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Casagranda'nin Kritik Bosluk Oran kavrami,
Hvorslev'in kayma direnci denklemi ve Cambridge
Kritik Durum anlaysi

Casagrande’s concept of Critical De nsity, Hvorslev's
equation for shear strength, and the Cembridge
concept of Critical States of soil

A. N. SCHOFIELD and E. TOGROL

Department of Engineering, Cambridge University
and
Department of Soil Mechanics and Foundations,
Istanbul Technical University

Bu yazida, sekil dejistirmeye zorlanan zeminde bir kritik duru-
mun ortaya ¢ikmast ile ilgili bugiinkii bilgimizin ws1gr altinda, Casa-
grande ve Hvorslev'in onewmli bazi ¢alismalar: yeni bastan degerlendi-
rilmektedir.

¢

Lt
In this paper some notable work of Casagrande and Hwvorslev is
re-exam ned, in the light of our present understanding of the develop-
meént of a critical state in soil subjected to deformation..

*
*

1. In a notable contribution to the Journal of the Boston Society of
C.vil Engineers A. Casagrande wrote (1),

«If we observe carefully the volume changes of samples of sand during
shearing tests we find that dense sand expands and very loose sand reduces its
volume.
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In a dense sand, as in Fig. 1a, the grains are so closely interlocked that
deformation is not possible unless accompanied by a loosening up of the struc-
ture, as indicated by Fig, 1b. If dense sand is so confined that it cannot expand,
then the shearing strength is determinea by the resistance or the grains to
crushing, and thercfore it acts cssentially like a rigid stonce. This wes Goscrved [ifty
years. ago by Osborne Reynolds, who demonstrated it by filling a water - tight bag
first with dry sand, in which condition the bag could be deformed easily, and
then replacing the air in the voids of the sand completely with water, after which
the bag turned rig'd because the sand could no longer change its volume.

When the horizontal displacemcnt and the volume change during a shearing
test on dence card are flotted egairst tte ccriesyercirg <heering stress (Pig.
le and If), it is noticed that the shearing stress reaches a maximum S , -corres-
ponding to the point B on the curve,-and if the deformation is continued, the
shearing stress drops again to a smaller value, S, at which value it remains
constant for all further d splacement. During this drop in shearmng stress, the sand
continues to expand, as shown in Fig. 1f, curve E-G; finally reach'ng a critical
density at which continuous deformaton is possible at the consiant shearing
stress S . This critical Cersity ccrrespends for very coarse, well-craded sand
and for gravel approximatelv to the loose state of the mater'al. For medium and
finer grained sands it lies between the loccect and densest state. In addition, it
depends to a large extent on the uniformity of the materta!. The more uniform
a soil the lower the critical density.

The above also furnishes the explanation why most sands ir rheir lcose state
have a tendency to reduce their volume when subjected to a shearing test under
constant normal pressure. The shearing stress simply increases until it reaches
the shearing strength Si ond if the displacement is cont'nued beyond this point
the resistance remains unchanged. Obviously, the volume of the sand in this
state must correspond to the critical density which we had finallv reached when
performing a test on the same material in the dense state. Therefore the curves
representing the volume changes dur'ng shearing tests on material in the dense
and the loose state must meet atl the critical density when the siationary cond'
tion is established.»

Having thus discussed density cnanges in chear tests 2t constan-
effective stress p, Casagronde coni’nues to discuss the porc wa'>r
pressure changes in shear tect: at constant density as follows.

