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MICRO MECHANICS OF ELASTIC SOIL

. G. R. McDowgLL? and M. D. BoLTON®)

ABSTRACT

This paper presents a review of the stress dependence for soil stiffness at very small strains. Previously published
data for sands and clays are presented, and it is shown that in all cases, provided voids ratio is kept approximately con-
stant, then the very small strain stiffness of soils is found to vary with mean effective stress p as pl/2. The p!'/2 de-
pendence of stiffness has long been established for more idealised aggregates comprising regular arrays of spherical
particles, and published micro mechanical explanations for this behaviour are presented. A simple mean field ap-
proach based on Hertzian contact theory predicts that the dependence should be p!'/3, but highlights two possible rea-
sons for the apparent discrepancy comparing with available data: (i) contacts may not be Hertzian and (ii) the number
of contacts may increase with increasing stress level at approximately constant voids ratio. Two alternative previously
published explanations for the p'/2 dependence relate to conical contacts between particles and particle chain buckling
mechanisms. These mechanisms are presented and discussed, and the paper shows that the p'/2 dependence could arise
due to one or other of these mechanisms, but not both simultaneously. It seems possible that in densely compacted or
overconsolidated soils where voids ratio is approximately constant until yield occurs, contacts may be aspherical and
the number of contacts may simultaneously increase with increasing confining stress. In this case the conical contact

and particle chain buckling mechanisms are not viable: a more rigorous analysis based on the contact of rough parti-
cles is required. It is proposed that such an analysis should allow for the simultaneous elastic squeeze down of surface
asperities and increase in the number of asperity contacts under increasing confining stress.
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INTRODUCTION

The stiffness of soil can only be assumed elastic and
linear at very small strains (<107°) (Atkinson, 1993).
Volumetric and shear effects are then fully uncoupled so
that isotropic elasticity may be applied (Viggiani and
Atkinson, 1995). The shear modulus of soil at very small
strains is easily determined using dynamic methods
(Viggiani and Atkinson, 1995) and so the bulk modulus
can be easily be related to shear modulus via a Poisson ra-
tio. In general, data shows that at very small strains, soil
stiffness increases with effective confining pressure p as
p'? (Houlsby and Wroth, 1991) (note that in this paper
all stresses are assumed to be effective stresses), provided
voids ratio is kept approximately constant. For densely
compacted or overconsolidated materials, voids ratio
will be approximately constant until yield occurs. For
sands, Wroth and Houlsby (1985) proposed the follow-
ing relation between shear modulus G and mean effective

stress p:
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where p; is a reference pressure and 4 and N vary depend-

ing on the choice of reference pressure and current
strain. Experiments have shown (Wroth et al., 1979) that
for both dynamic and static tests on sands, N varies from
about 0.5 at very small strains to 1.0 at large strains, cor-
responding to a fully frictional flow with major rearrange-
ment of particles. For clays, Houlsby and Wroth (1991)
suggested that the variation of shear modulus G with
effective pressure and overconsolidation ratio could be ex-
pressed as:

(9] oo >

where (G/p)s. is a constant for a given clay and p, is the
preconsolidation pressure. For soils with a given precon-
solidation pressure, the voids ratio is approximately con-
stant. Houlsby and Wroth (1991) suggest a value for N of
about 0.5 at very small strains, with G=G,, the shear
modulus at very small strains.

Dynamic testing methods are used commonly to obtain
reliable measurements of the very small strain shear
modulus G,. Hardin and Black (1968) used the resonant
column technique to measure the vibration modulus of
normally consolidated clay, and found the modulus to in-
crease with confining pressure p as:
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Go=F(e)p'"* 3)

where F(e) is a function of the voids ratio e and increases’

with a decrease in the value of e. Hardin and Black (1966)
found the same form of pressure dependence to apply to
sands, for both static and dynamic tests. Again, the p'/?
dependence of stiffness is evident, if e is kept constant.
Chang et al. (1989) quote several empirical relations
which relate the average co-ordination number to the
voids ratio of an aggregate. In this case, for soil at a
given effective pressure, the increase in stiffness with a
reduction in voids ratio can be seen to be due to the in-
crease in the number of particle contacts.

