced in every soil mechanics textbook, and lie within
the core syllabus of almost every course on foundation
engineering. However, the stress–strain response of soil is not
linear-elastic perfectly plastic, but is highly non-linear within
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the strain range mobilised under typical working conditions.
Therefore, despite the appealing analytical rigour of elasticity
and plasticity, these theories cannot be applied in practice
without some qualification. Linear elasticity can be applied to
the calculation of settlement if the chosen value of secant
stiffness is qualified by an estimate of the mobilised strain.
Plasticity can be used to estimate the capacity of the founda-
tion, and this load can be qualified by a large safety factor,
which is assumed to limit settlements sufficiently.

Neither of these approaches takes rigorous account of the
actual form of the non-linear stress–strain response, and the
varying strain level within the deforming soil. There are two
methods of including the actual stress–strain response in the
design analysis. The first method is to use sophisticated
numerical analysis—such as the finite element (FE)
method—to simulate the non-linear response of every ele-
ment of soil within the boundary value problem, and recover
the resulting foundation behaviour. Until recently this ap-
proach was primarily a research tool, but it is anticipated
that it will become more widely used in practice as comput-
ing power, training, and parameter selection methods im-
prove (Potts, 2003).

The second approach to the inclusion of non-linearity in a
design calculation is to use a simplified calculation method
drawing on the concepts of elasticity and plasticity, and assum-
ing that the element and the boundary value responses are self-
similar. This assumption is bold—but proven in this paper for
certain problems—and yields a calculation method that is far
quicker and simpler than numerical analysis. This self-similar-
ity approach can be within the framework of elasticity (e.g.
Atkinson, 2000) or plasticity (e.g. Bolton, 1993).

The purpose of this paper is to demonstrate—using non-
linear FE analysis—that for the case of a circular surface
foundation on clay under vertical, horizontal or moment
loading, soil non-linearity can be adequately captured using
these simple self-similarity calculation methods. Only uniax-
ial monotonic loading is considered. The nomenclature used
throughout the paper for foundation loading and displace-
ment is shown in Fig. 1.

ELASTIC SOLUTIONS
For a foundation on a linear elastic half-space, the rela-

tionship between the applied vertical (V), horizontal (H) and
moment (M) loads and the resulting displacements can be
expressed in normalised matrix form as
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where Kv, Kh, Km and Kmh are dimensionless elastic stiffness
coefficients, which are dependent only on Poisson’s ratio �,
the embedment conditions, and the foundation geometry. Kv,

Kh and Km correspond to vertical, horizontal and moment
degrees of freedom respectively, Kmh describes any cross-
coupling between the horizontal and moment degrees of
freedom, and G is the shear modulus of the soil. The
stiffness coefficients Kv, Kh, Km and Kmh are obtained either
analytically from elasticity theory or numerically using the
finite element method (e.g. Bell, 1991; Ngo-Tran, 1996),
aided by the scaled boundary method in the cases of
Doherty & Deeks (2003) and Doherty et al. (2005). The
cross-coupling stiffness coefficient Kmh is zero for surface
circular footings (Bell, 1991).

For a smooth rigid circular foundation on the surface of
an elastic half-space, Poulos & Davis (1970) give closed-
form solutions derived from elasticity theory for vertical and
moment loading (assuming that tension can be sustained at
the underside of the foundation). These solutions are exact
for all values of Poisson’s ratio. The stiffness coefficients Kv

and Km are

Kv ¼ 2

1 � �
(2)

Km ¼ 1

3 1 � �ð Þ (3)

For a rough rigid circular surface foundation, Spence (1968)
gives an exact solution for vertical loading that can be
written as

Kv ¼ 2 ln 3 � 4�ð Þ
1 � 2�

(4)

If the value of Poisson’s ratio � approaches 0.5, both equation
(4) and equation (2) give a unique value of Kv, which is 4.0.

