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To calculate the load ar which fiber-reinforced polymer (FRF)
plates will debond from a reinforced concrete {RC} beam using
fracture mechanics principles based on energy release rates, it is
necessary to accurately determine the strain energy in the beam.
This study presents a moment-curvature model for an RC beam
with the presence of a net axial force that is due to the force in the
FRP plate. The classical Branson analysis only covers the case of
a eracked-elastic concrete beam with no axial force. The paper
shows how the model can be extended into the inelastic regime and
can be used to determine the moment-curvaiure relations on
loading. Comparisons with the available test data have shown
good correlation. The model is then extended into an unloading
regime for the strain energy determinations of RC beams with
external reinforcement, which may be bonded or partially debonded,
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INTRODUCTION

Reinforced concrete (RC) beams flexurally strengthened
with externally-bonded fiber-reinforced polymer (FRP)
plates often fail by plate debonding, but a rational analytical
approach to these failures has yet to be developed. Due to the
typically premature and brittle nature of these debonding
failures, inadequately designed strengthening applications
may become ineffective and reduce the level of safety. A proper
understanding of the concrete-FRP interface debonding is
required for safe and reliable applications of externally
bonded FRP systems for strengthening of RC elements.

The debonding mechanisms of plates glued to concrete

structures are proving very difficult to analyze. The temptation
is to model the interface using finite elements, but this
procedure is doomed to failure. A reentrant corner leads to
an infinite stress concentration, so the values returned by a
finite element program are governed by the smallness of the
elements used. The sort of model that can be used to follow
the crack tip behavior in fracture mechanics studies requires
far more detail than will ever be available to the designer or
analyst of an RC beam, who would be forced to make
unwarranted assumptions about interface properties. There
are doubts about whether linear models are accurate for
concrete applications.
" Fracture-mechanics models, such as Hutchinson and Suo’s
interface fracture model for layered elastic materials, offer a
better alternative for interface debonding problems. They
assume that, because flaws are inevitable in the interface, what
matters is whether these flaws can propagate. When an
existing flaw extends, the energy needed to form associated
new surfaces depends on the interface fracture energy and
must be compared with the energy released by the system,
which in turn depends on the change of stored strain energy.
This paper is concerned only with the determination of that
strain energy as an essential prere%uisite to a debonding
analysis that is described elsewhere.

1

20

It is not a trivial problem to determine the strain energy
stored in an RC beam, to which is attached an FRP plate that
may be debonded over part of its length. This is particularly
important in a fracture mechanics analysis because decisions
about whether a flaw can propagate, and hence whether the
structure is safe, depend on the (potentially small) difference
in strain energy between the states before and after propagation.

This study relates to an analysis of the strain energy state
of a beam with a partially bonded FRP plate. It does not
attempt to explain how the beam got into the present state,
nor the load at which the debonded region will extend, which
may well be associated with failure. Those processes are
discussed in an associated paper.2 This paper concentrates
on the analysis at one debonded state only and is aimed at
determining the strain energy in the current state, which is
the essential parameter needed for the wider analysis.

When an RC beam cracks, its stiffness does not immediately
change to that of a section where the tension-concrete can be
fully disregarded. Various empirical models, such as
Branson’s Ieﬁv concept,3 have been used to model this
behavior, primarily with‘a view to being able to predict the
deflections of RC beams to check their compliance with code
limits. Such models normally work in moment-curvature
(M-x) space rather than stress-strain (c-€) space and thus do
not attempt to model individual cracks. Two versions are
normally presented: one designed to model the overall beam
stiffness and the other to determine the local curvature.

An external FRP plate will act as a prestressing element,
inducing both force and moment in the original RC beam
(Fig. 1); most existing models do not cope with this effect. It
is not possible to consider the FRPas a second layer of
reinforcement because it is necessary to consider the strain
state when the FRP is partly debonded. The mechanics of
stress transfer from concrete to FRP are different from that
of reinforcing bar and most of the existing models (such as
those of Faruqi et al.* and El-Mihilmy and Tedesco?) are not
calibrated for two different levels (or types) of reinforcement.
The new model is first explained and then verified by
comparisons with the available test data.