The very small strain stiffness of soils may alternatively
be determined by measuring the velocity of shear waves
through a triaxial sample using the bender element
method (Viggiani and Atkinson, 1995). Viggiani and
Atkinson (1995) proposed the following equation for the
very small strain shear modulus G, based on data for
reconstituted samples of speswhite kaolin:

Go_ (p\Y "
Pr A(Pr) -(OCR) @
where OCR is the overconsolidation ratio and p. is a refer-
ence pressure to make (4) dimensionally consistent (.,
which influences the value of A, is normally taken to be
I kPa or atmospheric pressure). Equation (4) could alter-
natively be written:
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where p, the preconsolidation pressure. If p; is kept con-
stant the voids ratio of a given soil with 2 given precon-
solidation pressure can be assumed to be approximately
constant. In this case the pressure dependence in (5) at ap-
proximately constant voids ratio is p™™, The values for N
and M for kaolin were found by Viggiani and Atkinson
(1995) to be 0.653 and 0.196 respectively, giving an over-
all pressure dependence of p®*. For reconstituted
London clay, the value of (N-M) was calculated to be
0.51. Thus the stiffness is once again seen to be propor-
tional to p'/2, Viggiani and Atkinson (1995) found this
pressure dependence to be true for both undisturbed and
reconstituted samples, demonstrating that G, is unaffect-
ed by the soil structure and fabric. This implies that at
very small strains, the deformation is due to elastic defor-
mation at points of contact between particles. Biarez and
Hicher (1994) suggest a general law which may be applied
as a first approximation to the majority of soils at very
small strains:

E. 450 ©
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where e is the voids ratio, p is the mean effective stress in
MPa and E. is an elastic secant modulus measured in
MPa and defined as E.=¢q/ &, where g is the deviatoric

stress in MPa and g, is the major principal strain. The
law is based on data for sands, silts, marls and clays. It is

evident, then that the very small strain stifiness of soils
varies with mean effective stress p as p'/?, provided voids
ratio is constant. In order to explain this power-law de-
pendence of elastic modulus on confining pressure, a
micro mechanical view of soil is required. To explain the
existence of the 0.5 power, it is necessary to consider the
mechanics of contact between elastic soil grains. Of
course soil grains vary greatly in size and shape and the
aggregations of particles are highly complex. Most recent
methods of quantifying soil microstructure have used the
fractal concept (Moore and Donaldson, 1995; Vallejo,
1995). However, in this paper we perform a simple mean-
field estimate for the dependence of elastic modulus on
pressure for simple isotropic stress states, on the assump-
tion that particles are spherical, and modify the analysis
for the case of conical contact between particles. The first
step is to consider a single contact between two smooth,
non-conforming surfaces. We first examine simple
Hertzian contact between two spheres and apply a mean
field approach to obtain aggregate stiffness as a function
of stress level for isotropic conditions. The mean field ap-
proach highlights two possible reasons for the discrepan-
¢y between predicted and observed soil behaviour. A
modified approach is therefore used to explain the p'/2 de-
pendence for stiffness. Two previously published explana-
tions are used, based on alternative single and multiple
contact mechanisms. However, it seems possible that in
real soil aspherical contacts may occur together with an
increase in the number of particle contacts under increas-
ing stress at approximately constant voids ratio. This
paper shows that in this case, a more rigorous analysis
for rough spheres would be required, in which the distri-
bution of asperities on each particle surface should be
considered.