For horizontal loading there are two existing analytical
solutions for the stiffness coefficient Kh, derived by Bycroft
(1956)

Kh ¼ 16 1 � �ð Þ
7 � 8�

(5)

and Gerrard & Harrison (1970)

Kh ¼ 4

2 � �
(6)

Bell et al. (1991) demonstrate that both solutions are
approximate, owing to additional assumed boundary condi-
tions, except in the case of incompressible material (� ¼
0.5), for which they are equal and exact. Bycroft’s (1956)
solution is based on the assumption that the foundation can
only move in the horizontal direction. Gerrard & Harrison’s
(1970) solution does not satisfy the boundary conditions
imposed by a rigid foundation, because it implies that the
foundation is flexible in the vertical plane instead of rotating
rigidly. No value of Km for a rough foundation has been
found in the literature, so the solution for a smooth founda-
tion is used instead.

PLASTIC SOLUTIONS
The ultimate bearing capacity of a surface foundation is

calculated using the Tresca failure criterion, in which the
maximum shear stress is equal to the undrained strength, su.
The limiting values of uniaxial load (i.e. applied in the
absence of other loads) are denoted by bearing capacity
factors as follows, where A is the surface area of the
foundation, �D2/4.

V

Asu

¼ Ncv (7)

θ

Load
reference

point

w

u

D V

M

H

Original
position

Displaced
position

Fig. 1. Nomenclature for foundation loading and geometry
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H

Asu

¼ Nch (8)

M

ADsu

¼ Ncm (9)

Equal upper- and lower-bound plasticity solutions (Calladine,
Calladine, 1985) for the bearing capacity factor of a strip founda-

tion under vertical load can be found analytically, giving Ncv

¼ (2 + �) (Prandtl, 1921). For circular geometry, a numer-
ical solution scheme is required. Cox et al. (1961) present
equal upper and lower bounds for a rough circular founda-
tion, found using the method of characteristics, giving an
exact solution of Ncv ¼ 6.05.

For uniaxial horizontal loading, ultimate failure is by sliding
at the foundation/soil interface, so the horizontal bearing
capacity factor is Nch ¼ 1.0. Under pure moment loading, an
upper-bound solution based on a spherical sliding surface
beneath the foundation is presented by Murff & Hamilton
(1993), giving a value of Ncm ¼ 0.67. No equivalent lower-
bound solution is available, but this value is in good agreement
with previous FE analyses (Gourvenec & Randolph, 2003),
and so is likely to be close to the exact solution.

SOIL NON-LINEARITY
If soil exhibited linear elastic perfectly plastic behaviour,

the elastic and plastic solutions presented above would be
sufficient to (a) check the stability of a foundation, and (b)
predict the settlement up to the load at which local plastic
yielding occurs at the foundation edge, which for a strip
foundation is V/Asu ¼ � (Bolton, 1979).

However, the stress–strain behaviour of soil is non-linear
from very small strains (Jardine et al., 1984; Burland, 1989;
Houlsby & Wroth, 1991). The experimental work of Jardine
et al. (1984) on low-plasticity clays shows that the region of
purely elastic response rarely extends beyond 0.01% shear
strain. Fig. 2 shows the variation of normalised shear
modulus with strain in three different types of clay: Gault
clay, London clay and kaolin clay. Fig. 2(a) shows the
conventional plot of tangent shear modulus G reducing as
the logarithm of shear strain increases during a triaxial
compression test (Dasari, 1996). All three samples were
sheared at an effective mean pressure p9 of about 100 kPa.
The overconsolidation ratios (OCR) of the Gault clay and
London clay were 35 and 20 respectively. The kaolin clay
was normally consolidated. Fig. 2(b) re-plots the data on
log–log axes and shows that the three soils all closely follow
the simple relation

G

G0

¼ �q

�q0

� �b

(10)

where G0 is the small-strain elastic shear modulus, �q is the
deviatoric strain, and �q0 is the maximum deviatoric strain
of linear elastic behaviour, at �10�5. The exponent b ¼
�0.5 fits the data of the three clays shown here.

