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ABSTRACT
This report presents the results of a study on the folding and deployment of the CRTS Antenna

reflector, a novel concept under development by the European Space Technology Centre (ESTEC).
The CRTS reflector consists of three elements: a parabolic membrane, a series of foldable ribs, and

an expandable hub.

The present, generic investigation of the folding and deployment properties of the CRTS reflector

has focussed mainly on a small scale, symmetric reflector.

The study was divided into two separate phases. The key aims of the first phase were: to identify
suitable packaging techniques; to demonstrate their feasibility; and to examine related critical
issues, such as the possibility of rib interference during deployment, or possible damage of the
membrane. The key aim of the second phase was to obtain an understanding of the deployment
process, for a selected packaging technique, in order to analyse the duration of deployment and the
stresses induced in the membrane and in the ribs. All of these objectives have been achieved and

key results have been validated experimentally.

Three packaging methods for CRTS reflectors have been identified and analysed in detail. Each
method is based on a folding pattern whose geometry has been fully worked out and hence can be
implemented without difficulty. A trade-off between the three packaging methods has been carried
out. Two selected folding schemes have been tested experimentally and a folding apparatus has
been developed for the selected packaging scheme, which involves a zig-zag folding of each rib.
This scheme is the best in terms of ease of implementation and is joint best in terms of packaging
efficiency. A simple folding apparatus has been developed to implement this packaging scheme
and, with it, the folding operation has been repeated many times on a 1 m model reflector.
Deployment tests have been carried out on the model, packaged in this way.

A detailed experimental investigation of the large displacement, large rotation behaviour of a rib
has been carried out, leading to a full characterisation of the moment/rotation relationship of the rib.
Numerical investigations of the deployment process have been carried out with the ABAQUS finite
element package. Also, an analytical technique has been developed specially for this study.
Deployment experiments on small scale ribs with a single fold have proved to be most a valuable

tool in assessing the validity of these numerical models.
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1. INTRODUCTION

This report presents the results of a study on the folding and deployment of the Collapsible Rib
Tensioned Surface (CRTS) Antenna reflector, a novel concept proposed by W. Rits, of the
European Space Technology Centre (ESTEC) [1].

The CRTS reflector consists of three elements: a precision shaped, parabolic membrane; a series of
thin-walled foldable ribs with C-shaped cross-section, arranged in radial directions; and an
expandable hub supporting the ribs. The hub is contracted during folding/deployment, so that the
ribs can deploy the membrane without having to prestress it at the same time. It is then expanded,
once the membrane is fully deployed, to apply a state of prestress to the membrane and thus to set it
into an accurate shape. A schematic diagram of the reflector is shown in Fig. 1. The membrane
consists of identical, flat gores with curved edges, see Fig. 2, taped together. When the reflector is
deployed each gore takes a cylindrical shape with parabolic section; hence the overall shape of the
reflector is not an exact paraboloid, but only an approximation to it whose accuracy improves as the
number of gores is increased. Each rib is held into a pocket formed by the membrane itself, at the
seam between two adjacent gores. It is positioned with the convex side facing up, i.e. towards the
focus of the reflector. The ribs are attached only to the outer edge of the membrane, and hence can
slide relative to the membrane, while remaining inside the pocket, both during folding/deployment

of the reflector and also while the membrane is pretensioned.

The present, generic investigation of the folding and deployment properties of the CRTS reflector
has focussed mainly on a small scale, symmetric reflector whose properties are given in Table 1. It
is believed that the behaviour of this model is representative of full size reflectors, with diameters
of 5-10 m and 24-36 ribs. It would have been beyond the scope of the present study to carry out
experiments on large physical models and, furthermore, the detailed properties of full-size

reflectors are yet to be decided.

The layout of the report is as follows. Section 2 describes the aims of the study. Section 3 presents
three different techniques for compactly packaging the reflector; these techniques have been
verified on small-scale paper-and-wire models. A simple folding apparatus has been developed for
the most promising of the three packaging schemes, and thus the chosen packaging technique has
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Fig. 1. (a) Schematic view of CRTS reflector. (b) Section A-A.
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been verified for the model reflector. Section 4 presents a series of studies that characterise the
deployment properties of the CRTS reflector. A deployment experiment on a single rib has been
carried out, to measure the large displacement (and large rotation) moment/curvature relationship
for the rib. Computational investigations of this deployment problem are presented, including a
finite-element analysis with the ABAQUS package and an analytical model specially developed for
the type of thin-walled ribs used in the CRTS reflector. Deployment tests have been carried out on
the model reflector and are compared to finite-element analyses. Preliminary results have been
obtained for a reflector with a diameter of 5.5 m. Section 5 concludes the report.

Table 1. Properties of model reflector.

Reflector | diameter (deployed) 1 m between mid-sides of opposite
gores
focal length 625 mm (hub at 100 mm from front
plane)
hub diameter 100 mm
no of ribs 6
Membrane | material Kevlar reinforced Kapton foil
thickness 0.1 mm
mass 70 g/m?
Ribs material Copper-Beryllium
density 8.4-103 kg m-3
Young's Modulus 131-109 N m-2
transverse radius of curvature | 12 mm
subtended angle 120°
thickness 0.1 mm
length 530 mm
600
600
—M—-—_
7
(b)
(a)

Fig. 2. (a) Perspective view of a single gore. (b) The same gore, in a flat state.
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2. AIMS OF THIS STUDY
The detailed aims of this study were set out in the Study Definition Document [2]. The study was
divided into two separate phases: Phase (i), review of folding concepts, and Phase (ii), study of

deployment aspects.

The key aims of Phase (i) were: to identify suitable packaging techniques; to demonstrate their
feasibility; and to examine related critical issues, such as the possibility of rib interference during
deployment, possibly resulting in off-nominal deployed geometry, or possible damage of the
membrane during deployment or at the end of deployment.

The key aim of Phase (ii) was to obtain an understanding of the deployment process, for a selected
packaging technique, in order to analyse the duration of deployment and the stresses induced in the

membrane and in the ribs.

3. PACKAGING METHODS

This section presents three different techniques for compactly packaging the membrane of the
CRTS reflector. Compact packaging is achieved by minimising the volume of voids in the package.
Each packaging technique is based on a fully defined folding pattern, so that the process of
packaging and deployment is repeatable, can be verified experimentally and can also be simulated

by means of suitable computational tools.

Our objective is to package a curved membrane which has positive gaussian curvature [3] along the
seams between gores and zero curvature elsewhere. However, a considerable part of our efforts
have been directed towards flat membranes: the first two packaging schemes have been developed
for flat membranes and have turned out to work well for curved membranes as well, while the third
scheme has been obtained by extending an already known packaging scheme for flat membranes.

3.1 General properties of folding patterns

Let us consider the flat, thin membrane shown in Fig. 3, with four straight folds meeting at a
common point. The sum of the angles o, a,, o,, 0, must be 360° because the membrane can be

made absolutely flat, i.e. its angular defect [3] at point O is zero. Thus

o, + 0, + 0, + o, = 360° (D

For the membrane to fold compactly, see Fig. 3(b), the difference between two adjacent angles has

to be equal to the difference between the other two angles, hence

o, — 0, =0, —0,

and, re-arranging

o, + 0, =0, + 0y, 2)



O

convex (b)
@ - concave

Fig. 3. Flat membrane with four folds meeting at point O.