«Wh‘le the normal ~tresses in the soil arc partially or fully ~~rried by the
water. the pressures acting between the individual grains are reduced by a corres-
ponding amount, since the total stress must remain equal to the overlying loads.
" Simultaneously, with this reduction, the frictional resistance between the grains
is reduced in the same proportion. The amount of this reduct’on can be analyzed
with the help of Fig, 2. Let us consider a volume element in the mass of sand
in which the stress conditions correspond to point B. This would indicate that
the sand has been deposited originally in a loose state and was subsequently
compressed by a static pressure equal to p,, Now the mass of sand shall be
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Fig. 1 Effect of shearing on volume of suils (after A. Casagrande)

exposed to horizontal forces which tend to deform it without, however, changing
the vertical pressures in the mass. That portion of the sand which is affected
by the deformation will tend to reduce its volume. If the deformation is suffi-
ciently large, a new state of internal equilibrium will be established after the
critical density n, is reached in point C. The compression curve through point C

reflects the change in the structure of the sand which was produced by the
deformation.

If the quantity of water which could escape during deformation is negligible,
then the change in the structure without change in density causes a drop in
the pressure actng between the grains from p; to p,, the latter being determined
by the intersection D between the abscissae through B and the compression curve
through C, The difference (py - p,) is now carried temporarily by the water and
does not produce frictional resistance, since the shearing strength of water is
zero. The shearing resistancc in the zone of deformation, being proportional to
the pressure actually transferred between the grains, is now reduced in the ratio
P,/ ;. The pressure p, can be a small fraction of Py, and may even be equal

to zero, so that temporarily the soil can’ lose a large portion of or its entire
shearing strength.

For very large pressures, which are not normally encountered in problems
of earth and foundation engineering, even a loose sand may be compressed to
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its critical void ratio, as, for example, point E, and then deformation will not
cause any reduction in shearing resistance.
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Fig. 2 Pressure-density relationship for sand (after A. Casagrande)

If the density at the beginning of the deformation was below the critical
density, as is always the case with dense sand, then deformation of a saturated
mass will temporarily create tension in the water and a corresponding increase
jn the pressure between grains. Hence deformation of a mass of dense, saturated
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sand may result in an increase of the shearing resistance beyond the normal

value. In other words, the mass seems to be bracing itself, to become temporarily
more stable.»

2. In the second passage quoted above and in his Fig. 2 it is clear
that for Casagrande the «Compression curve after large deformationn
was not a unique curve for the soil material. Fig. 3 shows an additional
compression curve from an initial state of lower porosity then Casa-
grande’s n, in Fig. 2. Material on such a curve will reach the porosity
n, at a state indicated by point B’ with a pressure p, slightly less than
Casagrande’s p, - If sheared at constant effective pressure p,’ the mate-
rial would pass through states that settle from B’ to C’ in Fig. 3,
coming into Casagrande’s critical density n, at C’. If sheared at, cons-
tant porosity n, it would pass through states that move from B’
to D', according to Casagrande’s construction, and at I’ come into a
state of internal equilibrium at which the effective pressure p,” was

determined by the compression curve through C’ and the abscissa
through B’.
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This construction implies that in the shearing deformation of ma-
terial at porosity n, the ultimate effective pressure p., p, etc. will
depend on the initial state B, B’, etc. from which the deformation
began. However, if it is obvious in the first passage quoted that one
ultimate critlcal density is reached after deformation at constant
effective pressure cf initially loose or dense soil, we may well consider
it obvious that one ultimate effective pressure is reached after defor-
mation at constant porosity of initially lightly or heavily compressed
soil, That is to say, there is no obvious reason why p. and p.’ should
differ.

3. The Cambridge concept of critical density as a function of pres-
sure meets this diiemma. In Fig. 4 are shown three compression curves
through B, C, and G. The states of critical density are 10w shown by
a dashed line of critical states, where critical porosity is clearly seen
to be dependent on effective pressure. The ultimate critical density
of material sheared at constant effective pressure p, is, as before, rep-
resented by point C. Material in a loose state at B will settle during
shear and material in a dense state at G will expand, and in either
case there is ultimately no memory in the material at C of the initial
state before shearing.