HERTZIAN THEORY

We will consider, for simplicity, the contact of two
identical spheres (the more genecral case of contact be-
tween any two smooth non-conforming surfaces can be
found in Johnson (1985)). For two spheres each of radius
R with an area of contact of radius a,, Hertz (1882a)
gives the mutual approach J of the spheres as a function
of the applied normal load P:

_Zaﬁ_( IP(1 ——vﬁ))m
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where E,, and v, are the Young’s modulus and Poisson ra-
tio of the particle material respectively. The contact stifi--

ness E; can be defined as P/ and is readily seen to in-
crease with applied load P as P'/?, We might write

EcocPSEY )

M

In order to see how this variation of contact stiffness with
load affects the dependence of the elastic modulus of an
aggregate on applied pressure, we apply a mean-field ap-
proach to an array of spheres, each identical to the
spheres considered above,
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Fig. 1. Spherical co-ordinate system

MEAN FIELD ESTIMATE OF STRESS-STRAIN
RESPONSE

We consider the response in isotropic compression of a
triaxial sample containing a random array of identical
spheres. The detailed analysis can be found in Jenkins
and Strack (1993), and is only summarised here. The end
result is presented for isotropic stress states, in order to
elucidate the possible reasons for the dependence of stiff-
ness on mean effective pressure p as p'/%. The spheres are
each of radius R, and spherical co-ordinates are chosen,
shown in Fig. 1 with respect to a fixed Cartesian system.,
The z-axis is taken to be in the direction of the axis of the
triaxial sample. For a general pair of particles in contact
(Fig. 1), aeis taken to be the unit vector from the centre of
a sphere to the contact at its surface. It is assumed that
the particle centres move in accordance with a uniform
displacement field. The displacement « of a contact rela-
tive to the centre of a sphere is calculated from the
average strain & of the aggregate (taking compressive
strain as positive):

ui= — Reyoy (9

The underlying assumption in this statement is that the
average particle spin is equal to the rigid body rotation of
the aggregate (Jenkins and Strack, 1993; Chang et al,,
1989). The force F(c) exerted on a sphere at a contact
with orientation « is given in terms of its components
parallel and perpendicular to a:

F[= "Pfxi+T| (10)

with T.a=0. The key step in the mean field approach (a
full description of the mean field approach is given in
Jenkins and Strack, 1993} is the application of the princi-
ple of virtual work, with an arbitrary set of compatible
strains and displacements: :

a6y =N, 55 FiuiA(a)dw (l 1)

where oy is the stress tensor, N, is the number of spheres
per unit volume and A4 () is the orientational distribution
of contacts defined such that A(a)dw is the probable
number of contacts in an element of solid angle d w cen-
tred at e For an isotropic distribution of contacts,

C
A(a)=a~£ (12)

where C is average number of contacts per particle,
called the co-ordination number. The end result of the
mean field approach for isotropic conditions is that the
volumetric strain &, is given by the equation:

p \2f3( y 33
&yl — - 13
~(& 3 @
where p is the mean effective stress, G, is the shear modu-
fus of the particle material and v is the specific volume.

Hence the bulk modulus of the aggregate K., given as p/
&, (and hence shear modulus) is related to pressure p by:

K= plIJGIZJBCzI! (14)

if voids ratio is kept approximately constant.

The mean-field approach described above predicts that
the stiffness of the aggregate, for purely elastic deforma-
tions, increases with pressure p as p'/. If the number of
particle contacts is constant, then {14) is of the same
form as (8). The form of pressure dependence in (14) is
therefore a direct consequence of the assumption that
Hertzian theory applies. An apparent discrepancy exists
between the 0.5 power of p found to influence stiffness
empirically and that developed in the mean-field theory
(14). However, the mean field analysis has been useful
since the final result in (14) offers two possible explana-
tions for the discrepancy:

(i)Hertzian theory may be an incorrect approach for de-
termining the deformations at particle contacts
(ii)Co-ordination number may be a function of strain
These two possible mechanisms are now investigated. It
is interesting to note that (13) predicts that if Hertzian the-
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ory applies, then in order to produce an agreement with
experimental data, co-ordination number C should in-
crease with volumetric strain &, as £!/2,