Equations 1 and 2 can be generalised to folding patterns with more than four fold lines meeting at a
point, but note that four is the minimum number of folds that must intersect, in general, for the
membrane to fold. There is only one trivial exception, when two folds are collinear. Also note that
the folds in Fig. 3 are straight: curved fold lines would require that the membrane bends out of
plane while it is folded and, apart from the complexity of this analysis, the packaged configuration

would not be compact.

In Fig. 3(a) there are three convex folds, where the membrane folds downwards, denoted by solid
lines, and a single concave fold line, denoted by a broken line. This drawing convention will be

followed throughout this report.

The general sign rule that has to be satisfied at any point of intersection of four fold lines is that one
fold should be of sign opposite to the other three [4]. Similar conditions apply if more than four

folds meet at a point.

Next, we present a simple, symmetric folding pattern to roll up a flat, six-gore membrane into a
package of toroidal shape. The packaging scheme is shown in Fig. 4, for a 60° sector. Figure 4(a)
is a perspective view of the membrane, shown flat, while Fig. 4(b) shows the rolled up
configuration. To preserve six-fold rotational symmetry about the centre O throughout folding, the
edges of this sector can move only within vertical radial planes forming an angle of 60°. Hence,
corresponding points on opposite sides of the sector have to move closer — in the hoop direction
— while the membrane is rolled up towards the centre.

The general fold pattern behind this packaging scheme is shown in Fig. 5. It is based on three radial
fold lines, two along the edges of the sector and one in the middle, with alternate concave and
convex folds. The radial folds are joined by a series of transverse concave folds. Thus, the sector is
divided into a set of quadrangles and two triangles, near the centre. This pattern is fully defined by
the lengths OP, PQ, QR, etc. (or by the lengths OA, AB, BC, etc.) and by the angles
a, and o, B, and B,, etc. The complete fold pattern is obtained from the folding pattern shown in

Fig. 5(a), by symmetry. Hence, there are four fold lines meeting at all points other than O, of which

4



(a) (b)

Fig. 4. Rotationally symmetric folding scheme to roll up a gore.

Fig. 5. (a) Detailed fold pattern for a single gore. (b) The same gore, flattened.

three folds are concave and one is convex, thus satisfying the above sign rule. The number of fold

lines at O is twelve.

Only some combinations of the above geometric parameters correspond to acceptable folding
patterns, as can be easily verified by making a few paper models and attempting to fold them. Most
folding patterns will produce non-compact packaged configurations or cannot even be packaged

completely because of interference between different panels.

Next, we describe a systematic procedure to choose values for the geometric parameters of the fold
pattern while avoiding these difficulties. First, we choose values for all angular parameters by
identifying all analytical conditions that must be satisfied by the angles between folds meeting at a
single point and, if these conditions do not identify a unique set of values, we choose the particular

solution that is easiest to implement in practice.
Because we are dealing with a flat membrane
o, +o, =B +B,=...=180° (3)

Also, considering the membrane tlat, in a vertical plane as shown in Fig. 5(b), we can define the

following angles



oc=Of\P—PAB=oc1 -,
B=CBQ-QBA =B, -, 4)

etc.

These angles govern the shape of the folded membrane. Actually, this flat configuration cannot be
reached by the complete membrane, because the edges of each sector must lie in radial planes

forming an angle of 60°, and hence cannot become coplanar.

To avoid that side OA interferes with AB and, similarly, that AB interferes with BC, etc. during
folding, all of these angles must be non-negative, hence

oa=0;—-0,20

B=B2—-B120 (5)

etc.

To reduce the volume of the stowed membrane, these angles should be as small as possible. Indeed,

in Scheme 1, in the next section, they will all be set equal to zero.

After setting the values of all angular parameters, the shortest possible length parameters are
chosen, for maximum packaging efficiency. For example, in Fig. 5(b) QP could be made a bit
shorter and, indeed, even Q—IS =0 would be acceptable.

3.2 Scheme 1
Figure 6 shows a packaging scheme for a flat membrane with a rigid hub. This scheme is based on

Fig. 5 but a rigid, triangular element OAA' has been included at the centre. The membrane folds
along the edge of this rigid element, i.e. along the concave fold AA'. Two further concave folds join
A and A' to point P, see Fig. 5(a), where the earlier folding pattern begins. To achieve a compact
package, folds PQ and BC have been shrunk to a single point in Fig. 6, and hence points B and C,
and P and Q coincide. Thus, the folding pattern consists mainly of triangles, instead of quadrangles,
and the number of folds meeting at a common point increases accordingly.

The equations written in the previous section have to be modified. For example, there are now six
fold lines meeting at point B, allowing for the two fold lines that belong to the sector adjacent to

that shown in Fig. 6(c). Equation 3 becomes

o, +o, +o, =03+, + B, =180° (6)

and Eq. 4 becomes
B=_B1+Bz—[33 (7

At point A the situation is rather different. When the membrane is fully folded, the hub element
OAA' lies in a horizontal plane, while the membrane element AQRB lies in a vertical plane. The
treatment of Section 3.1, which is valid if all elements with a common point lie in the

6



(d)

Fig. 6. Folding Scheme 1: (a,b) perspective views, (c) plan view, (d) perspective view

of packaged membrane.

same plane when they are folded, is not applicable here. This difficulty can be resolved by noting
that OAA' can become orthogonal to AQB if AA'Q can fold over OAA'. This requires that

o, =0, =60° (8)

Substituting these values into Eq. 6 gives 0, = 60°. To calculate the next set of angles we choose

B =0 for compactness. Equations 6-7 yield

B, =90°
B, = o0° ©
B, +B;, =90
The simplest solution has B, = 30° and B, = 60°, for which folds BR and AQ are parallel.

Figure 6(d) is a sketch of a card model of a six gore, curved membrane with a (deployed) diameter
of 360 mm. In this model the centre dip is 80 mm, corresponding to a reflector with focal length to



diameter ratio of 0.281. This value is much smaller than the CRTS reflector, but has been chosen to
verify that the packaging scheme works for a highly curved membrane, even though it has been
derived for flat membranes. The figure shows that the folding scheme works well for this model.

A computational test of the folding process was carried out, to simulate the complete folding
sequence of a single gore and hence verify that no strains are induced in the membrane by this
packaging scheme. The gore was modelled as an assembly of rigid triangular plates of zero
thickness, connected by revolute joints along the edges. The edge nodes were constrained to lie in
two fixed radial planes throughout the simulation. In the initial configuration all nodes were set to
lie on a cylindrical surface. The expected, rolled-up configuration was obtained by deploying the
single mechanism of this assembly within an iterative computational scheme.

3.3 Scheme 2
Figure 7 shows a different packaging scheme, also valid for a membrane with a rigid hub. Like

Scheme 1, it is based on a fold pattern with radial folds joined by transverse folds, but here the
transverse folds are alternately convex and concave, so that the membrane folds into a concertina,
instead of rolling up. During the folding process the edge points B, D and B', D' move up, while
points C and C' move down relative to the fixed hub.

The calculation of the angles defining the fold pattern follows similar lines to the previous section.
We take o, =, =60°, so that AA'Q can fold over OAA', as explained for Scheme 1. At B we

choose B =0 and hence, as in Scheme 2

B, =30°,B, = 90°, and B, = 60° (10)

At C we choose vy =0 and hence from Eqs 3-4

Y, +7v, =180° (11)
Y=Y -Y,=0

(b)

Fig. 7. Folding Scheme 2: (a,b) perspective views, (c) plan view.
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yielding
Y1 =7, =90° (12)

The packaging scheme is illustrated in Fig. 8, which shows a series of photographs of a simple
paper-and-wire model and drawings traced from the photographs. Figure 8(a) shows the curved
membrane, fully deployed and supported by six curved ribs. The membrane has the same geometric
properties of the model described in Section 3.2. Figure 8(b) shows the model partially packaged,
with four folds in each rib. Note that the first fold is right at the edge of the hub, as required by the
folding pattern. The ribs are fully folded in Fig. 8(c) and finally, in Fig. 8(d), the outer part of the

membrane is wrapped around the package.