Equation (10) can be rearranged and integrated to give a
simple undrained (� ¼ 0.5) stress–strain relation in the form
of a power law curve (for the range �q . �q0) in terms of
the deviatoric stress q:

q ¼ 3G0�q0

bþ 1
bþ �q

�q0

� �bþ1
" #

(11)

Power law curves have often been used to describe the
stress–strain behaviour of soil (e.g. Gunn, 1993; Bolton &
Whittle, 1999).

ATKINSON’S METHOD
Atkinson (2000), in the 40th Rankine Lecture, described a

calculation method that allows non-linearity to be considered
in routine design, based on elasticity. He demonstrated this
approach for the case of purely vertical loading on a circular
foundation. Atkinson’s method assumes that the decay in soil
stiffness with strain level takes the same form as the decay in
foundation stiffness with normalised settlement, w/D (Fig. 3).
This form of self-similarity allows the strain axis of a plot of
secant soil stiffness against strain to be linearly scaled to show
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various clays (data adapted from Dasari, 1996): (a) normal
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Atkinson’s method:
(1) Establish – responseGsec aε
(2) Add top axis scaled by αv

(3) If limiting settlement, / , is known, findw D Gsec

(4) Calculate allowable load using elastic solution
If load is known and settlement required, use iteration
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Fig. 3. Illustration of Atkinson’s method
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normalised settlement. The vertical axis remains unscaled, and
shows the value of secant soil stiffness that should be used in a
design calculation using the elastic solution (equations (2) and
(4)). Based on comparison of model tests and triaxial compres-
sion tests, Atkinson (2000) suggests the apparent stiffness
beneath a foundation at a settlement of w/D is equal to the
secant stiffness in a triaxial test at a compressive strain of �a ¼
(w/D )/3. In this paper, Atkinson’s strain scaling factor for
vertical displacement is denoted by Æv ¼ (w/D )/�a ¼ 3. This
value of Æv gave good agreement for centrifuge tests on stiff
clay, in FE analysis for clay, and in calibration tests on sand
(Atkinson, 2000). Application of Atkinson’s method requires
iteration if the load is known and the displacement is required.
An initial equivalent linear stiffness is chosen (say G0/2),
leading to an elastic estimate of settlement under the design
load (w/D )1. This initial estimate of settlement allows a value
of operative strain, �a,1 ¼ (w/D )1/3, to be chosen, leading to a
revised value of stiffness from the soil stiffness–strain relation.
A second estimate of settlement can then be made, and the
process is repeated until the required tolerance is reached. If
the maximum load that will not exceed a limiting settlement is
required, Atkinson’s method does not involve iteration (Fig. 3).

THE MOBILISABLE STRENGTH DESIGN (MSD)
APPROACH

Bolton (1993) described a design approach that allows
non-linearity to be considered in a routine calculation, based
on plasticity. Osman & Bolton (2005) demonstrated this
approach for the case of purely vertical loading on a circular
foundation, and termed this method ‘mobilisable strength
design’ (MSD). In common with Atkinson’s method, MSD
assumes that the responses of the soil and boundary value
problem are self-similar. However, instead of using an elastic
solution to link soil stiffness to the stiffness of the boundary
problem, plasticity is used to scale the stress–strain axes into
load–displacement, as shown in Fig. 4. The stress axis is
converted to load by multiplying by the bearing capacity
coefficient Nc. The strain axis is converted to displacement by
dividing by a compatibility factor Mc. This factor gives the
ratio between the average shear strain within the deforming
soil and the normalised displacement of the foundation.
Osman & Bolton (2005) analysed the case of vertical loading
of a rigid circular foundation, and derived Mcv analytically
using an upper-bound plasticity solution. The chosen solution
is not exact—it gives a value of Ncv that lies 3% above the
exact solution—but it includes only distributed shear (rather
than slip planes), so the shear strain rate is finite throughout
the deforming soil, allowing an average value to be calcu-

lated. Osman & Bolton’s compatibility factor Mcv is equal to
1.35 in the case of a smooth circular footing.