SINGLE AND MULTIPLE CONTACT
MECHANISMS

Goddard (1990) suggested that the discrepancy be-
tween the p'/* dependence in (14) and the p"/? dependence
found in much of the experimental data might be due to
aspherical contacts between particles. He analysed the
contact between a plane and a sphere of radius R with a
pointed (i.e. conical) asperity of shallow included angle
n-20 (with 20, < <), shown in Fig. 2. Goddard (1990)
derived the following expressions for the contact stiff-
ness, E,, defined as dP/dd:

E=02iP/rna)?, forO<P=<P* (15)
=(96/i*RP)'/3, for P> P* (16)
where the transition force P* is given by
9
_— 2
Pr= 32n SR (17)

and /i is an ¢lastic constant, related to the Lamé constants
and Poisson’s ratio for the particle material. For the con-
tact between a sphere and a conical asperity, as opposed
to the contact between a plane and a conical asperity, it is
simply necessary to replace R by R/2 in the above equa-
tions. It is evident from the mean-field analysis given in
the previous section, (15) will give rise to the following re-
lation between the ‘bulk’ modulus of the aggregate and
mean pressure;

K,ocpt2GY? (18)

assuming that voids ratio and average co-ordination num-
ber remain constant. The transition force arlsmg from
elastic squeeze-down of the conical contact gives rise to a
transition pressure in the aggregate, beyond which all
contacts are Hertzian and the elastic modulus of the ag-
gregate varies with pressure as p'*., Goddard (1990)
points out that this is consistent with data produced by
Duffy and Mindlin (1957) for elastic wave velocities in
face-centred cubic (FCC) packings of high-tolerance steel
balls. However, Duffy and Mindlin (1957) found a corre-
sponding aggregate of low tolerance steel balls to exhibit
no such transition, and the pressure dependence was of
the form p'/? throughout the range of experimental pres-
sures used, Goddard (1990) proposed an alternative
mechanism by which the p'/? dependence of stiffness in
soils may occur, He considered in an array of particles un-
def compression, sample-spanning chains of particles
capable of supporting axial compression, as is observed
in discrete element models of elastic grains (Cundall and
Strack, 1979). If there is insufficient lateral force from
neighbouring partlcles due to a deficiency of contacts,
then Euiler buckling of the particle chain will’ occur until
it is prevented by the formation of new contacts and the
development of sufficient lateral force. Consider a pair of
particles in a particle chain, each of radius R and which

Fig.'2. Axisymmetric contact between s plane and a conical asperity

Fig. 3. :Small rotation utgn.p;art_icl\e;‘g:ontact T

execute a small rotation @ normal to theirline of centres
(Fig. 3). If the direction of the axis of the original chain is
#, then the axial compressive strain & in the column of
partlcles is given by::

a = EijHiN; (19)

It is readily seen that after a small rotation @, the dis-
tance between particle centres now has a projection of
2R(1-g,) along » (Fig. 3). Thus

2R(1—g,)=2Rcos @ 20)
which for small @ reduces to
w*=2e, (21)

The infinitesimal lateral displacement # of one particle
relative to another is

n= 2Rw--R1/§e—. @2)

The way in which this lateral motion gives:rise to new con-
tacts depends on the gap distribution in the array. God-
dard. (1990) assumed: the probable: number of new. con-
tacts dC(&, n) formed by:a 1ateral: movement. through.a
distance between & and ¢+d ¢ perpendicular:to n to be
governed by a uniform distribution over some interval
(0, 7). In this case the total number of new contacts
formed by the lateral displacement # is given by:
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ACIAC=R8e./l, n=l (23)
AC/AC=1, n=l 4

where ! is a function of n and AC, denotes the maximum
number of new contacts which can be formed. Goddard
(1990) states that any smooth distribution function for
C (&, n) would lead to a result of the form (23, 24) for
small &,. By averaging over all , the total number of con-
tacts is seen to ihcrease with global strain magnitude as
| £| /> until the maximum contact density is achieved. This
will give rise to a transition pressure, below which the
elastic modulus of the aggregate increases with pressure
according to (18), and above which the p'/* dependence
predicted by Hertzian theory applies.