The strain energy in a beam at a given state can be calculated
as the energy that is recoverable upon complete unloading. It
will thus be necessary to determine the M-k relationship on
loading, from which the stress and deflection state of the
beam can be found, and then the corresponding M-k relations
for unloading, from which the amount of stored energy can
be determined. . ‘

ACI Structural Jowrnad, V. 106, No. 1, January-February 2009.

MS No. 5-2006-494.R3 received March 18, 2008, and reviewed under Institute
publication policies. Copyright © 2009, American Concrete Instifute. All righis reserved,
including the making of copies unless permission is obtained from the copyright proprietors.
Pertinent discussion inctuding author’s closure, if any, will be published in the November-
December 2008 ACT Structural Jownal if the discussion is received by July 1, 2009.

ACI Structural Journal/January-February 2009




Paththini M, M. Achintha is a PiD Candidate at the University of Cambridge,
Cambridge, UK. He received his BScEng in 2003 firom the University of Moratuwa,
Moratiwa, Sri Lanka. His research interests inchde the application of fiber-reinforced
polymers in civil engineering and fracture mechanics of concrete.

Chris }. Burgoyne is @ Reader in Concrete Structures of the University af Cambridge. He
is @ member of ACI Committee 440, Fiber Reinforced Polymer Reinforcement. His
research interests incliide advanced composites applied fo concrete structures.

RESEARCH SIGNIFICANCE

The analysis presented herein provides an essential tool
that will enable fracture mechanics to be used to determine
the load at which FRP plates will debond from RC beams.
This will obviate the need for finite element analyses to be
used in situations where there is an infinite stress concentration
and where the exact details of the interface geometry and
properties are unknowable,

TENSION STIFFENING

Calculations of the stiffness of RC beams at the working
load must make some allowance for the additional stiffness
caused by the tensile stresses in the concrete that is partially
cracked. A detailed analysis would require knowledge of the
exact location of the reinforcement and each of the cracks;
such information is effectively unknowable. For most practical
purposes, it has been sufficient to determine the effective
stiffness of the section or the beam using an interpolation
formula. That derived by Branson is most commonly used,
and that model is extended herein.

- Tension stiffening models, such as Branson’s, have
limitations. They only apply to RC beams subject to pure
bending, which can be regarded as a simple couple, so there
is no need to define a particular reference axis and no need
to worry about the distinction between the centroid and the
neutral axis. In the present study, that will no longer be true
because the RC beam has to be analyzed under the moment
and axial force induced by the external FRP plate (Fig. 1), as
" well as the external Joad.

These methods are primarily concerned with stiffness and
not normally used to determine the siresses in the beam that
are assumed to be adequate because separate checks (either
permissible stress or section strength) would be performed in
association. The present method, however, requires the satisfac-
tion of a compatibility condition between the FRP and the
concrete, which means that strong assumptions need o be
made about the strains, and hence stresses, in the cross section;
and these will have to be determined from the effective stiffness.

Tension stiffening models were originally developed for
situations where the beam was at the working load, so the
stresses everywhere would be relatively low and the material
could be assumed to be linearly elastic. Herein the model is
to be applied to sections that are being strengthened to carry
loads that would have caused the original section to fail, so
at least some of the steel in the section may be yielding and
the concrete stresses will be high enough that nonlinearity
should be taken into account. That will be done by determining
an equivalent elastic stiffness.

