
1 INTRODUCTION  

The significance of particle crushing in the stress-
strain behaviour of sands has long been recognised. 
McDowell & Bolton (1998) have related success-
fully the normal compression line of sand to fractal 
crushing of particles, while Cheng et al (2004) have 
identified the yield surface of a sand as a contour of 
crushing. 

In addition, as particle crushing changes the 
grain-size distribution of a sample it will directly af-
fect its permeability. One should distinguish two 
cases here: homogeneously distributed crushing 
which is the norm, and localised crushing (e.g. Di-
Giovanni et al. 2001). Crushing localisation forms in 
thin tabular zones of large extent that are called 
compaction bands. Permeability inside a band is de-
creased by an order of magnitude (Mollema & An-
tonellini 1996) severely affecting the flow field in-
side a sample by creating preferential flow paths. It 
should be noted that crushing localisation has been 
reported in sandstone only, but Marketos & Bolton 
(2005) report computer simulations that suggest that 
it could also occur in sand. 

It is therefore advantageous to be able to quantify 
the extent of crushing in a soil sample and predict 
whether it will be localised. Most approaches are 
based on continuum mechanics which is presently 
incapable of describing this information. A tool 

based on micromechanics needs to be developed as 
this will relate crushing to relevant grain properties. 
Nakata et al (1999) have attempted to relate the ex-
tent of crushing observed experimentally to the 
crushing strength of particles. However the great 
practical difficulties of doing so in an experiment 
meant that they had to resort to using a rather simpli-
fied approach. A small number of particles was cho-
sen at random and the damage to them was tracked, 
by exhumation and photography. The force distribu-
tion was not known, so the simplifying assumption 
of equal force causing crushing on all particles was 
adopted. An alternative method of investigation can 
be based on Discrete Element Modeling. This has 
the advantage of easy access to the multitude of data 
involved and can yield information on microme-
chanical parameters of interest (such as the internal 
grain-force distribution) which are otherwise inac-
cessible. 

We will therefore use a discrete element method 
to simulate crushing in a sand element under one-
dimensional compression. Another simulation will 
be used to obtain the distribution of inter-particle 
contact forces. These will be combined to confirm 
our hypothesis that a statistical analysis of particle 
crushing can be successful in predicting the extent of 
crushing. Insight gained here will allow the devel-
opment of further statistical tools that are needed to 
understand and describe crushing localisation. 
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ABSTRACT: The deformation of a volume of sand comes about from particle rearrangement to new posi-
tions, and from particle crushing at larger stresses. It is desirable to be able to quantify the level of crushing 
inside a sand, as this affects the grain size distribution of the sample, which is directly linked to its permeabil-
ity. In addition, under certain conditions, which need to be clarified, the crushing of one particle may lead to 
the crushing of a near neighbour, ultimately leading to the formation of a propagating compaction band. An 
attempt will be presented here to understand and predict the extent of crushing using a statistical analysis 
based on the results of discrete element simulations. The distributions of intergranular contact forces inside a 
DEM model of a sand will be coupled with an idealised distribution of crushing strengths of the sand grains. 
These will be combined to obtain the probabilities of crushing of grains within a stressed assembly. It is an-
ticipated that DEM analyses and statistical reasoning may permit engineers to use grain-scale tests to predict 
the extent of crushing in a sample, and ultimately discriminate between cases of homogeneous crushing 
throughout a volume of sand and localised crushing in a compaction band. 



2 DISCRETE ELEMENT METHOD 

Two different discrete element simulations were per-
formed. One was performed on a sample where 
crushing was suppressed and the only possible mi-
cromechanism was particle rearrangement. This was 
carried out in order to calculate the force distribution 
inside a sand, which would later be used as an input 
to the statistical analysis. 

The second simulation was performed on the 
same sample, this time allowing particle crushing. 
Data regarding the extent of crushing were recorded. 
These simulations were performed using the code 
PFC3D which is commercially available by Itasca 
Inc. A concise description of this code can be found 
in the PFC3D manual (Itasca Inc. 2003). 