In this paper Atkinson’s method and MSD are compared
for the case of a rough rigid circular foundation on non-
linear soil representative of undrained clay, using FE analy-
sis. The methods are extended to the cases of horizontal or
moment loading, and additional strain scaling factors Æh and
Æm and compatibility factors Mch and Mcm are derived
numerically.

FINITE ELEMENT MODEL
Constitutive model

Finite element analyses were carried out using ABAQUS/
Standard version 6.5 software (HKS, 2003). A very simple
approach has been used to represent the non-linearity of the
stress–strain behaviour of soil. The undrained material re-
sponse of the soil was represented with a non-linear per-
fectly plastic constitutive model, of the form described by
Gunn (1993). This model uses a simple power law to
represent the decay of soil stiffness with increasing strain.
The non-linear undrained response of the soil is given by
equation (11). At very small strain (�q , 10�5) the soil
stiffness is assumed to be constant and equal to the tangent
stiffness given by the power law at �q ¼ 10�5.

The soil is assumed to yield according to the Tresca
failure condition, with the maximum shear stress in any
plane limited to the undrained shear strength su. In order to
avoid problems in defining the relative plastic strain magni-
tudes at the vertices of the hexagonal Tresca failure criter-
ion, the direction of plastic strain increments at the vertices
is calculated using the Von Mises flow rule.

Finite element mesh
The purpose of the FE analyses reported in this paper is

to calculate the load–displacement response of footings
under each uniaxial loading condition—vertical, horizontal
and moment—and assess whether Atkinson’s method and
MSD can capture this response. The validity of the FE
results is assessed by (a) comparing the initial linear part of
the load–displacement response with the elastic solutions
given by equations (1)–(6), and (b) comparing the limit
loads with the plastic solutions given by equations (7)–(9).

The elastic solutions apply to an unbounded half-space,
and the region of significant load and deformation is a small
part of the domain. This unbounded region can be approxi-
mated by extending the FE mesh to a great distance, so that
the influence of the boundaries on the region of interest is
minimal. This approach requires a large mesh. Bell (1991)
studied the effect of mesh dimensions on FE results for a
circular footing using two-dimensional axisymmetric meshes
of six-noded triangular elements. The linear elastic FE analy-
sis gave an error of 10.3% in the vertical stiffness coefficient
Kv compared with the closed-form solution when using an FE
mesh of dimensions 5D 3 5D. This error reduced to 2.4%
using a 25D 3 25D mesh and to 1.1% with a 100D 3 100D
mesh. Bell (1991) also carried out three-dimensional FE
analyses with 20-noded quadratic strain tetrahedron elements
and a 100D 3 100D mesh and obtained errors that ranged
from 2.5% to 3.9% for � ¼ 0 to 0.49.

An alternative approach to the extension of the FE mesh
to account for the boundary is to use ‘infinite elements’.
These elements are defined over semi-infinite domains with
suitably chosen decay functions. The Abaqus software pro-
vides infinite elements for static response based on the
formulations of Zienkiewicz et al. (1983).

The three-dimensional FE mesh used in the present analy-
sis is shown in Fig. 5, and represents a semi-cylindrical
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section through a diametrical plane of a circular footing of
diameter D. The mesh comprises 20-noded reduced integra-
tion quadratic continuum elements forming a core of radius
5D and a depth of 5D surrounded by infinite elements
modelling the far-field region. The Abaqus formulations
require that these elements extend a distance equal to the
extent of the region of continuum elements away from the
centreline. Displacement boundary conditions prevent out-of-
plane displacements along the plane of symmetry (i.e. the
flat diametrical plane on the face of the mesh). The footing
was modelled as a rigid body with full bonding at the soil/
footing interface. The mesh comprises a total of 15 090
elements and 63 353 nodes, and was fine near the footing
where the stress and the strain gradients are high. Intense
discretisation of the mesh was provided near the interface
with the footing edges, with rows of elements less than
0.01D in depth and columns of elements less than 0.025D in
width. Gourvenec & Randolph (2003) show that this refine-
ment provides appropriate kinematics for vertical, horizontal
and moment loading.