The model described in this paper will subsequently be
used to answer the question “Will this interface crack
extend?” (which presupposes that a preexisting crack must
be present.) It is not concerned with how that crack or flaw
forms in the first place. The case of an FRP plate debonding
from its end is relatively simple because the peeled part of
the plate can effectively be ignored. But if the plate debonds
from somewhere in the middle of the beam, there will be two
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Fig. 1—Actions of longitudinal section.

end regions, both fully bonded, separated by a region in
which the FRP plate is debonded but constrained by a
compatibility condition.

As a final complication, all the analysis described previously
assumes knowledge of the force in the FRP plate, but this is
not known from the beginning and must be found iteratively.

Thus, the objective is to find a method that can determine the
M-k behavior of a partially cracked beam when being loaded
and then unloaded, subject to an applied moment and an
axial force, which must satisfy compatibility conditions with
the external reinforcement that may be bonded or locally
unbonded, using materials that may be nonlinear—all of
which must sit within a nonlinear loop in which the force in
the FRP plate is unknown.

BRANSON'’S [, EXPRESSION

Branson® derived an expression (Eq. (1)) for the effective
second moment of area (Ieﬁ) that indirectly accounts for
tension stiffening effects of cracked concrete and successfully
predicts M-x relations of RC beams. The stiffness of a
cracked RC beam section is interpolated between the
uncracked state (,,,), where the concrete is fully effective in
tension, and the fully cracked state Ufc)= where there is no
tension stiffening. An interpolation coefficient K represents
the extent-of-cracking of the section

Lyp=Kly+ (1 -K)l (0<K<D) (1
M N4

K == @
(2

where M, and M, are the moments causing first cracking
and the externally applied moment, respectively, and [z is
taken as I, when M, < M,,.. (When it is only necessary to
find the average I gof the entire beam, for example to calculate
the midspan deflection, the exponent in Eq. (2) is reduced
from 4 to 3.6)

The variable I,in Eq. (1) is the effective second moment of
area of the equivalent transformed concrete section of modulus
E., so curvature of the section (1) can be determined from

K—%ﬂg (3)

E. Ly

As an alternative, Eurocode 27 suggests interpolating the
curvature of a partially cracked section between the corre-
sponding uncracked and fully cracked curvatures, based on
stress in the tension steel at the given applied moment (M)
and the moment causing the first cracking (M,,). Both values
are calculated assuming a fully-cracked section. In addition,
account is taken of bond with the steel and the type of
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loading, but there is insufficient experimental evidence in
the literature to back up the model, Local curvature determi-
nations using Branson’s concepts (EBg. (1) to (3)) have been
widely verified for conventional RC beams: they will now be
extended to deal with the more complex problem of beams
with external FRP plates.

PROPOSED MOMENT-CURVATURE MODEL
Branson’s method will need modifying to take account of
several factors. The overall objective is to determine the
equivalent elastic stiffness (EI, ) of the RC portion of a
partially cracked strengthened section, by interpolating
between those from the uncracked and fully cracked section
analyses, using materials that may be nonlinear.

Actions on a strengthened section
In a strengthened section, the FRP plate can be considered
as a prestressing element, inducing both force and moment
on the original RC section, even when fully bonded (Fig. 1).
The RC section is analyzed under the action of a compressive
force F), (the force in the FRP plate) and an effective moment
(Mg Ce,,) both acting at the RC section’s centroid. The variable
M ofy: ¢ 18 Telated to the externally applied moment (M,,,,) by
Eq. (4). The values &, ¢, and i, n Eq. (4) are the depth of the
RC section, and the thlcknesses of the adhesive layer and the
FRP plate, respectively. The value o is the centroidal axis
" depth of the section, the location of which will be discussed
in the following

Meﬁ“—cen = Mapp F:u X(h+t,+ fp/?- =0 4

The value F, is not yet known but can be determined by
satisfying the relevant compatibility condition. In a bonded
section, strain compatibility is satisfied locally; but if
unbonded, there only needs to be compatibility of extension
between the FRP plate and the bottom of the concrete beam
over the unbonded region.