DISCUSSION

The transition pressure which emerges in the conical
contact model increases with increasing value of «.
(Eq.(17)} i.e. increasing asperity height. An array of low
tolerance spheres (Duffy and Mindlin, 1957) of diameter
1/3 inch £50x10~% inches did not experience such a
transition over the range of pressures used, but a similar
array of spheres of tolerance =10~ inches was found to
exhibit this transition. It is conceivable that for soil parti-
cles, the conical asperity model may apply, and that
rough soil particles might never reach such a transition
pressure under the range of confining pressures normally
used in the triaxial cell. However for irregular particles
such as soil particles, the exact definition of e, would be
difficult. Furthermore, experiments by Oda (1977) and
others cited by Chang et al. (1989) indicate a one-to-one
relationship between mean co-ordination number and
voids ratio. All of the data discussed in the Introduction
shows that if the effect of voids ratio is approximately
constant, then the elastic modulus of the aggregate is de-
pendent solely on the confining pressure p and increases
with p as p"/*. If constant voids ratio implies constant
mean co-ordination number  {and therefore constant
total number of particle contacts), then the conical con-
tact model offers a plausible explanation for the p'/ de-
pendence.

If Hertzian theory does apply to the contact of rough
soil particles {which requires that the loads transmitted
across particle contacts are sufficiently large (Greenwood
and Tripp, 1967)), then the p'/* dependence can be ex-
plained in terms of the generation of new contacts. This
requires that co-ordination number can increase with in-
creasing compressive volumetric strain whilst voids ratio
can be assumed to be approximately. constant, An exami-
nation of the data by Oda (1977} shows that although the
data could be described adequately by a relationship be-
tween voids ratio and co-ordination number, there is
sufficient scatter in the data to show that at a given voids
ratio, the co-ordination number might not be uniquely
defined. This is also.true of data cited by Chang et al.
(1989). Furthermore, the mean co-ordination numbers
calculated by Oda (1977) related to compacted glass balls
under zero applied stress, and no tests were performed

for a densely compacted or overconsolidated array of
balls under increasing stress levels, where voids ratio
could be assumed to be constant. It is therefore conceiva-
ble that co-ordination number may increase with increas-
ing confining stress, whilst the voids ratio remains ap-
proximately unchanged. Ko and Scott {1967) examined
the compression of regular arrays of spheres such as face-
centred cubic (FCC) and body-centred cubic (BCC), and
developed a ‘holey’ model in which some particles initial-
ly carry no load due to being slightly smaller than the
other particles. Thus for a regular array in which particle
shapes are imperfect, the elastic closure of gaps leads to
an aggregate stiffness which increases with pressure p
more rapidly than p'/*, However, if gaps between parti-
cles close simply due to an increase in the normal ap-
proach between grains, then in general, the co-ordination
number C increases with volumetric strain &, as (God-
dard, 1990):

ACxeg, (25)

Substituting (25) in (13) gives the following dependence
for aggregate modulus K, on pressure p:

Ko p*SGY* (26)

In order to obtain the p'/* dependence for the elastic
modulus of such a regular array of spheres obeying Hert-
zian theory at particle contacts, it is necessary to resort to
the idea of particle chain buckling and the infinitesimal
rotation at contacts to provide sufficient lateral force,
The particle chain buckling model gives rise to a transi-
tion pressure beyond which p'/? dependence applies. God-
dard (1990) points out that this is consistent with data for
sands under prolonged vibration (Drnevich and Richart,
1970). However this phenomenon might be described as
inelastic stiffening due to shake-down, and the data for
the compression of regular arrays of high tolerance
spheres (Duffy and Mindlin, 1957) is certainly supported
better by the conical contact model. Goddard (1990) con-
cedes that particle chain buckling is, strictly speaking, ir-
reversible, It is therefore not applicable to the purely elas-
tic deformation of a soil aggregate.