Loading method and constitutive parameters
Only uniaxial loading is considered in this paper. Separate

analyses applying load in the vertical, horizontal and mo-
ment direction were conducted. Increments of loading were
applied at the load reference point (Fig. 1), corresponding to
, 1% of the ultimate load in each case.

The exponent parameter b in equation (8) is taken to be
�0.5, which is consistent with the data shown in Fig. 2. The
small-strain rigidity ratio G0/su is taken to be 1054. The
limit of linear elastic behaviour is a shear strain of �q0 ¼
10�5. This combination of parameters leads to mobilisation
of the maximum undrained strength at a deviatoric strain of
1%, and gives a good fit to the data for various clays shown
in Fig. 2. All the analyses were carried out with Poisson’s
ratio � ¼ 0.49, corresponding to nearly incompressible
material. A value of � ¼ 0.49 is used instead of exactly 0.5,
which avoids numerical difficulties, and introduces only
small but acceptable errors into the solution (Potts &
Zdravkovic, 1999).

A triaxial compression test on this model soil was simu-
lated using a single eight-noded quadratic axisymmetric
finite element, with horizontal freedom to simulate friction-
less platens.

FINITE ELEMENT RESULTS
Results expressed as stress–strain and load–displacement

Figure 6 shows the results of FE calculations for a triaxial
sample and for rough circular surface foundations under
vertical load, horizontal load, and moment. The stress–strain
curve for the triaxial sample is plotted on q/qult:�q axes and
agrees with the defined constitutive relation given by equa-

tion (11). The behaviour of the foundations is also plotted as
normalised load (V/Vult, H/Hult or M/Mult) against displace-
ment ratio (w/D, u/D, or Ł). All three curves approach an
ultimate load (or stress) at large strains or displacements.

Results expressed as stiffness–strain and stiffness–
displacement

From the load–displacement curves in Fig. 6, the variation
in secant stiffness is calculated from equation (1) using the
appropriate stiffness coefficients. For the case of vertical load,
the stiffness coefficient Kv is calculated from equation (4):

G ¼ V

D2Kv w=Dð Þ ¼
V 1 � 2vð Þ

2Dw ln 3 � 4vð Þ (12)

The stiffness coefficient Kh is calculated from equation (5):

G ¼ H

D2Kh u=Dð Þ ¼
H 7 � 8vð Þ

16Du 1 � vð Þ (13)

Since there is no analytical solution for rough footings
subject to moments, the stiffness coefficient Km derived for
smooth footings is used:

G ¼ M

D3KmŁ
¼ 3M 1 � vð Þ

D3Ł
(14)

A Poisson’s ratio of 0.49 is used in the back-calculation of
the secant stiffness for consistency with the FE analyses.

Figure 7 shows the back-calculated secant stiffness from
each mode of loading, normalised by the initial soil stiffness,
plotted against the corresponding normalised displacements
(w/D, u/D, Ł). This figure also shows the soil secant stiffness
plotted against deviatoric strain, which agrees with the
specified constitutive relation given by the elastic region
followed by the non-linear response of equation (10).

In the very small strain range (�q , 10�5), the soil
responds linearly and all modes of loading show a back-
calculated operative stiffness of G0. In the range of non-
linear behaviour (�q . 10�5), each mode of loading shows a
different rate of stiffness degradation with strain, in the same
way that each mode of loading showed a different shape of
load–displacement response in Fig. 6.