The sample used was cuboidal (porosity 44.8%, 
dimensions 6 cm x 6 cm x 7.2 cm). It consisted of 
8943 spherical particles of radii uniformly distrib-
uted between 1 and 2 mm. It was prepared by a 
simulated ‘numerical dry pluviation’ and was 
bounded by frictionless walls on all sides. No grav-
ity forces were included and a soft contact approach 
was used. The side walls were kept stationary while 
a constant axial shortening rate of 0.1 m/s was ap-
plied. The micromechanical parameters used in the 
simulations can be found in Table 1. It should be 
noted that the values for stiffness are of the order of 
magnitude inferred from single crushing tests on 
quartz particles reported by Nakata et al. (1999). All 
the data presented below were recovered from an in-
spection volume that excluded the region lying 
within three particle diameters of the top and bottom 
boundary, where the non-random fabric might lead 
to preferential crushing. 
 
Table 1: Micromechanical parameters used for the simulation __________________________________________________ 
Parameter                                                     Numerical Value __________________________________________________ 
normal and shear stiffness of balls                 4 x 106 N/m 
normal and shear stiffness of walls                4 x 106 N/m 
particle friction coefficient, μ b                          0.5 
wall friction coefficient, μ w                               0.0 
density of spheres                                           2650 kg/m3 

coefficient of local damping                             0.7 
sample shortening rate                                      0.1 m/s __________________________________________________ 

2.1 Simulation with no crushing 
The normal contact force distribution inside the 
sample was followed throughout the simulation. The 
distribution was found to be approximately the same 
for different stress levels when contact force was 
non-dimensionalised in terms of its the mean value. 
This is plotted in Figure 1. It should be noted that 
this plot is a probability density function, which 
means that the probability of finding a normalised 
force with magnitude between x and x+Δx is given 
by the area under the curve. It was found that this 
curve has an exponential tail for large forces and can  

 
 
Figure 1: A plot of the probability density function of normal 
contact force over mean contact force for three different stress 
levels. 
 
be fitted by the curve (x+Δ)B ·e-Γx+E, where B, Γ, Δ, 
and E are constants. This force distribution is similar 
to those previously reported in the literature (see e.g. 
Radjai et al. 1996 or Thornton 1997). 

In our case, however, it is not the distribution of 
all the contact forces that is important. We will be 
assuming that it is the maximum normal force on a 
particle that causes crushing, irrespective of what the 
other contact forces are. We are then more interested 
in the distribution of the maximum force exerted on 
particles. This is plotted in Figure 2 on normal, and 
in Figure 3 on semi-logarithmic axes. Again it is 
relatively independent of the stress level when plot-
ted against non-dimensionalised force. One should 
note that the force axis of Figures 1 and 2 is not the 
same, as the mean normal force based on all contacts 
and the mean maximum normal force on all particles 
are clearly not the same. 

 

 
 
Figure 2: A plot of the probability density function of the 
maximum normal contact force on a particle (as non-
dimensionalised by the mean maximum normal force) for three 
different stress levels.  
 



The distribution of Figure 2 was fitted by the func-
tion 
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where f is the ratio of the maximum normal contact 
force on a given particle to its mean value for all 
particles. As seen in Figure 3, for forces larger than 
2 Fmean the distribution can be approximated by an 
exponential decay of the form αe-βf, with α=247 and 
β=3.77. This exponential fit is included in Figure 3. 

 

 
 
Figure 3: The same plot as in Figure 2 but this time plotted on 
semi-logarithmic axes. 

 

2.2 Crushing simulation 
Crushing events were simulated as follows. A char-
acteristic strength parameter was assigned to each 
particle. A particle was then completely removed, so 
as to simulate crushing, when the maximum normal 
contact force acting on it exceeded its characteristic 
strength. This represents small fragments, produced 
by crushing, falling into the pore space and losing 
their force-carrying capacity. A very similar method 
of representing crushing by particle removal has 
been used by Couroyer et al. (2000) and was seen to 
yield good results. 