This packaging scheme is quite intuitive; each rib is folded alternately up and down, in a zig-zag
shape, and the membrane is packaged between the ribs, in a way that is compatible with the folding
of the ribs. Figure 9 shows a section through two opposite ribs, with four equidistant folds. The
membrane is not shown. With reference to Fig. 7(c), here we have chosen QR =TS, and RS =0.

The diameter and height of the packaged membrane can be changed quite freely, simply by altering
the number of folds and the distance between them, respectively.

Thin-walled ribs fold naturally at a radius r, equal to their transverse radius of curvature, see also
Section 4.2. Therefore, the diameter D of the packaged membrane is approximately equal to the hub

diameter 2R plus 2r times the total number n of folds in a rib
D =2R +2nr (13)
The package height H is approximately equal to the rib length L divided by the number of folds

=L (14)
n

In Fig. 9 there are four folds in each rib, hence n = 4. The above equations neglect the arc length of
the folds.

2r 2r 2R 2r 2r
< <> 4+——Pp <4 <>

Fig. 9. Cross section through two opposite ribs (folded) and the hub.
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3.4 Scheme 3

The third packaging scheme is quite different from the previous two. The idea is to wrap the
membrane and the ribs around the hub, rather than to fold them radially. This approach is based on
a packaging technique that was first developed for (flat) solar sails [5]. Because the CRTS
membrane is not flat, a suitable pre-folding technique will be introduced, to flatten the membrane
before it is wrapped. For clarity the two phases of the folding operation are presented separately, in

the next two sections.

3.4.1 Pre-folding. The pre-folding scheme is quite complex and is best introduced by a simpler,
preliminary example. Figure 10(a) shows a curved membrane consisting of six flat gores;
Fig. 10(a.i) is a perspective view, while Fig. 10(a.ii) is a top view. This membrane is identical to the
membrane of Fig. 1, but it is not attached to a rigid hub and hence there are no constraints on the

folding of its inner edge.

This membrane can be flattened by transforming the curved edges of each gore into straight edges
with an enclosed angle of 60°. In Fig. 10(b.i) a straight fold at an angle of 30° to the axis has been
formed into a gore (30° is half the angle subtended by the gore) thus dividing the gore into two
parts, A and B. In Fig. 10(b.ii) part B has been folded over part A to obtain a gore with a straight
edge. The flat membrane shown in Fig. 10(b.iii) has been obtained by carrying out the same

operation simultaneously for all six gores making up the continuous membrane.

(a.i)

(a.ii)

(b.iii)

(b.ii)

Fig. 10. (a) Curved and (b) flattened membrane.

11



This type of pre-folding has the effect of reducing the perimeter of the inner edge of the membrane,
hence the inner perimeter in Fig. 10(a.ii) is greater than in Fig. 10(b.iii). In the CRTS reflector it is
unlikely that such a reduction can be achieved by contracting the hub. Furthermore, the folding of
part B of each gore over part A requires the inner edge of the membrane not to be continuously
attached to the hub, which would have undesirable effects on electrical performance.

All of these problems are resolved if a more elaborate type of pre-folding is adopted, see Fig. 11.
Here the membrane is flattened in a plane parallel to the hub, a small distance above it, by forming
two parallel, concave folds AA' and BB' in each gore, Fig. 11(a). Then, AA'C'C is folded
perpendicularly to the hub, and BB'C'C is folded perpendicularly to AA'B'A, hence now BB'C'C
lies in a plane above the hub, Fig. 11(b). Next, point D is introduced along BB'; two further folds
are formed, DE and AD; and the sign of the rotation along BD is reversed. DE is a convex fold, i.e.
concave if seen from the top, Fig. 11(b). It divides BB'C'C into two parts, analogous to parts A and
B in Fig. 10. AD is also a convex fold, and it is required to increase to four the number of folds
intersecting at point D, thus satisfying the condition stated in Section 3.1. Finally, DBCE is folded
over DB'CE, Fig. 11(c). This final configuration is analogous to Fig. 10(b.ii), but now most of the
membrane lies in a plane above the hub. The complete fold pattern for a single gore is shown in

Fig. 11(d), while a perspective view of the folding process is shown in Fig. 12.

The above process can be carried out on the six gores simultaneously, thus flattening the whole
membrane, as shown in Fig. 13. Note that the hub is completely hidden in Fig. 13(a).

300

(c)

DN \ C

Fig. 11. Folding scheme to flatten a curved membrane connected to a rigid hub. (a-c) Top view of pre-folding
sequence for a single gore. (d) Plan view of fold pattern.

12



(@)

Fig. 13. (a) Top view and (b) bottom view of membrane, after pre-folding.

3.4.2 Wrapping. The folding pattern for wrapping a membrane of negligible thickness around a
hexagonal hub whose circumscribed circle has a radius R' (R' > R) is shown in Fig. 14. It is shown
in [5] that B =30°, 8 = 90°, the a-folds are collinear, and the b-folds are parallel and equidistant.

The folding pattern for a membrane of small thickness t is not much different from Fig. 14, but the
above simple results are no longer true. All fold lengths and fold angles have to be calculated
allowing for the thickness of the membrane. The coordinates of the points of intersection between
the fold lines are considered, both in the fully packaged configuration and in the flat configuration.
Basically, the aim of the calculation is to find the shape of a "master" a-fold, e.g. P;{, Pq9, Py3in
Fig. 15(a), from which the other five a-folds can be obtained by symmetry.

Figures 15(b, c) are top views of the first a-fold when the membrane is fully packaged. Let this fold
be convex. The cylindrical coordinates in the system O, r, 9, z, see Fig. 15(a), of the points that

define this fold are

R' R'+u R'+2u
Py={ 0| P,=| 60° |, P,=| 120° | etc. (15)
0 z, zZ,

where z,, z3, etc. are positive quantities to be determined, and

t

16
cos 30° (16)

u=

13



P13

Pis
(a) (b) (c)

Fig. 15. Folding pattern to wrap a membrane of thickness t. (a) Plan view. (b, ¢) Top
views of first a-fold, after wrapping.
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The points that define the second fold, which is concave, are

R’ R'+u R'+2u
b, =]60°) P, =|120° |, P,,=| 180° | etc. (17)
0 -z, -z,

Note that, for simplicity, the thickness of the hub has been neglected and hence the z-coordinates of
all vertices Pj;'s vanish. Also, by symmetry, the z-coordinates of equal numbered vertices on
different folds are equal in absolute value.

To calculate the z-coordinates of the points that are not part of the hub, we write an equation
equivalent to Eq. 1 for each point that defines the first a-fold. For example, for point Py (or Pyy)

the equation is
120°+B + % + & = 360° (18)

The direction cosines of the angles B, x, 8 are calculated by taking the dot-products of unit vectors

between suitably chosen vertices, in the wrapped configuration. Hence

= arccos (P12"P11) . (P21 —P“)

’ ( IP12 _Pn” ”P21 —-P“”) (19)
= arccos (P —Py) (Py,—Py)

xX= [ P, —P,| [P,-P, Hj (20)
= arccos (P21 _ P“) ) (PIZ "le)

d ["Pm —P“ﬂ “P12 - pm"] (21)

These dot-products can easily be taken after converting the cylindrical coordinates of the relevant
vertices to a Cartesian system with the same origin O. Then, these expressions are substituted into
Eq. 18, which is solved for the unknown z;. Finally, B and y are calculated from Eqs 20-21.