Comparison with elastic and plastic solutions
The initial operative soil stiffness back-calculated accord-

ing to equations (12)–(14) can be compared with the
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specified value of G0 to assess the accuracy of the early part
of the FE load–displacement response. The bearing capacity
factor mobilised in the final load step that could achieve
equilibrium can be compared with the theoretical bearing
capacity factors to assess the accuracy of the final part of
the load–displacement response. Table 1 shows that, within
the elastic range, the FE results lie within 1.38% of the
theoretical solutions. In the final load steps, the theoretical
bearing capacity factors are exceeded by 3.3–4.5%, which is
slightly higher than found by Gourvenec & Randolph (2003)
using a similar mesh (but under displacement rather than
load control), but still acceptably small.

The small errors in the predicted bearing capacity factors
can be attributed partly to mesh distortion, which will not
influence the earlier part of the response under low mobi-
lised load. For this reason, the theoretical values of ultimate
uniaxial load have been used to calculate normalised values
of load (V/Vult, H/Hult and M/Mult), rather than the measured
ultimate values.

DISCUSSION
Interpretation following Atkinson’s method

The horizontally scattered curves in Fig. 7 can be brought
together by scaling the displacement data in the manner used
by Atkinson’s method. In Fig. 8, the normalised vertical
displacement has been adjusted according to Atkinson’s
strain scaling factor Æv ¼ 3. The vertical response now over-
lies the soil response. After scaling in this fashion, the soil
response represents a prediction of the vertical response
found by Atkinson’s method (but scaled by 1/Æv), while the
vertical response represents the actual behaviour, according
to the FE analysis (also scaled by 1/Æv). The close agree-
ment of these two curves is consistent with Atkinson’s
(2000) observations from centrifuge test results and finite
element analyses that led to the proposal of Æv ¼ 3.

To extend Atkinson’s method to horizontal and moment
loading, strain scaling factors of Æh ¼ 1.3 and Æm ¼ 2.2
have been used to unite the corresponding foundation
responses with the soil element response; these curves are
also shown in Fig. 8. The good agreement between the four
curves in Fig. 8 implies that the foundation responses in the
different modes of loading are similar in shape to the

soil stiffness, and can be derived according to Atkinson’s
method.

Æh is significantly lower than both Æm and Æv, implying
that the development of local plastic yielding—leading to a
degradation in back-calculated stiffness—occurs at a lower
normalised displacement under horizontal loading, compared
with moment or vertical loading.

Interpretation following the MSD approach
Figure 9 shows the mobilised soil strength and the nor-

malised loads plotted against strain and normalised displace-
ments scaled using compatibility factors to fit the
engineering shear strain ª to the displacements consistent
with the style of the MSD method (note that ª ¼ 1.5�q).
After scaling in this fashion, the soil response represents an
MSD prediction of the foundation response, on whichever
axes are chosen (V–w, H–u or M–Ł), while the FE results
show the actual response. The Mcv factor of 1.35 derived
analytically for smooth footing by Osman & Bolton (2005)
united the vertical response of a smooth foundation with the
soil response. This agreement confirmed that the upper-
bound plasticity solution used to derive this compatibility
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Fig. 7. Secant stiffness degradation for soil element and shallow
foundation from FE analysis

Table 1. Comparison of the elastic and plastic solutions and the FE results

Loading direction Vertical Horizontal Moment

Error in back-calculated G0: % 0.65 0.42 1.38
Calculated bearing capacity factor Ncv ¼ 6.25 Nch ¼ 1.04 Ncm ¼ 0.70
Theoretical bearing capacity factor Ncv ¼ 6.05 Nch ¼ 1.00 Ncm ¼ 0.67
Error in bearing capacity factor: % 3.3 3.8 4.5
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factor, although not the strictly exact solution (instead giving
a value of Ncv that is 3% above the true solution), provided
an appropriate compatibility factor for use in the MSD
approach. However, a compatibility factor Mcv of 1.25 is
preferred in the current analysis of a rough foundation,
mainly because this value will be shown to give a slightly
conservative prediction in the range of practical interest.