The strength parameter was randomly assigned to 
each particle and its overall distribution was chosen 
to be approximately of the form of Equation 2: 
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where Φ is the characteristic strength parameter in 
Newtons. A plot of the distribution of particle 
strengths is shown in Figure 4, along with the func-
tion of Equation 2. 

One should note that this distribution was chosen 
arbitrarily and does not describe any physical situa-
tion. It is used as an input to the simulation. The 
purpose of this work is to set up and validate the sta-
tistical method outlined here, and this completely 
arbitrary function is suitable for our purposes. Any 
other distribution can be chosen instead and some 
(e.g. uniform, Weibull, etc), might be thought more 
realistic. Note that equation 2 is consistent with a 
characteristic breaking stress (force divided by 
square diameter) for a particle in the range of 10-160 
MPa. 
 

 
 
Figure 4: A plot of the distribution of strength parameters as 
used in the simulation and as approximated by Equation 2. 
 
 

 
 
Figure 5: The axial stress plotted versus the axial strain for the 
crushing simulations. 

 
 
These simulations yielded the stress-strain curve of 
Figure 5. The initial response up to 0.05 strain is 
only due to particle rearrangement and with slipping 
at contacts initiated by elastic shortening at the con-
tacts. Crushing of particles is initiated at a strain of 
0.053. As more particles crush the stiffness of the 
sample decreases and finally a crushing plateau is 



reached beyond a strain of 0.065. One should note 
that the stress-strain curve exhibits instabilities, 
which for similar simulations have been shown to 
correspond to localised crushing (Marketos & Bol-
ton 2005). Various other micromechanical parame-
ters were traced throughout this simulation and were 
used to check the validity of the proposed statistical 
analysis outlined below. 

3 STATISTICAL ANALYSIS 

The probability of two events occurring is given by 
the product of the two individual probabilities, if we 
can assume that these two events are independent. In 
the case discussed here we have randomly chosen 
the strength of each particle from the distribution of 
Equation 2. We can therefore be certain that it will 
be independent of the force on it. This however 
might not be the case if the strength were a function 
of particle size, as we have seen that large forces 
tend to concentrate on larger particles. 

From the above we can say that the probability of 
crushing for a particle with a given strength will be 
just the probability that the maximum normal force 
on it exceeds its strength. This is in turn given by the 
integral of Equation 3, or the relevant area under the 
probability density curve of Figure 2. 
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where p is the probability of crushing of a specific 
particle at a given macroscopic stress, φ and f are 
this particle’s strength and maximum particle force 
respectively each non-dimensionalised by the mean 
of the maximum force on all particles, and g is the 
probability density function for maximum particle 
normal force as plotted in Figure 2. 

One can further extend this argument to the full 
case, where the strength of the particles itself fol-
lows a certain distribution. Now there is also a prob-
ability associated with the strength of the particle 
having a certain value (as plotted in Fig. 4). The 
probability of a crushing event will be given by the 
summation of the products of the probabilities of the 
two independent events: the probability that the 
strength has a value Φ, and that the grain-force is 
larger than Φ. This should be done for all possible 
values of particle strength. In the limit of continuous 
distributions for both the above quantities the sum-
mation becomes an integral and the probability of a 
crushing event is given by Equation 4. This is some-
times termed the convolution integral. 
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In our case substituting the relevant probability dis-
tribution functions into Equation 4 we get Equation 
5. One should note that this step involves a change 
of variable inside the integral calculating the prob-
ability of force exceeding Φ, as the function g is in 
terms of normalized force (f), while Φ is a force in 
Newtons. This is how the mean force term ( F ) 
comes into the calculation. 
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Here P is the probability of crush of a particle, Φ and 
F are this particle’s strength and maximum particle 
force respectively, F  is the mean of the maximum 
forces on all particles, g is the probability density 
function for maximum particle force as plotted in 
Figure 2 and h is the probability density function for 
particle strength as plotted in Figure 4. 