Next, to calculate z3 and hence &, ¢, see Fig. 15(a), the angles €, ¢ and y are expressed in terms of
the coordinates of points Pyq, Py, Pyq, Py, and P3; by equations analogous to (19-21) and then

substituted into
£ +(180°—B— 8) + ¢ +y = 360° 22)
which is equivalent to Eq. 1.

This approach can be extended until a sufficient number of points on the master a-fold have been
determined, from which the complete folding pattern is obtained. Similar folding patterns can be
obtained for any polygonal hub with an even number of sides, see Fig. 16.

The same approach works well for a curved membrane which has been flattened by pre-folding, as

15



Fig. 16. Wrapping of a flat membrane around a 24-sided hub.

discussed in Section 3.4.1. Figure 17 shows a series of photographs, and line diagrams traced from
the photographs, of a paper-and-wire model similar to that described in Section 3.3. Figure 17(a) is
a bottom view of the flattened membrane, to be wrapped around a hub whose radius R' is about
50% greater than R, the actual hub radius. The ratio R'/R could be significantly smaller in a bigger
model. Figure 17(b) illustrates the wrapping process. Figures 17(c-d) are a top view and a side view
of the final package. In the calculation of the folding pattern for wrapping this model, the thickness
t was taken to be 2 mm, to allow for the thickness increase caused by pre-folding.

If the number of a-folds is equal to the number of ribs m, the pre-folding presented in Section 3.4.1
brings the edges between gores, and hence the ribs of the CRTS reflector, approximately along the
a-folds of the folding pattern for wrapping, as can be seen in Fig. 17. An alternative would be to
arrange the wrapping pattern so that the ribs are located half-way between the a-folds, and hence
wrap in the plane of the hub. Note that the number of a-folds need not be equal to m. For example,
a larger value could be chosen, to reduce the package height. However, arrangements where the ribs
cross the a-folds should be avoided. They require localised folds in the ribs similar to those in
Schemes 1 and 2, which would increase both the diameter of the package and the complexity of the
packaging operation.

The package size can be predicted quite easily and, for example, if the number of a-folds is equal to
the number of ribs m, the package height is

Hsstin@—Rtan@ (23)
m m

while the minimum package diameter is

D=2R +LZR-R 24)
2nR'
where R'2 R(l + sin-l-g—(-)- tan @)
m m
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3.5 Comparison of three packaging methods

A trade-off between the three packaging methods has shown that Scheme 2 is the most promising.
The trade-off was based on (i) packaging efficiency, (ii) complexity of the folding process, and (iii)
the possibility that the reflector might deploy into an off-nominal configuration.

(1) In terms of packaging efficiency, Schemes 2 and 3 are the best because they minimise the
volume of gaps in the package. Scheme 2 is more flexible, because the height and diameter of the
package can be readily modified to suit mission requirements. In Scheme 3 some space is taken by
the region where the ribs bend and twist, near the hub, but after that the ribs wrap nicely around the
package. With this scheme, though, changing the size of the package requires a careful re-analysis

of the whole packaging scheme.

(ii) In terms of complexity of the folding process, Scheme 2 is the best and its practical
implementation has been tested by experiment, see Section 3.6. It is expected that implementing
Scheme 1 should also be relatively straightforward, even though it may be difficult to ensure that
the rib folds remain in the required positions, after packaging. The implementation of Scheme 3

appears to be rather complex, but has yet to be investigated in detail.

(iii) Quantitative estimates of the possibility that the reflector might deploy into a non-nominal
configuration would be well beyond the time scale and resources available for this pilot study, but
the following preliminary considerations should be a useful guide for further work.

In Scheme 1 there is the possibility that the tip segments of two or more ribs might become
interlocked during deployment, because all ribs are bent towards the centre of the hub in the
packaged configuration, and they tend to move over centre during deployment. For this reason, this

scheme was abandoned.

In Scheme 2 two potentially critical aspects were considered. First, a rib with several up-and-down
folds is an unstable, energy loaded system that needs to be suitably restrained to prevent it from,
e.g., buckling out of plane within the volume of the package itself. This aspect has been
investigated experimentally, since the constraints applied to the ribs by the packaged membrane are
not easily simulated. It appears that this should not be a serious problem. Secondly, there is the
possibility that the membrane might go past the hub during deployment and, having deployed too
far outwards, be unable to flip back to the front of the hub, remaining in a concave —rather than
convex— shape. This problem is potentially serious and, indeed, many of our deployment tests
have shown this kind of problem, see Section 4.5. It is believed that this problem can be minimised
by reducing the hub diameter further than required purely from prestressing considerations. Also, it
should be possible to find optimal fold positions in the ribs in order to eliminate this problem.
However, packaging efficiency is likely to be reduced. A good understanding of the deployment
dynamics and good simulation models will be required, before such optimisation can be carried out.
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Scheme 3 appears to be, potentially, the best in this respect. It is expected that the offset from the
hub associated with the pre-folding of the membrane will force deployment into the required

convex shape.

At the end of Phase (i) of the study a meeting was held at ESTEC and it was decided that only
Scheme 2 would be investigated during Phase (ii).

3.6 Experimental verification of Scheme 2: folding apparatus

A folding model of the CRTS reflector was made to verify the second packaging scheme. The
geometric properties of the model are as given in Section 1. The model differs in two respects from
the actual reflector. First, it has straight, instead of parabolically curved ribs, and hence the six
gores become flat when the model is fully deployed. This is because the manufacture of doubly-
curved ribs is considerably more complex than the manufacture of singly-curved ribs. The small
longitudinal curvature of the actual ribs is not expected to have a significant effect on deployment
properties, but this assumption ought to be further investigated at a later stage. Second, the model
does not have an automatic hub contraction/expansion mechanism, and hence the membrane cannot
be prestressed automatically when deployment is terminated. This is not at all a problem for the
present study and, furthermore, it is possible to adjust the position of each rib to investigate the
effects of changing the hub radius on the dynamics of deployment. Each rib is separately mounted
onto an Al-alloy cylindrical element with a flat machined on the bottom side. This element is

connected by two bolts to an Al-alloy disk with six radial slots.

A simple folding apparatus has also been made, Fig. 18, to fold the model according to the pattern
of Scheme 2. The apparatus consists of two Al-alloy tubes, on either side of the hub disk. A set of
wires, connected to the ribs at the positions where the various folds have to be formed, pull the ribs
up or down. Figure 18 shows the model with the folding apparatus. All required fold lines are
formed while the ribs are held in position by the wires. Each rib is pulled down by two wires and up
by one wire. The folding pattern that is being tested is similar to that shown in Figs 7-8, but
requires only three folds in each rib, not four . The first fold is near the hub. All concave and
convex folds have been marked on the membrane before starting the folding operation.

For this fold pattern, the expected values of the package height and diameter are, Eqs 13-14
D=2R+2nr=2x47.5+2x3%12=167 mm
L 540

H==="—=180 mm
n 3

while the actual values, measured after packaging the model, see Fig. 18(c), are

D=185mm
H =160 mm

The small discrepancies between estimated values and actual values are explained as follows. H is
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Fig. 18. Folding apparatus for Scheme 2. The ribs are pulled up
wires connected to a central tube.
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smaller than expected because Eq. 13 does not allow for the arc length of the folds. D is bigger than
expected because Eq. 14 does not include the length of the transition zone, at the connection
between a rib and the hub. This transition zone is shown clearly in Fig. 9.