To unite the foundation response under horizontal and
moment loading with the soil element response, compatibil-
ity factors of Mch ¼ 8.5 and Mcm ¼ 2.0 are used. The Mch

value is considerably higher than Mcv, since the zone of
influence of the displacements is much smaller in the case
of horizontal loading than in the case of vertical loading.
Excellent agreement is shown between the scaled MSD
curves and the soil response up to a load factor—defined as
the applied load divided by the ultimate capacity—of 0.67.
Higher load factors are rare in practice, so the agreement
spans the entire range of relevant behaviour. The successful
MSD normalisation shown in Fig. 9 echoes the conclusion
from Fig. 8. The responses of the soil and of the foundation
are self-similar, so useful predictions of the foundation
displacement can be made by directly scaling the soil
response.

Comparison of Atkinson’s method and MSD
The results shown in Figs 8 and 9 can be re-plotted as the

ratio of the numerical FE result and the prediction based on
the two simple methods, as a function of load factor. In Fig.
10(a), the ratio of the secant stiffness from Atkinson’s
method to the FE result is shown for each mode of loading.
In Fig. 10(b), the ratio of the displacement in the FE
analysis to the MSD prediction is shown. These two ratios
are directly comparable, because the displacement predicted
in Atkinson’s elastic method is inversely proportional to the
secant stiffness. For both ratios, a value greater than unity
indicates that the simple design method underpredicts the
displacement, which is usually unconservative. Fig. 11 re-
peats Fig. 10 using normalised displacements as the horizon-
tal axis.

Both Atkinson’s method and the MSD approach provide
displacement predictions that are accurate to within 20% for
load factors in the range 0.2–0.67 (corresponding to a
‘factor of safety’ in the range 1.5–5). This accuracy is
sufficient for routine foundation design. It is likely that there
will be far greater uncertainty in the choice of design soil
response. The discrepancy following the MSD method is
larger than with Atkinson’s method. The underprediction of
displacement below a load factor of 0.2, where the relative
displacement is of the order of 1/5000, is not of much
practical significance. The underprediction of displacement
above a load factor of 0.67 is also relatively unimportant,
because this carries the foundation beyond acceptable work-
ing loads.

MSD would be expected to depend for its accuracy on the
self-similarity of the stress–strain curves at any stress level
and therefore to be most reliable for pure power curves. In
the current paper, the FE simulations were conducted on soil
obeying a power curve in its middle range but with stiffness
reduced at very small strain (the G0 cut-off) and at large
strain (the su cut-off). It is therefore understandable that
MSD underpredicts foundation displacements where stress
concentrations cause the boundary value problem to ‘cut the
corner’ of these kinks in the stress–strain curve. Disconti-
nuities in tangent stiffness provide the sternest test for
predictions based on self-similarity, such as by using MSD.

This paper has extended and verified two simple methods
for predicting the undrained displacement of a circular sur-
face foundation. The two methods are based on the assump-

tion of self-similarity—as outlined in Figs 3 and 4—and the
required scaling factors are summarised in Table 2. It should
be noted that the non-linear soil response means that super-
position, for example of vertical load and moment loading,
cannot be used. Fresh factors would have to be derived for
Table 2 to cover cases of combined loading.

CONCLUSIONS
Textbooks and university courses teach elasticity and plas-

ticity as separate methods for analysing the response of a
shallow foundation to applied load. Elasticity is for calculat-
ing settlement, and plasticity is for calculating ultimate
capacity. However, the behaviour of real soil is neither linear-
elastic nor perfectly plastic under typical working loads.