\ Normal consolidation

Porosity

P\

'\‘ G \\\.‘\'-CI'/”COI
states

—_——

F:? Q P, Pressure
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However, there is not now a unique critical porosity n,, since for
any porosity there is some effective bressure such that material at
that porosity can deform continuously. For the porosity n, the effec-
tive pressure at which the material will continuously deform is D,
which pressure is a little higher than Casagrande’s predictions p. and
p: . Material at porosity n, and effective pressure p,, a state represen-
ted by point D in Fig. 4, will now develop a small suction (Ps-p2)
during shearing deformation at constant porosity. The ultimate state
reached after deformation of material at constant porosity n, is given
by the intersection X of the curve if critical states and the abscissa of
B and D, and in this state represented by point X the material has
ultimately no memory whether it was lightly or heavily compressed,
at D or at B, before shearing,

4.  One corollary of this Cambridge critical state concept is that the
loose sand can be brought into a critical state not by compression te
very large pressures but by substantial reduction of pressure from B
to the state represented by point E’ in Fig. 4.

Increase of pressure carries the soil structure into g brogressively
more «<overloaded» state, further beyend the curve of critical states.
A second corollary of the Cambridge critical state concept is that
Terzaghi's «normal consolidation» phenomenon that occurs in soft silty
clay is viewed as a collapse of soil structure which is heavily overloa-
ded. The constant separation distance between the curve cf normal
consolidation and the curve of ultimate critical states first observed
by Casagrande and Albert, is in the Cambridge view seen to indicate
that when a silty clay soil structure carries a certain proportion of
«overload» above the critical state effective pressure, that structure
collapses and the soil exhibits Terzaghi’s consolidation as it settles to
a compression curve of lower porosit es.

5. After describing his notable experiments on some physical
properties of remoulded cohesive soils M. J . Hvorslev wrote (2),

«... During the shearing tests the samples undergo further volume changes;
as first shown by A, Casagrande, the void ratio of cohesive soils in a state of
natural consolidation is decreased. Conversely to this, the author tound that the
void ratio of cohesive soils in a state of strong overconsolidation is increased
during the shearing test (Figs. 5 and 6). This indicates that the shearing load
will call forth a positive or negative excess pressure in the porewater, by Terzaghi
called the hydrodynamic stress, according to the state of consolidation of soil.
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In this case, however, the shearing load was applied at such a slow rate, that
the hydrostatic excess pressures in the porewater were practically equalized at
the moment of [ailure, and the measured stresses therefore equal to the effective
stresses.

According to A. Casagrande, a cohesionless soil has a certain, critical void
ratio, and a matcrial with this void ratio, when subjected to pure shear, will not
undergo changes in void ratio or porewater pressure. The author found that in
the case of cohesive soils such a definite, critical void ratio does not exist, and
that any void ratio can become critical if it is produced by a critical consolidation
pressure.»

He then gives his expression for the shearing resistance of clay at
failure as follows,

«To facilitate the analytical cxpression and graphical representation of the
influence of the void ratio on the shearing resistance, the equivalent consolidation
pressure, p. was introduced, defined as the pressure in the virgin pressure-void
ratio diagram, which corresponds to the actual void ratio, ¢, of the sample. By
means of Terzaghi’s simplified equatiort for virgin consolidation, we obtain

Pe =P eB(El—E)

By plotting the shearing resistance and the corresponding values of the
equivalent consolidation pressure at failure, we obtain similar curves (Figs. 5
and 6), which suggest the following condition of failure:

M p
A X
p ] P. +

e

As will be seen in Fig. 7, the points ( p/p., s/pe) lie almost cxactly in a
straight line, which gives directly the values of the coefficient of effective inter-
nal friction wy=tan¢, and the coefficient of effective cohesion x . By means
of the relation between p, and g, and by introducing the coefficient v=xp, eBen
we obtain

€

s=pptve B

or, expressed in words, the shearing vesistance is a function of the effective
normal stress on and the void ratio in the plane of and at the moment of failure,
and this function is independent of the stress history of the sample.»
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6. For Hvorslev's stress-controlled shear box tests «failure» was
precisely defined to be occuring under that stress for which the slow
rates of displacement first showed signs of acceleration. After his
careful study of his own rapid shear test data he felt that he could
not distinguish between thixotropic effects and pore-water pressure
effects, but from his slow drained tests he was able to deduce the
expression for shearing resistance of clay at failure quoted in the
second passage above..