A maodified interpolation coefficient

When the amount of cracking of an RC section increases,
the tension stiffening eventually becomes ineffective. In
Branson’s model, the stiffness becomes asymptotic to the
fully cracked state but never reaches it. That model was
intended to represent sections at the working load and well
below yield of the reinforcement. The present model will
apply to beams where the loads cause yield of the conventional
reinforcement and rely on the FRP for security. It can be
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expected that the fully cracked state will be reached because
that is why the beam needed strengthening in the first place.

It will be assumed that the section is fully cracked at the
moment causing first yielding of tension steel (M) and a
slightly modified form of the interpolation factor used in
Egq. (1) is proposed

G-t

app

This expression has the property that K is zero when
Mgy, = M,. When the M,:M,, ratio is greater than approxi-
mately 3, which would be the case for most practical RC
beams, the difference between the predictions of Eq. (2) and (5)
is negligible (as shown in Fig. 2} and avoids a discontinuity
in the stiffness when the section yields.

Equation (5) allows the extent of cracking of a partially
cracked section -at any given M, to be represented as a
function of M,,, M, and M, (fnly a part of the corre-
sponding externaIiy appiied moment is effective on the RC
section (Fig. I and Eq. (4)) and hence the relevant effective
moments should be compared; these depend on the choice of
the reference axis. To avoid unrealistic contributions due to
varying eccentricities of the force in the FRP, a fixed reference
axis will be used for the comparison; the middepth axis of the
beam is chosen and the corresponding effective moments are
denoted as M M and M, .4 respectively. Thus,

cr-mid> ' y-mid> app-
the interpolation coefficient used in the present model becomes

Kp = (ﬁcr—mid)‘i{l _ 4‘“[{;;);)4111‘5! ;cr -mid } (6)

app-mi y-mid T Moromid

Equivalent elastic stiffnesses for inelastic sections

In normal RC design with under-reinforced sections, once
the steel has yielded there is little point in determining the
curvature because the section is on the point of failure. But
with a strengthened beam, the section may have a considerable
reserve of capacity after steel yield, so it is important to be
able to determine the strain energy in such sections. At high
strains, the concrete is nonlinear and steel will yield, so a
cracked-elastic analysis is not applicable. It is possible,
however, to define the equivalent elastic stiffness (ET,.) of a
strengthened section to use in place of the elastic stiffness
(the product of £ and /,z) used by Branson

EI - eﬂ-cen (7)

where k and M,g..,, are the curvature and the effective
moment on the RC section about its centroid. Both M ¢ .,
and « of uncracked and fully cracked sections can be found
from a simple section analysis, thus giving the respective El,,

Mechanical behavior of constituents
Concrete——Hognestad’s parabolic ‘stress-strain curve
(Eq. (8)) is assumed for- concrete in compression on
loading, where o, is the stress at strain €; f; is the cylinder
strength; and . and €., are the strains at the maximum stress
and the ultimate strain, respectively. A linear-clastic
behavior is assumed for concrete in fension with the same
modulus as the initial modulus in compression (£ in Eq. (9)).
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Elastic unloading with modulus E_ is assumed for concrete
in both tension and compression. For the loading curve up to
the maximum stress

o, = f {2(ele,) - (e/e,)’} = fore<s, (8)
2 !
E, =2 ©)
&

C

Steel—Steel is assumed to be linear-elastic with modulus
E up to yield at stress f,, after which it is perfectly plastic on
loading. It will be assumed to unload eclastically with
modulus E; from any stress state.

FRP plate—The FRP plate is assumed to be linear-elastic
with modulus E, and herein there is no need to consider the
strength of the P‘lJ{P Failure occurs either by plate debonding
{when the plate can be assumed to be elastic) or by tensile
fracture of the FRP (when the debonding analysis is jrrelevant).”
The adhesive will be assumed to be linear-elastic, although
its properties have little effect on the strain enexgy calculation.