In this paper, the load–displacement behaviour of a surface
foundation resting on soil with a non-linear stress–strain
response has been investigated using FE analysis. The aim
was to establish whether two simple methods, based on
elasticity (Atkinson’s method) and on plasticity (the MSD
method), can be used to capture the full non-linear foundation
response during uniaxial loading in different directions. These
two methods assume that the responses of an individual soil
element and the entire boundary value problem are self-
similar. Using this assumption, the soil element response can
be scaled to predict the response of the boundary value
problem. Atkinson’s method uses elastic solutions to link load
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and displacement via an appropriate secant stiffness. Linear
scaling is used to link the soil strain and the normalised
displacement, in order to identify the operative secant stiff-
ness. The MSD method uses concepts of plasticity to scale
directly from axes of stress and strain to load and displace-
ment.

Non-linear FE analysis has been conducted using a trun-
cated power law model to capture the non-linear undrained
response of clay. This approach uses minimal parameters,
but is shown to capture accurately the stress–strain response
of typical clays. The very dense FE mesh used infinite
elements to eliminate boundary effects, and was compared
with elastic and plastic solutions to check accuracy. During
initial loading, the maximum deviation from the elastic
solution was found to be 1.38%, and at failure the applied
load differed from the theoretical ultimate capacity by ,
5%.

Atkinson’s approach relating the design stiffness, back-
calculated from the settlement of the footing, to the soil
stiffness degradation curve was validated by the FE results.
This approach was extended to the cases of horizontal
loading and moment loading by the derivation of new strain

scaling factors. The MSD approach was also validated, by
good agreement between the predicted and back-analysed
results. New compatibility factors to scale the soil strain
response into normalised horizontal and rotational movement
were derived. These compatibility factors, together with
previously published bearing capacity factors, allow the
load–displacement behaviour to be predicted by scaling
directly from a stress–strain curve.

Both Atkinson’s method and the MSD approach provide
predictions that are accurate to within 20% for typical work-
ing loads. These results show that good predictions of non-
linear foundation behaviour can be made directly from the
soil element response, using two simple methods, based on
elasticity and plasticity. These methods rely on the assump-
tion that the responses of the soil and the boundary value
problem are self-similar, which has been confirmed by
numerical analysis for the case of a surface foundation.

The consideration of soil non-linearity in routine design is
therefore possible for this particular boundary value prob-
lem, without recourse to sophisticated numerical analysis.
These self-similarity methods are sufficiently simple to be
taught at undergraduate level, and could be incorporated in
textbooks alongside the core sections on elasticity and
plasticity, providing an explanation as to how these solutions
can be applied to real non-linear soil.
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NOTATION
A foundation area, �D2/4
b parameter describing power law decay of shear stiffness
D foundation diameter
G elastic shear modulus
G0 small-strain elastic shear modulus
H horizontal load
K dimensionless stiffness coefficient
M moment load
Mc compatibility factor
Nc bearing capacity factor
q deviatoric stress (q ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3
2
sij sij

q
, sij ¼ � ij � � kk�ij=3)

su undrained soil strength
u horizontal foundation displacement
V vertical load
w vertical foundation displacement
Æ strain scaling factor in Atkinson’s method
ª engineering shear strain
�a triaxial compression strain

�q deviatoric strain (�q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2
3
�ij�ij

q
, i, j principal directions)

�q0 deviatoric strain at limit of elastic behaviour
Ł foundation rotation
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Table 2. Derived scaling factors for the response of a rough circular surface
foundation

Axis Atkinson’s method Mobilisable strength design
(MSD)

Load – Vertical: Ncv ¼ 6.05
Horizontal: Nch ¼ 1.0
Moment: Ncm ¼ 0.67

Stiffness Equations (2)–(6) –
Displacement Vertical: Æv ¼ 3 Vertical: Mcv ¼ 1.25

Horizontal: Æh ¼ 1.3 Horizontal: Mch ¼ 8.5
Moment: Æm ¼ 2.2 Moment: Mcm ¼ 2.0
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Subscripts
h horizontal

m moment (rotational)
v vertical

ult ultimate
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