4. DEPLOYMENT STUDIES

Phase (ii) of the study has investigated several aspects related to the deployment dynamics of a
CRTS reflector, both by theory and experiment. Experiments are essential for work of this kind,
because the large-displacement mechanical behaviour of a thin-walled rib has some unusual
features, see Section 4.2, which will have a crucial effect on the deployment dynamics of the CRTS
reflector. If incorrectly modelled, these special features can lead to large inaccuracies in the
predicted behaviour. A theoretical analysis, based on realistic assumptions is also essential. Apart
from the usual, general reasons for pursuing a theoretical approach, such as the need to perform
parametric studies in order to select optimal system parameters, in this particular project only a
theoretical model can simulate the deployment in a gravity-free environment. It would be
practically impossible to set up a test where the effects of gravity on a very flexible structure such
as one of the ribs of the CRTS reflector, are cancelled while the rib undergoes a large motion.

Sections 4.1-4.4 address a series of fundamental issues related to the deployment of a rib with a
single fold. Sections 4.5-4.6 investigate the deployment of 1 m and 5 m reflectors.

4.1 Deployment experiments on 0.53 m rib

A series of simple "deployment” tests were carried out on a single CuBe rib attached at one end to a
cylindrical element. Similar elements are used for the hub of the 1 m model (see Section 3.6). The
root element was held fixed, with the rib vertical and pointing upwards, and a 90° fold was formed
in the rib, approximately in the middle. The rib was held in this position by a tip support and, when
the support was released, a single photograph of the deployment sequence was taken, with a
Polaroid camera. The experiment took place in a dark room, and the shutter of the Polaroid was
held open throughout the experiment. A strobe light gave one flash every 4/100 s. The rib was
initially folded on its strong side (see Section 4.2).

Figure 19 shows a photograph obtained by this technique. The first five rib configurations are
clearly visible, and have been sketched in Fig. 20. After that, the rib bent to the left (i.e. on its weak
side, see Section 4.2) and, after slowly returning towards the upright configuration, it underwent a
high-frequency, small-displacement oscillation about the vertical. A lateral-torsional vibration of
the rib is often noticed towards the end of such tests. It is probably triggered by a small asymmetry

in the reverse fold.

The deployment process is divided into three phases. During the first phase the fold travels towards
the root. The fold is a localised region of high curvature that divides the rib into two parts, which
are approximately straight. During the second phase the rib rotates as a rigid body about a point
near the root. During the third phase the rib vibrates as a slender cantilever.
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Fig. 19. Multiple exposure photograph of simple "deployment" test on rib with a single fold.
The interval between successive shapes is 0.04 s.



Figure 20 shows five configurations of the rib, at intervals of 4/100 s, during the first phase. The
first configuration is the initial, "folded" configuration with a 90° fold. In the final configuration, at
t=0.16 s, the travelling fold has just reached the root. It is essential that this behaviour should be
predicted accurately by the theoretical model, because the largest accelerations, and hence inertia
loading on the rib, occur during this phase. The second phase begins at t = 0.16 s and, although the
experimental technique is too coarse to provide much information, it can be worked out from
Fig. 19 that the rib becomes approximately straight during the second phase, at t=0.32s.

N

s

Fig. 20. Sketch of first five rib configurations, during deployment

4.2 Moment/Curvature relationship for a rib
A good understanding of the moment/curvature relationship for a rib is essential before one
attempts to study its deployment behaviour. Basically, a rib is a thin-walled, open-section beam,

whose cross-section is an arc of a circle. Some properties of such beams are well known. For
example, it is known that they show a kind of instability when subject to bending within the plane
of symmetry of the cross-section. As the load is increased, there is a tendency for the cross-section
to become flatter, and at a critical value of the load the beam snaps [6]. In the post-buckling range
the beam is unable to carry much lateral load. Also, the critical load is higher if the beam is bent in

the concave direction.

Another known property of these beams is that, after buckling, their deformation tends to localise in
a small region whose longitudinal curvature is exactly the same as the transverse curvature 1/r of
the rib unstressed. This region has no transverse curvature, and behaves like a constant-moment
hinge [7.8]. It is joined on either side to practically straight parts of the rib by transition regions 2r-
3r long. If the angle of relative rotation between one end of the rib and the other end is increased, or
decreased, the length of the hinge region increases, or decreases, accordingly. This property is
exploited in tape measures, constant tension springs (Tensators) and deployable booms [9].

To characterise further the behaviour of the ribs of the model reflector two sets of tests were
conducted. The first test measured the relationship between the bending moment M and the relative
rotation 6 between the ends of a 140 mm long rib with transverse radius of curvature r = 12 mm.
The ends of the rib were embedded in Perspex blocks. This element was tested in four point
bending, as shown in Fig. 21(a). The end blocks were slowly rotated by applying two downward
forces of equal magnitude F, in a displacement-controlled mode. After that each block had rotated
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through about 1 rad, the rotation rate was reversed. The values of F and the horizontal component
of the distance between each support and the nearest point of application of the load were measured
for each rotation increment, and hence the corresponding (uniform) bending moment in the rib was
calculated. This rib element was tested twice, first with the concave side facing down, and then up.

The results of this experiment are shown in Fig. 22(a).

For a rib bent on the convex side (6 >0) M increases up to 700 Nmm and 6 = 0.2 rad,
approximately linearly. Then the rib snaps with a loud "click” and M drops to about 25 Nmm while

the deformation localises in a short, longitudinally curved region. Then, M slowly increases to
32 Nmm, and then remains constant at this value. Note that in Fig. 22(a) the value of 0 increases

suddenly when the rib snaps, due to the elasticity of the testing system. When the rotation rate is
reversed, M remains constant until 8 = 0.2 rad, at which point the rib snaps back into a transversally

curved configuration, i.e. the region of localised deformation suddenly disappears. Due to the
elasticity of the testing machine, though, M does not return to the peak value reached on loading.

For a rib bent on the concave side, i.e. M < 0 and 0 < 0, there is a sudden snap at a limit moment of
about —200 Nmm, then the rib gradually softens and finally M becomes approximately constant at
14-15 Nmm, for |6 > 0.5 rad. The unloading path is practically identical to the loading path.

The behaviour of the rib is entirely elastic, as would be expected for 0.1 mm thick, Cu-Be ribs with
r=12 mm [9].

A similar set of tests on a 210 mm rib, also embedded in rigid end blocks, showed no significant
difference. Hence, it was concluded that end effects were negligibly small in the test of the 140 mm
rib. It is expected that the behaviour of a much shorter rib, where the transition regions on either
side of the hinge region cannot form fully, would be quite different because of the constraint

imposed by the end blocks.

The above measured values of the bending moments associated with a steady-state growth of the

fold regions will be denoted by
M* =30 Nmm
and M™ =15 Nmm

These values are a little lower than the following estimates, based on formulae adapted from
Rimrott [9]

._ E m® 131-10°-xw-0.1°

= =32.7 Nmm (25)
1-v 18 (1-0.3)-18

E n® 131-10°-7-0.1°
1+v 18 (1+0.3)-18

=17.6 Nmm (26)
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Fig. 21. Schematic diagram of tests to measure the moment/curvature relationship for a rib. (a) Four-point bending test
with rib embedded into rigid blocks. (b) Test of rib loop, to increase the curvature of the hinge region.
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Fig. 22. (a) Moment/rotation and (b) moment/curvature relationship for a rib.
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Even though M* and M~ correspond to several different points in the M/ plot, actually all of these
points would map into a single point of a moment/curvature plot, because the curvature in the hinge
region remains constant while 0 increases.