Effective moment on reinforced concrete section

To estimate the uncracked and fully cracked effective
stiffness (Eq. (7)), the effective moments about the relevant
centroidal axes (M,z ) should be known. The value of
M ofs.con can be calculated from Egq. (4) but the relevant cent-
roidal axis depth o needs to be known. Centroidal axes are
determined by defining equivalent transformed sections, but
the varying concrete stiffness over the compressive zone and
the reduction in the secant modules of steel after yielding
should also be taken info account.

Equivalent section dimensions

The secant modulus of the steel is used to define the trans-
formed sections, but a unique modulus for compressive
concrete cannot be used because the concrete is assumed to
be nonlinear. The varying modulus, however, can be
included by defining equivalent widths (as is done when
analyzing a beam made from two dissimilar materials when
a modular ratio is used). Assuming the o-g relationship (Eq. (8))
and a linear strain variation across the RC section, the
equivalent width at depth z from the beam top is

b(z) = b{1—zf:—(1—§)} (10)

where b is the width of the beam section, g, is the strain at
the top of the beam, and x is the neutral axis depth. The
transformed section can then be analyzed using the initial
modulus for concrete E .

These procedures allow the locations of the ceniroidal
axes of the uncracked and fully cracked sections, and hence
the respective effective momenits, to be calculated from Eq. (4).
With ihe already known curvatures, it is possible to determine
the corresponding equivalent elastic stiffness from Eq. (7).

Effective equivalent elastic stiffness for partially
cracked section

The effective equivalent elastic stiffness for the partially
cracked section (El,, g is then interpolated between the
uncracked (El,g ) .’:m(jljr fully cracked (El,,.r) stiffnesses,
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using the interpolation coefficient (K} taken from Eq. (6).
When the section is uncracked (M, ig < My.mia), Kp 1 set
to 1; and when fully cracked (M pp.miq > My.mia), it is set t0 0

Elygof= KpElogun + (1 = K)El g s (11)

Curvature of section

The effective equivalent elastic stiffness (EI,, ¢} calculated
from Er;ll (11) is relative to the effective centroid of the
section. !0 Hence, if the effective moment about this axis
(Mg cen) is known, the curvature k of the section can be
calculated from

K = Meﬂ-cen (12)
Eloq sy

The location of the effective centroid must be known to
determine M,z ., from Eq. (4). Sakai and Kakuta'! presented
a Branson-type expression for the effective centroidal axis
depth o of an RC beam section subjected to- combined
bending and axial force; Qg is interpolated between the
centroids of the corresponding uncracked and fully cracked
sections (0, and ag, respectively). The present model uses
Sakai and Kakuta’s approach to define the effective centroid
oegr Of a strengthened section

Cto= Cpllyn + (1 = Cpotg, (13)

where at,,,, and oz, are known from the relevant section analysis.
The interpolation coefficient C,, is defined in the same way
as K g in Eq. (6) but, following the discussions in References
7 and 8, the exponent is taken as 3.5 instead 4, which gives a
better fit to the test data. The value of C,, in Eq. (14) is taken
as 1 and 0 for uncracked and fully cracked%ections, respectively

C, = (M 35 1 _(Mapp—mr'd_MCHM d)ls 4
P M - 4

app-mi y-mid " cr-mid

Effective neutral axis depth

The neutral axis depths for the uncracked and fully
cracked sections are known, but an expression for that of the
effective section is stifl required. In the present model, the
position of the effective neutral axis x,p is interpolated
between those of the corresponding uncracked (x,,) and
fully cracked (x;) sections using the same coefficient used
for the centroidal axis (C, in Eq. (14)). Thus

K= Cpx[m +{(1 - Cp)xfc (15)

Now that the location of the neutral axis and the curvature
can be calculated, it is possible to determine the strain
distribution across the section, which can be used to determine
the stress in the FRP plate.