It is interesting to note that Goddard (1990) presents
two very different models: one is based on the idea that
Hertz does not apply at individual contacts, and the num-
ber of contacts remains constant. The other model as-
sumes that Hertz applies, and that the number of con-
tacts increases with increasing pressure. The question
arises as to what happens if the conical contact model ap-
plies, and the number of contacts increases according to
the particle chain buckling mechanism. Clearly the p'/?
dependence is lost: the mean field approach readily gives
the bulk modulus of the aggregate as a function of p:

Kv och.GGg.it (2‘7)

The two mechanisms offered by Goddard (1990) shouid
therefore be seen as alternatives, if the very small strain
behaviour of soil is to be explained. If the confining
stress is sufficiently low to avoid elastic squeeze down of
contacts, then the conical contact model offers a plausi-
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ble explanation if new particle contacts are not gener-
ated. If the confining stress is sufficiently high to invoke
Hertzian behaviour at all contacts, then the p'/? depend-
ence can only be explained by the generation of new con-
tacts with negligible change in voids ratio: that {s if small
changes in e can have a significant effect on co-ordination
number. However, the particle chain buckling mechan-
ism is irreversible and therefore not strictly applicable to
elastic soil: an alternative multiple contact mechanism is
required. It may be that neither the conical contact
model nor the particle chain buckling model apply, and
that a statistical approach based on the contact of rough
surfaces (Greenwood and Tripp, 1967; Archard, 1957;
Greenwood and Williamson, 1966) might be more ap-
propriate. In this case the analysis should take into ac-
count the distribution of surface asperities on the soil par-
ticles in the aggregate, so that under increasing confining
stress, elastic squeeze down of asperities is possible
together with the generation of new asperity contacts.

CONCLUSIONS

A review of the very small strain behaviour of soil un-
der isotropic stress conditions has been presented. It has
been found that for strains < 107°, data for both sands
and clays show that the stiffness of soil varies with stress
level p as p'*2, provided voids ratio is approximately con-
stant. A mean-field approach has been used with
Hertzian contact theory to predict the dependence of stiff-
ness on stress level, and it has been shown that the
predicted dependence is p'/*. However, the mean field ap-
proach suggests two possible reasons for this discrepan-
cy: either contacts are not Hertzian, or the number of par-
ticle contacts may increase with increasing stress level.
Two alternative previously published mechanisms for

p'/* dependence have been examined: a single conical con-

tact mechanism and a multiple contact particle chain
buckling mechanism. Applying a mean field approach,
each mechanism independently predicts the p/2 depend-
ence for stiffness. However, the mechanisms should be
seen as alternatives, since if both occur simultaneously,
the p'/* dependence is lost. Furthermore, the particle
chain buckling mechanism is irreversible, and therefore
strictly speaking, not applicable to elastic soil. If the
confining stress is sufficiently low that conical contacts
are possible, then the conical asperity mechanism offers a
plausible explanation if new contacts are not generated
under increasing stress levels. If the confining stress is
sufficiently high to invoke Hertzian behaviour at all con-
tacts, then the p'/2 dependence can only be explained if it
is possible to generate new contacts under increasing
stress with negligible reduction in voids ratio. It seems
possible that in overconsolidated or densely compacted
soils, where voids ratio is approximately constant under
increasing stress until yield occurs, particle contacts may
be aspherical, whilst the number of contacts may also in-
crease under increasing confining stress. A more rigorous
analysis would then be required, in which the distribu-
tion of surface asperities on each particle should be con-

sidered, so that under increasing confining stress, elastic
squeeze down of asperities is possible together with the
generation of new asperity contacts.
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