To characterise the full moment/curvature (K) relationship for the rib, it is necessary to distinguish
between the behaviour of the rib before and after the deformation has localised. Up to the point
where the deformation localises in a small region, the linear part of M(8) can be re-plotted by
dividing all values of 8 by the rib length, thus obtaining the average curvature of the specimen. See
Fig. 22(b). The remaining part of M(B) produces only two more points when re-plotted in terms of

K, as explained above.

To obtain further points it is necessary to increase the curvature in the hinge region, which was
done in a separate test. A schematic diagram of the set up is shown in Fig. 21(b). Two folds were
formed in a 250 mm long rib and then the ends of the rib were joined together, to form a continuous
loop. The loop was loaded by two forces of equal magnitude F, at the top, and supported by knife
edge and roller supports, at the bottom. During the test, also in displacement-controlled mode, the
loop was compressed by varying the value of F. At each step, the curvature at the centre of the
hinge regions was measured by means of a curvature gauge, together with the force F and the
distance between hinge centres. From these measurements the maximum value of the bending
moment in the folds can be calculated. At the start of the test the loop is subject to a uniform
bending moment M* (or M™), and during the test M increases only in the hinge regions. The
moment is maximum at the centre of each fold. The largest measured value of M was 44 Nmm,

with the rib nearly at the yield point.

The additional points obtained by this test are also plotted in Fig. 22(b). After the deformation of
the rib has localised, i.e. for [K|>1/12 mm™, M gently increases with |K].

4.3 Simulations with ABAQUS

Finite element simulations of the test described in Section 4.1 were carried out using the package
ABAQUS (version 5.2).

The rib was modelled by a mesh of 23 (or 43) elastic beam elements of equal length, whose non-
linear moment-curvature relationship was specified according to Fig. 22(b). The rib was initially
straight and unstressed. Initially, both elements B21 and B23 were used, i.e. two-dimensional beam
elements based respectively on linear and cubic shape functions. The two elements gave very
similar results, and the lower-order element perfomed better for some analyses. Hence, element
B21 was selected and all results presented in this report were obtained with this element.

To form a 90° fold, two rotational constraints were applied to the nodes of the element in the
middle of the rib. Then, the constraint nearer to the tip of the rib was rotated through 90° in a series
of steps, while the other constraint was held fixed. Then, both constraints were released
simultaneously, thus starting the free deployment of the rib. Both gravity and air drag effects were
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t=0.36s

/A A/

Fig. 23. Deployment sequence predicted by f.e. analysis.

included in the simulation, even though only the effects of gravity are really significant.

The results, shown in Fig. 23, were rather disappointing. The fold did not move at all, and hence the
predicted deployment was a pure rigid-body rotation of the half rib that had been rotated. The total

predicted deployment time was 0.36 s, which is quite accurate.

A careful analysis of these results shows that the ABAQUS prediction is consistent with the model
that has been analysed, but the explanation is quite subtle. In the model the fold does not move
because the actual propagation mechanism, based on the softening of the rib near an existing fold,
is not allowed for. In the model a new fold can form only if the bending moment reaches the limit
value. Hence, for an existing fold to move along the rib according to this model, that fold has to
close and a new fold has to form. But this requires a large bending moment, which is practically

impossible since the bending moment at the existing fold is quite low.

No explanation has yet been found for the good accuracy of the deployment time predicted by this
model, which is quite unexpected since the model does not predict the motion of the fold correctly.
Hence, it is not yet known if estimates of deployment times obtained from ABAQUS are generally

reliable.

It is expected that a proper, three-dimensional finite element model of the rib, based on shell
elements, ought to give more accurate estimates of the deployment process, but it is unlikely that
this approach could be adopted for problems of a realistic size. The key difficulty is that, because
the fold region is expected to move towards the root, most of the rib has to be modelled by small
shell elements, whose size is related to the transverse dimension of the cross section of the rib. To
model properly the ovalization of the cross-section, il is necessary (o use no fewer than three
elements for half of the rib. For a 500 mm long rib about 500 elements would be required. So far,
preliminary analyses of meshes of shell elements with fairly elongated shape, to reduce the total
number of elements required, have been unsuccessful. These analyses did not achieve convergence,
not even for the initial phase of the analysis that simulates the formation of the initial fold.

It is quite possible that these difficulties could be overcome by the design of an optimal mesh for
this problem and, possibly, by making use of an automatic mesh updating scheme. But, given the
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apparent simplicity of the physical problem that is being modelled, the computer effort required by
this approach seems absolutely out of proportion. The next section presents a radically different
approach to the problem, based on a two-degree-of-freedom model which can produce results very

quickly.

4.4 Analytical model

Figure 24 shows a simple, two-degree-of-freedom model of a rib with a single fold. The fold is
idealised as constant-moment, point hinge B located at a variable distance A from the tip A. The
parameter A is the first degree of freedom of this model. Any deformation of the rib away from the
hinge is neglected, and hence AB and BO are treated as rigid bodies. The second degree of freedom
is the rotation 0 at the hinge.

For simplicity, it will be assumed that the moment at the hinge remains constant, i. e. that
M(8) = M" (or M"), thus neglecting the large moments associated with small values of 0. This

assumption could be removed quite easily, if necessary.

The mass of AB (and also of BO) is a variable because the hinge position moves at velocity A
along OA. Thus, body AB "swallows" a stream of stationary matter and suddenly imparts to it both
translational and rotational velocity components. The time rate of mass increase of AB is p?L.
Therefore, the standard equations of motion for rigid bodies with constant mass cannot be applied
directly to AB and BO. Next, we shall derive the dynamic equations appropriate for this system.

We introduce, Fig. 25, the unit vectors i, j in the direction of the fixed coordinate system O, x, y,
and a unit vector k perpendicular to i and j, and such that i, j, k form a right hand set. We also
introduce the auxiliary unit vectors e and e* on a moving reference frame with origin B. The
orientation of e, e* is defined with respect to i, j by the angle 9.

The position, velocity and acceleration of a general point P on AB, see Fig. 25, at a distance
d = constant from O are as follows

F=(L—A)i+(d—L+A)e @7
f=-Ai+Ahe+(d—L+A)fe* (28)
F=—Xi+[X—(d——L+x)62}e+[zké+(d—L+k)é]e* (29)

These expressions will be used at several stages of the derivation of the equations of motion.

The equations of motion of variable mass systems are usually derived [10] either by considering the
force and moment interaction between a part of the system whosc mass remains constant, i.e. body
AB at time t, and the incoming mass over a short time At, or by differentiation of the linear and
angular momentum of a control volume that encloses a constant mass, i.e. body AB at time t plus
the mass piAt that joins AB during the time At. Both approaches are suitable for the present
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Fig. 24. Two d.o.f. model of deployment of a rib with a single hinge. The model parameters are A, 0.
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Fig. 25. Definition of fixed and moving reference frames for two d.o.f. model.
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Fig. 26. Free body diagrams for two d.o.f. model, at time t. During At the hinge moves from B to D.
situation, but the first approach provides greater physical insight and hence will be followed here.