Calculation of force in FRP plate

Everything that has been described so far can be calculated,
provided the force in the FRP plate (F,) is known. This must
be chosen in such a way that the compatibility condition is
satisfied. Two versions of this condition exist. If the FRP
plate is still bonded to the beam, then strain compatibility
must be satisfied locally between the FRP plate and the strain
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YES {Correct F, is known)

Reanalyse the section with correct £,

Effective moment and the curvalure are

Last section ?

new known

NO

»
Incsease §

Fig. 3—Step-by-step procedure to calculate response in bonded region.

in the tension fiber of the concrete. When the FRP plate has
debonded, then the weaker condition has to be satisfied in
which the extension of the plate in the debonded region is the
same as the extension of the tension fiber in the concrete.

The equations have been set up in a computer program,
using an assumed value of F,, and a solution sought using the
built-in solving routines, wflich find a solution for a set of
nonlinear equations by a least-square method.

Local strain compatibility for a section with a bonded FRP
plate—Strain in the FRP plate can be calculated from the
local “strain compatibility across the section. When the
correct solution has been found, it will be the same as that
directly derived from the assumed F »

F
Ef& = KX (h+1,+1,/2—x4) (16)

pCp

where £, and A, are the modulus and the cross-sectional area of
the FRP plate; 7,, fy, and h are as defined in Eq. (4). The values
i and x g are found from Eq. (12) and (15), respectively.
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Global compatibility for sections with a debonded FRP
plate—Over the debonded region, the change in length of the
bottom fiber of the concrete beam should be compatible with
that of the FRP plate

F)
Kb+, 4 42— x)de = =21, (17)
length I, pr

where {; is the length of the debonded zone.

Actual effective moment and curvature

Once the correct value of F, P is known, all the other parameters
can be determined. Flowcharts (Fig. 3 and 4) for the complete
process to determine M, ., and x of RC sections with external
FRP plates which may be bonded or partially debonded can
also be downloaded from an associated Web site.!2

VALIDATION

The model can predict M-« relations of RC beams in the
presence of a net axial force, and these can be compared with
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Last debonded section?
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Fig. 4—Step-by-step procedure to calculate response in partly-debonded region.

published test data. The axial force can be either externally
applied or exists due to unbalanced stress resultants acting
on the RC section as in the case of RC beams with external
FRP plates, in which case the net axial force is unknown at
the beginning of the analysis. Comparisons between the test
data and the present model can be made for some of the test
specimens found from the literature under both of these
categories. Due to space constraints, only a few such compari-
sons will be shown herein, but they cover test specimens
with a large variety of material and geometric properties. The
model can also be used to- determine strain and deflection
profiles of strengthened RC beams, and some comparisons
of these parameters with relevant test data are also presented.

Material and geometric properties for analyses

For all the comparisons shown in the following, the yield
stress and the elastic modulus of deformed steel bars are
taken as 530 N/mm? (77 ksi) and 200 kN/mm? (29,000 ksi),
réspectively. This value for the yield strength has been taken
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because it represents a typical value for the actual strength of
reinforcing bar. Even when values are quoted, in most
papers, they are given as nominal or characteristic” values
supplied by the manufacturer and are not the result of direct
tests. When test results are reported, they are in the range 500
to 550 N/mm? (72 to 80 ksi).13'14 For concrete, strain at the
maximum compressive stress (g,.) is taken as 0.0022,7 which
is a reasonable value for the sort of normal strength concretes
likely to have been used in beams needing repair and in the
beams with which comparisons are made in this paper. (Note
that this is not the strain at failure). The flexural tensile
strength f, is derived from Eq. (18),6 although as with the
tensile strength of all brittle materials, it shows high scatter.
Published data is used for the other material properties when
available; if not, the following values are used in the
comparisons. When the cube strength f, is reported, the
cylinder strength £ of concrete is taken as 80% of f,. If the
characteristic strength f,; of concrete is recorded, then the
mean strength f,,, is derived from Eq. (19)
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Table 1—Identification and material properties for fiber-reinforced polymer-strengthened test specimens?317