7. Examination of Hvorslev’s data in Figs. 5 and 6 shows that there
is region of water contents and normal pressures below the curve 12
in which can be plotted all poirits representing states in which «failuren
occured. This region is also shown shaded in Fig. 8 a, and is indicated
by the letter Z. The region is bounded alone by the curve 12, indicated
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in Fig. 8 by the letter X. There is a region of higher water contents
and normal pressures indicated by the letter Y in Fig. 8, between the
curve 12 and the primary consolidation curve, and it is notable that
no failure occured for specimens in that region.

Normal consolldation
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8. For Wiener Tegel V in Fig. 5 the region Y has a constant separa-
tion Aw = constant between curve 12 and the primary consolidation
curve, but for Kleinbelt Ton the separation of these curves (Fig. 6)
is not constant. Consequently, in Fig. 7 when data of failure is rep-
lotted in ratio to the equivalent pressure, the data for Wiener Tegel V
clearly lies in the region p/p.< 0.6, while for Kleinbelt Ton there is
data at higher values of p/p.. In either case there is a region of
highest values of p/p. in which «failure» of samples was never recor-
ded. For simplicity of subsequent discussion, and in view of the
reported evidence of Casagrande and Albert, let us take the data of

Wiener Tegel V to be typical, thus the line X in Fig. 8 a may be reduced
to the point X in Fig. 8b.

9. In Fig. 8 b the point X clearly marks the termination of a range
Y in which data of failure was not recorded. There is an accumulation
of data in the vicinity of p/p .= 0,6 in Fig. 7 a, which seems to indi-
cate that specimens originally at states where p/p, > 0.6 must have
first yielded and settled without failure, and then having traversed
the region Y the specimens failed when they first entered the region
Z at its boundary X.

It is clearly wrong to represent Hvorslev’s results in the manner
of Fig. 9a in which the lines . s—p,p4ve 5% are extended into
regions in which Hvorslev did not obtain data. The region Z of appli-

WRONG
{ 14
S=U.p
0 P 0 P 0
a) o) Y]

Fig. 9
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cability of Hvorslev's equation should correctly be delineated in the
manner of Fig. 9b.

10. Hverslev writes that for cohesive soils «any void ratio can beco-
me critical if it is produced by a critical consolidation procedures.
The implication is that in Fig. 9-c specimens in region Y must settle,
that their critical consolidation procedures must produce specimens
that arrive and fail on the line X, and that specimens in region Z must
expand. But it must not be inferred that the whole of a specimen in
a state in region Z expands after failure. In Fig. 10 sketches of a
specimen after failure show evidence of a large displacement localized
in a narrow plane.

S,

p=5-0-1/2 H=22 Al= 40

Fig. 10 Cross sections of two Wiener Tegel shear box samples
(after J. Hvorslev)
H: Sample height, L: Horizontal displacement of sample,
Units: kg/cm? and mm.

Hvorslev determined water contents at failure by quickly dismant-
ling the shear boxes immediately after failure, cutting a strip 2 cm.
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‘wide and 3 mm. thick from «the failure zone», dividing in into 5 parts
as shown in Fig. 11 and determining the average water content from
these parts. From the sketches it seems that the surface of slip was
very thin. Suppose in Fig. 12 that the thin slip surface 1s at the plane
XX. Although the local water content might rise during expansion
towards the critical voids ratio, this gain cf water would temporarily
be at the expense of a loss of water from the adjacent maierial - tem-
porarily the water contents would be as sketched in Fig. 12. The rapid
manner in which Hvorslev found the water content of the whole thick
strip would indicate the general state of the material just before failure.
If there had been at and about the failure plane a band or a region
of homogenously deformed soil that was more than 3 mm. thick, and
if the critical void ratio concept had applied to this material, then
ultimate states cf soil in the failure region could have been represenied
by points on the line X in Fig. 9c. If Hvorslev had sampled material
that had all softened towards the critical states then all data in 9c¢
would have been in the near vicinity of the line X and there would

have been no data in the region Z: however there really was data in
region Z.