One can easily implement the integral of Equa-
tion 6 numerically to get a prediction of the crushing 
probability for one grain. This has been plotted in 
Figure 6. It should be noted that Equation 6 implies 
that P is only a function of the mean maximum force 
on particles. If a relation between stress and crushing 
probability is needed relations between stress and 
mean force would need to be assumed. Such rela-
tions would be only a function of the grain structure 
of the sand meaning that two sands with the same 
grain size distribution but different structure would 
exhibit different stress-strain curves.  

One should also note that we could use the expo-
nential tail approximation to the force probability 
density function. This would allow the analytical 
calculation of Equation 4 and would provide an ap-
proximation to the probability of one crush (Eq. 7). 
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Figure 6 also contains a plot of the crushing prob-
ability versus mean force as observed in the crushing 
simulation outlined above. This probability was cal-
culated as the ratio of the cumulative count of parti-
cles that have crushed at each instant over the total 
number of particles in the simulation initially. One 
can observe that the curves in Figure 6 agree very 
well with each other initially and up to a mean 
maximum particle normal contact force of 80 New-
tons.  
 

 
 
Figure 6: A plot of the probability of one crush versus mean 
maximum particle force as given by Equations 6 (the full con-
volution) and 7 (using the exponential tail approximation). 
Note that these correspond to the smooth curves in this plot. 
The results of the crushing simulations are also plotted for 
comparison. 

 

4 DISCUSSION 

One should note that the calculation of the probabil-
ity of crushing using Equation 4 is relevant to cases 
where all the crushes happen simultaneously. This is 
mostly applicable to the case where the sample is 
stressed rapidly. In the crushing simulation pre-
sented here particles are crushed sequentially so that 
at every instant the probability based on the cumula-
tive crush count is larger than the probability pre-
dicted by Equation 4. 

One should note that the prediction for the initia-
tion of crushing is very accurate and that the results 
are in very good agreement up to a value of mean 
force of 90N, or a probability of 0.004. This is no co-
incidence. In this initial region we can assume that 
crushing events are completely independent of each 
other as the stress-carrying network inside the sam-
ple has not been significantly disturbed. 

If however one wanted to predict more accurately 
the extent of crushing after this initial region a more 
complicated approach would be needed. This would 
involve calculating the variation in the force network 
after an initial crushing event and would be aiming 

to calculate the conditional probability of a second 
crush occurring given that a particle has already 
crushed. 

Statistical approaches based on the calculation of 
the perturbation of the force network due to an initial 
crush might hold the key to understanding the for-
mation of crushing localisation. This is the main mo-
tivation behind the present simplified statistical 
study. Compaction bands induced during the drilling 
of oil wells have been implicated in wellbore insta-
bility mechanisms (Haimson 2001), as well as in the 
concern of reservoir engineers to predict the extent 
of sand fines production. The dual concerns of parti-
cle crushing and crushing localisation seem to de-
mand an understanding of material behaviour from 
the particulate and statistical standpoint taken here. 

5 CONCLUSION 

The statistical method proposed here has been 
shown to produce results in good agreement to the 
ones observed in discrete element simulations of 
crushing. This method has been seen to predict the 
onset of crushing and allows one to quantify the 
level of crushing. We have seen that the simplifying 
approximation of an exponential decay of contact 
force introduces a very small error in the calculation. 
Even though the method has been compared with 
fictitious results from a simulation one would expect 
that it should work for sand samples as well. The 
following experimental sequence might therefore be 
imagined. 

A series of single-particle crushing tests is con-
ducted, large enough to obtain an accurate estimate 
of the probability density of particle strength. The 
probability density function of particle force is then 
estimated based on a computer simulation of a sand 
sample with similar grain size distribution. The two 
functions are combined using Equation 4 to yield the 
probability of crush of one particle. 

To sum up, the results presented here have dem-
onstrated that a statistical treatment of sand is valid 
and might prove advantageous in the analysis of soil 
crushing. It is thought that such methods might hold 
the key to understanding when and why localisation 
might occur. Furthermore they might allow one to 
relate aspects of soil behaviour to well-defined mi-
cromechanical parameters that have a physical 
meaning, a direction in which classical approaches 
based on continuum mechanics have failed. 
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