Beam | lpaw | lohear b, 4, d | do | | | 4, At Ager £ Eps
specimen mm mm  |lggp, mmi mm mm mm | mm { mm :; mm mm mm mm Nmm? | kN/mm?®
A3.113 4800 1800 4700 140 300 263 | 370 | 1.20 | 2* 96.0 402.0 402 24.0 152
Aql4 2000 700 1700 200 200 163 | 37.0 | 130 | 2* 195.0 308.0 308 31.0 167
AGl 2000 700 1700 200 200 163 | 370 | 130 | 2° 390.0 308.0 308 31.0 167
AlS 1100 400 1040 130 200 165° | 35.0° | 130 | 2 1200 101.0 101 37.0 120
CB4-2s816| 4576 1830 4270 230 380 330 | 295 | 140 | 3 212.8 981.8 127 400 138
CB5-3516| 4576 1830 4270 230 380 330 | 295 | 140 | 3 319.2 981.8 127 40.0 138
G2 l7 2742 914 2742 200 200 152 | 41.0%] 045 | 2° 91.4 259.0 142 54.8 138
G517 2742 914 2742 200 200 152 | 4107 | 045 | 2* 91.4 774.0 142 54.8 138
* Assumed.

Notes: 1 mm = 0.03% in.; 1 N/mm? = 0.145 ksi; and 1 KN/mm? = 145.0 ksi.
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Load cell ,'A 20 "]L}';ck Anchor
[ 1.t
U J |
[T [, ~
3.0 g 2

L] L2
j 0.15
Section A-A
Note: All dimensions in meters ’

Fig. 5—Test specimen and loading method. ! (Note: 1 m =
39.4in.)
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&0 ) , * MN-35-16 Experimental ]
0 0.4 08 1.2
Curvature, k (x10* mm™)
(a) MN-35-13 and MN-35-16 "
=30
20t
g
= 10 ~— MN-55-13 Present model |
B © MN-55-13 Experimental
B -=-MN-75-13 Present model A
& 0 % MN-75-13 Experimental
0 0.3 0.5 0.9

Curvature, x (x10° mm™)
(b) MN-55-13 and MN-75-13 '

Fig. 6—M-x comparison. (Note I kNm = 0.738 fr-kips;

1070 mm™! = 2.54 x 107 in )
=0.62,ff] N/mm? (f,=7.5[f] psi) (18)
fcm =fck +38 N/mm2 (fcm =fck 1160 pSi) (19

- When it is not reported, cover to the shear links is taken as
25 mm (1 in.) and the adhesive thickness as 2 mm (0.08 in.).
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Table 2—Mechanical properties of materials'!

Eccentricity e, , a5
Beam mm Steel p, % J¢ . Nfmm
MN-35-13 350 0.596 310
MN-35-16 350 0.932 30.7
MN-55-13 550 0.596 30.7
MN-75-13 750 0.596 317

Notes: 1 mm = 0.039 in. and 1 N/mm? = 0.145 ksi.

Self-weight of the test specimens is not included in the analysis.
All the other relevant material and geometric properties are
given in Table 1.

Reinforced concrete beams Subjected to combined bending
and axial force—Sakai and Kakuta!l reported M-« relations
of eight RC beam specimens subjected to combined bending
and axial force. The specimens were of the form shown in
Fig. 5, and the properties of four test specimens are described
in Table 2. Figure 6 shows comparisons between the test data
and the present model, which shows good agreement. The
predicted cracking moment M., depends on the assumed
tensile strength of the concrete (f,), which is difficult to
determine precisely even when checking an existing beam
experimentally, but a reasonable assumed value (such as
Eq. (18)) can still be appropriate. Comparisons with their
other tests gave similarly good results. The reported data
relate to the elastic regime of the beam so comparisons of the
post-yield behavior cannot be made. No other model is
available that allows such detailed comparison for beams under
combined bending and axial force; this is the fundamental
justification for the present study.