Figure 26 shows two free body diagrams for the system at time t. The hinge is at B, at time t, and
moves to D at time t+ At. Body AB has length A and mass pA. It is subject to an external force
resultant ZF and to an external couple ZC about its centre of mass, and also to force and

moment interactions —R and Q with body BD. The external forces and couples result from, e.g.,
gravity and air drag. Body BD, of length AAt and mass pXAt, is subject to forces and moments S,
M at D and R, Q at B, which are applied to BD by bodies OD and AB, respectively. The effects of
external distributed forces on this short body are negligible in the present analysis.

The stress resultants behind the hinge, i.e. at point B, and ahead of the hinge, at point D, can be
calculated from R, S, M and Q. Although the above formulation allows for discontinuities in both
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axial/shear forces and bending moment, it will be shown that the bending moment is in fact

continuous across the hinge.

Body BD is stationary at time t. During the time increment At body BD is subject to an impulse
(R+S)At which accelerates it to a velocity =ry, where 1y is the velocity of point B. Hence,

equating impulse to change of linear momentum, we obtain

R =phi; —S (30)
Also, the impulsive couple about O is approximately

[ra % (R+8)+(Q-M)k] At (31)
and the change in moment of momentum about O is

rg X pXAt Iy (32)

Equating Egs 31 and 32, and substituting

rp = (L - k)i 33)
and Iy =—Ai+Ae (34)
we obtain M=Q (35)

Next, we turn to body AB and, since it has constant mass, we write its equations of motion in the

standard form

> F—R=pAig (36)
(Y. C-Q)k+(ry—rg)x(-R) =18k (37)
where I is the moment of inertia of AB about G.

Substituting Eq. 30 into Eq. 36

S F+8=phiy +pAig (38)
and, substituing Eq. 34 and

i‘G=-Xi+(X—%—éz)e+(2Xé+%é)e* (39)

into Eq. 38, we obtain

F e (e e Y
> +S=_(x2+m)i+(w+m-7‘29 Je+(2kk@+%—qje* (40)
p
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Finally, substituting Eq. 30 and Eq. 35 into Eq. 37, we obtain
(X C-M)k+(r, —rs) x(pAis - Y F) =16 k 1)
and, substituting

A
g —rg =—5e 42)
and Eq. 39 into Eq. 41 we obtain

(X c-M)k+Hex ZF)=p>e(

A

7LSm(;’+7Lé+§é)k (43)

Equations 40 and 43 are the dynamic equations for the two-degree-of-freedom model. Equation 40
is a vector equation, equivalent to two algebraic equations, while Eq. 43 —where all terms are in
the k-direction— is equivalent to only one algebraic equation. These three equations contain five
unknowns: S, M, 6, A. The two unknown components of S are equal to the axial force (-S,) at a
section just ahead of the travelling hinge and to the shear force (=Sy) also at the same section. Two
more equations are required to determine a unique solution. The first condition is that the bending

moment at the hinge should have a constant value, i.e.

M=M"* (or M‘) (44)

The second condition is that the bending moment should be a maximum in the middle of the fold
region. Otherwise the hinge would form at a different section, and the shear force would be zero at
that section. Hence, the condition is that the component of S in the direction of the normal to the rib

should be zero in the middle of the fold, or

=S, sin—e— +S cos9 =0 45
2 V2

Thus, the total number of equations has increased to five, and the problem can be solved.

In practice, there is no need to calculate S. A differential equation containing only A, 6, and their
derivatives is obtained by resolving Eq. 40 in the direction at 90°+6/2 to the i-direction. This
equation has been integrated numerically, together with Eq. 43, using the Runge-Kutta algorithm
available in Matlab [11].

To simulate the deployment experiment of Section 4.1 the initial conditions at t = 0 were set as

follows

- >

=05, =90°, A=0=0

The results are shown in Fig. 27 for M = 25 Nmm. This time the first two phases of the deployment
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sequence were modelled correctly.

According to this prediction, the hinge travels towards the root at increasing speed, until it reaches
the root (A/L =1) at t=0.12s. The hinge rotation at the same time is predicted to be 6 = 27°.

Then, the rib rotates about the root, i.e. A remains constant, until 8 becomes zero at t =0.20s. The
third phase of the deployment process, during which the rib oscillates about the final, equilibrium
position, has not been modelled in the present analysis. The measured and predicted response are
compared in Table 2.

2
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Fig. 27. Rib deployment predicted by two d.o.f. model.

Given the fairly crude assumptions of this analytical model, these results are quite promising and
would justify a refinement of the above analysis. A more accurate experimental technique will be
needed in future.

To conclude it is noted that, although the equations of motion presented in this section were
developed for a rib with a single kink, the approach can be extended to ribs with more than one
kink.

Table 2. Properties of 0.53 model reflector

Experiment Analytical model

Start Finish Start Finish

t(s) 0 0.16 0 0.12

PhaseI A/L 0.5 1.0 0.5 1.0
6 90° 29° 90° 27°

t(s) 0.16 0.32 0.12 0.20

PhaseII A/L 1.0 1.0 1.0 1.0
0 29° 0 27° 0

32



4.5 Experiments and simulations for 1 m reflector

A series of deployment tests were carried out on the 1 m model reflector packaged according to
Scheme 2 and using the folding apparatus described in Section 3.6. The package was tied with a
string and suspended from a horizontal bar. Deployment was initiated by cutting the string. The
deployment sequence was recorded with a video camera, at 1/25 s per frame. Selected shots, as well
as five 16-frame deployment sequences are included in the Appendix. Each sequence runs from the
top left corner to the bottom right. Not all recorded frames have been printed, and hence the time
interval between consecutive frames in a sequence is 3/25 s. The reflector was deployed pointing
downwards, otherwise gravity effects would have been too large for the root hinges to close.

The five deployment sequences included with this report are fairly typical of the general
deployment behaviour of this model. In the first three frames of each sequence the membrane,
wrapped around the package, unwraps. Then, the ribs start to deploy. There is a tendency for one or
two ribs to move up, past the hub, despite the downward load applied by gravity. Due to the hoop
constraint applied by the curved membrane, in sequences 1-4 these ribs are unable to snap back and
hence the reflector deploys into an off-nominal shape. Between frames 15 and 16 of these four
sequences, the shape of the model has been corrected by applying a small tip force to the rib(s) that
had deployed incorrectly. This problem has been discussed already in Section 3.5. In sequence 5 the
model deploys (almost) into the correct shape; the only problem is that the rib in the foreground

remains folded downwards.

In all five cases membrane unwrapping is complete by frame 3 and hence takes 6/25 s. Deployment
is always essentially complete by frame 12 and, excluding the time for unwrapping, rib/membrane

deployment takes about 27/25 s.

An analytical model for a rib with three folds is yet to be developed. Hence, an ABAQUS
simulation was carried out, along similar lines to Section 4.3. The rib was modelled by 30 linear
beam elements. The mass of the membrane was allowed for, by introducing a series of point masses
at appropriate nodes. Gravity effects were also included, but air drag could not be included without
modelling the membrane as well. Gravity acted vertically down. Figures 28 and 29 are the

deployment sequences predicted by this analysis.

First, the moment/curvature relationship of Fig. 22(b) was assumed. For this case, Fig. 28, the
simulation predicts that the two intermediate folds disappear from the rib after about 0.33 s from
the start of deployment. Then, the rib oscillates between the configurations labelled t = 0.291 and
t=0.330. In this simulation the rib does not become completely straight because the
moment/curvature relationship requires that on unloading M should climb from M+ to about
200 Nmm before the fold is allowed to disappear.