[ T
l 1
LEFT Lo 2 N 4 5 RIGHT
!_l,:__._i___ _____:_____________L__:__:___—j::::
- !

L J

Fig. 11 Obtairing small samples for water content determination
(after J. Hvorslev)

Hvorslev writes of a significant permanent change of structure at
the failure plane - for Klein Belt Ton the sample could be seperated
along the failure plane which «possesed a dull shiney. Apparently dis-
placements after failure proceeded sufficiently far to produce a thin
sheet of oriented particles. Shearing resistance on this: plane fell to
residual values s<< p, p.Clearly the critical void ratio concept, or indeed
the concept of water content itself, can only be meaningful when

applied to a volume of very many particles in a locally homogeneous
uniform state.
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In our experience the Cambridge development of Casagrande’s
critical void ratio concept is helpful in understanding of all bulk

Water Content

T —
s;:b
é X - - o—X
—
o
1 j
Fig. 12

changes of state of deforming granular media. The rates of dilatation
or settlement of soil in any state depend on the separation of the
point representing that state from the line representing critical states.
Shear test data always shows an initial portion in which reasonably
homogeneous deformation occurs as the loading programme is
developed. For scil specimens looser or wstter or more heavily loaded
than their critical states the specimens undergo large deformations
and appear plastic; for such material the typical phenomenon is the
settlement associated with Terzaghi’s consolidation and plastic flow.
Alternatively for soil specimens of less open structure, less water
content, less heavilv loaded than their critical states the specimens
undergo relatively small uniform deformation and then appear brittle
or unstable as slip planes are propagated through them: for such ma-
terial the typical phenomenon is division of a large block into several
blocks that slip relative to each other on Coulomb’s slip surfaces.

In this view the curve X of critical states in Fig. 9 ¢ is a watershed
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dividing the region Y of Terzaghi’s consolidation and plastic flow
from the region Z cf Coulomb’s slip surfaces. Both in Cambridge and
Istanbul we have developed this concept in interpretation of triaxial
compression tests with samples in the region Y. In this work we
follow Hvorslev’s notaticn and use ¢ to denote the triaxial deviator
stress. Hvorslev suggested that Mises expression

(52— 0 + (04 51)F + (0, = 5P =1 (51 + o+ 33)

might be employed for soils. The effective stress parameters

/

qg= \/ (5y — 03 + (53 — 6" )* + (5 —oy')?
2

,- 511_t531+°3'
g —( )

were used by us. A yield function for consolidation and plastic flow
of an ideal material called Cam-clay has the general form

q = f(p, ¢),

which is a fulfillment of Hvorslev’s suggestion.

12.  Hvorslev concluded by writing, «There is, therefore, an urgent
need for research with the object of establishing the fundamental
laws governing the initial change of the hydrostatic pressure in the
porewater and the ultimate change of the void ratio, which will occur
when 4 soil, acted upon by an arbitrary system of stresses, is subjected
to an arbitrary change cof these stresses.n. The discussion of this
present paper shows how the Cambridge development of Casagrande’s
notable concept of critical states goes some way towards this object.

In the present reinterpretation of Hvorslev's experiments we are
left with a feeling of curiosity about the manner in which Coulomb’s
slip planes are propagated through a deforming body of homogeneous
material. Similar phenomenon of rupture and brittle failure are found
in other materials, but Hvorslev’'s experimental success in defining so
precisely a simple expression for states in which failure can occur in
soils still seems a most notable achievement.
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