A second set of results have been obtained, Fig. 29, for a modified moment/curvature relationship
where only the loading path is based on Fig. 22(b). On unloading it is assumed that the bending
moment remains constant at M+ (or M~) until the unloading path joins the linear-elastic part of the
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Fig. 28. Finite element simulation of 530 mm long rib with three folds, assuming
the moment/curvature relationship of Fig. 22(b).
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Fig. 29. Finite element simulation of 530 mm long rib with three folds, assuming a modified
moment/curvaturc rclationship with constant moment on unloading,

34



loading curve. In this analysis the rib tends to move upwards, driven by the elastic energy in the
hinge near the hub. Although it is expected that the rib will eventually become straight, there was
yet no sign of this when the simulation was stopped at t = 0.37 s, with the rib pointing vertically up.

The behaviour predicted in the first part of the second simulation is broadly in agreement with the
experimental obsevations on the 1 m model. It can be seen clearly that in all five deployment
sequences the tips of several ribs are higher than the hub when the model is approximately half

deployed.

A more detailed comparison of experiments and simulation has to be limited to the overall
deployment times, which are of the order of 1.0 s in practice and around 0.4 s in the simulations.

4.6 Deployment predictions for 5.5 m reflector
This section presents the results of a preliminary analysis of the deployment of a 5.5 m CRTS
reflector, in space. The aim of this analysis is to provide order of magnitude estimates of the

deployment properties for a reflector of realistic size.

The design parameters for such a reflector were not yet available when the analysis was carried out,
and hence it was decided to use the same properties of the 1 m model reflector, as given in Table 1.
Thus, the 5.5 m reflector has six ribs, whose moment/curvature relationship is given in Fig. 22(b).
Each rib is 0.1 mm thick and 2.5 m long. Its cross-section has transverse radius of curvature
r = 12 mm and subtends an angle of 120°. The hub radius is R = 0.25 m.

In this reflector the mass of the membrane plus ribs is remarkably low: about 1.4 kg for the whole
membrane and 0.050 kg for each rib, giving a total mass of about 1.7 kg excluding the hub.

If this reflector is packaged according to Scheme 2 with, say, n = 6 folds in each rib, then the size

of the packaged reflector, estimated from Eqgs 13-14, is

D=2R+2nr=0.5+2-6-0.012=0.64 m

:—:—2—2=O.42m
6

The estimate for D is crucially dependent on the hub diameter, which depends on the size of the
hub expansion/contraction mechanism. A preliminary design of this element will be required before

a more realistic estimate of package size can be arrived at.

The deployment of a single r1ib of this reflector has been analysed using ABAQUS, assuming a
gravity-free, vacuum environment. In the initial, packaged configuration the rib has six folds. The
ABAQUS model included 60 linear beam elements.

The deployment sequence of the rib alone is shown in Fig. 30. Deployment takes about 2.5 s.
Figure 31 shows the predicted deployment sequence if the added mass of the membrane is
considered in the analysis. In this case deployment takes about 5 s. Hence, it can be concluded that,
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Fig. 30. Finite-element simulation of 2.5 m long rib with six folds, in a
gravity-free, vacuum environment.

t=16 t=23 t=3.0
t=3.8 t=5.3
..____.._{_

Fig. 31. Finite-element simulation of 2.5 m long rib with six folds, considering
the added mass of the membrane.
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if the number of ribs is greater than six but the rib properties are unchanged, then deployment will
take no less than 2. 5 s and no longer than 5 s. Obviously further work is required to assess the

accuracy of these estimates.

In both Figs 30-31 it can be noticed that during the initial stages of deployment the gaps between
adjacent parts of the rib tend to close but, because deployment is being simulated as purely two-
dimensional, the rib has not been allowed to go over itself by imposing unilateral constraints

between different beam elements.

5. CONCLUSIONS AND RECOMMENDATIONS

All of the objectives stated in the Study Definition Document [2] have been achieved. In addition,
considerably more experimental work has been conducted than originally envisaged. Two selected
folding schemes have been validated experimentally and a folding apparatus has been developed
for the most favoured concept. Also, the key patterns of deployment behaviour of the ribs of the
reflector have been observed. Based on these properties, an efficient and yet accurate analytical

model for deployment analysis has been established.
More detailed conclusions and recommendations for future work are given below.

Three packaging methods for CRTS reflectors have been identified and analysed in detail. Each
method is based on a folding pattern whose geometry has been fully worked out and hence can be
implemented without difficulty. A trade-off between the three packaging methods has been carried
out. The selected packaging scheme (Scheme 2 involving a zig-zag folding of each rib) is the best
in terms of ease of implementation and is joint best in terms of packaging efficiency. A simple
folding apparatus has been developed to implement this packaging scheme and, with it, the folding
operation has been repeated many times on a 1 m model reflector. Deployment tests have been
carried out on the model, packaged in this way. During these tests, often the model ended up in off-
nominal configurations because some ribs had gone too far past the hub, and were then unable to
snap back to the front. It is believed that this anomaly can be resolved by contracting the hub
further than required from considerations of prestress alone, and/or by altering the location of the
folds in the ribs. This is an area in need of further investigation.

Alternatively, these difficulties could be by-passed by selecting a different, more complex
packaging scheme (Scheme 3, involving the wrapping of the membrane and ribs around the hub)
whose deployment behaviour is expected to be better synchronised. It is suggested that further

consideration be given to this alternative scheme.

As a preliminary, crucial step towards a global understanding of the deployment behaviour of a
CRTS reflector, this study has focussed on the deployment of a single rib.

A detailed experimental investigation of the large displacement, large rotation behaviour of a rib
has been carried out, leading to a full characterisation of the moment/rotation relationship of the rib.
For small rotations, the rib behaves initially in a linear-elastic fashion and then shows a limit point.
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For large rotations, the rib forms a localised "elastic hinge" where the curvature of the rib —which
is in the transverse direction when the rib is unstressed— is now in the longitudinal direction. The
bending moment carried by the hinge remains practically constant as the rotation angle is increased.
The curvature in this region remains constant while the rotation increases. A special test has been
devised, to further increase the longitudinal curvature at the hinge and to measure the
corresponding bending moments. This test has shown that the bending moment at the hinge is at a
minimum when the radius of curvature of the rib in the longitudinal direction is equal to the
transverse radius of curvature of the rib unstressed. This property provides an effective mechanism
for shielding the rib from high stresses during deployment. At any time t the hinge moves to a
position such that the bending moment is equal to this minimum value.

Numerical investigations of the deployment process have been carried out with the ABAQUS finite
element package. Also, an analytical technique has been developed specially for this study.
Deployment experiments on small scale ribs with a single fold have proved to be most valuable in
validating the numerical models. Rather surprisingly, it has been found that the non-linear dynamic
finite element analysis is much less accurate than the two-degree-of-freedom analytical model. It is
suggested that this analytical model be extended to model ribs with several kinks, and that a more

accurate set of experiments be carried out, to further validate this approach.

Once this analytical tool has been fully developed, it will be possible to choose the best location of

the hinges in the ribs, to achieve an optimal deployment behaviour.

Finally, concerning the deployment dynamics of a complete reflector, the constraints on rib
deployment imposed by the membrane will have to be considered. Also, it will be necessary to
include air-drag effects on the membrane in the theoretical simulation of deployment, so that
ground tests can be analysed with greater accuracy. An alternative would be to conduct the next

series of tests in a vacuum chamber.
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