Present model predictions for FRP-strengthened RC
beams—Some of the reported test data on M-k relations as
well as strain and deflection profiles of FRP-strengthened RC
beam specimens are compared with predictions of the present
model and show good correlation. All the test specimens
reported were tested as simply supported beams under four-
point bending with two equal shear spans and the reported
failure mode was concrete crushing in the compression zone.
The experimental data presented herein has been scaled from
figures shown in the original references.13-17 A large variety of
material and geometric properties are covered, as described in
Table 1.

Figure 7 shows M-« comparisons for Beam A3.1 tested by
Spadea et al.!3 It shows that the model can successfully
predict behavior for all uncracked, partially cracked, and
fully cracked regimes. The predicted M,,, and M, are slightly
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Fig. 9—Midspan top and bottom fiber strains of Beamn Al
(Note: I kN = 0.225 kips.) '

larger than those actually observed, which may be attributed
to the overestimation of the concrete tensile strength or the
steel ‘yield strength. The small variations in the stiffness
predictions may be aitributed a slight overestimation of the
material stiffness. Comparisons with the midspan FRP plate
strains reported by Arduini et al.! are shown in Fig. 8. The
data covers only the preyield regime, which shows good
correlation. Figure 9 shows the comparisons for the reported
top and bottom fiber strain data for Beam A tested by Li et al. 14
Satisfactory agreement can be seen; the model correctly
predicts strain profile across a section, validating both the
present effective stiffness concept and effective neutral axis
expression (Eq. (15)). Comparisons with the FRP plate strain
data at three different span locations of Beam CB4-2S tested
by Alagusundaramoorthy et al.1® are shown in Fig. 10. Good
correlations can be observed in all cases. This shows that, not
only does the model correctly predict the curvatures, but it
also correctly predicts the neutral axes, from which it can be
assumed (hat the strain profiles will be correct.
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Fig. 11—Midspan deflection comparisons. (Note: I kN =
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Deflections are not calculated directly but must be found
by integration of curvatures; compatisons between such
midspan deflection predictions and the relevant test data for
a few beams reported by Alagusundaramoorihy et al.!® and
Ross et al.'’ are shown in Fig. 11. The predictions at lower
loads are smaller than those observed, which implies that the
material stiffness used in the analysis has been slightly over-
estimated, but the comparisons show a satisfactory agreement
at higher loads for a model relating to reinforced concrete.
This satisfaction of deflection estimations confirms the
accuracy of the predicted curvatures.

Confirmation of model

The previous comparisons show that the present model
accurately predicts M-k relations and strain profiles of
strengihened RC beam sections, but at lower applied moments,
the present model is slightly stiffer than the experiments.
Possible errors involved with measuring smaller quantities,
together with the inaccuracies in the material properties used
in the analysis (especially the modulus and the tensile
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strength of concrete that have been calculated using Eq. (8) and
(18), respectively, from the quoted values of the compressive
strength) may be the cause of this discrepancy. Slight
discrepancies are also observed near the failure load, which
may be due to possible cracking in compressive concrete and
onset of FRP plate debonding failures just prior to the ultimate
failure that are not included in the present analysis. These
minor inaccuracies, however, are to be expected in models of
reinforced concrete, and it can be concluded that the present
model predicts M-k relations on loading with sufficient
accuracy that can be used as the basis for strain energy
determinations.

FLEXURAL STRAIN ENERGY STORED
IN STRENGTHENED BEAM

The overall objective of the model is not just to predict the
curvatures, but to accurately calculate the strain energy.
When a beam bends, energy is put into the beam by the
loads, some of which is dissipated in the concrete, either in
flexural-tension cracking or material nonlinearity and some
by yielding of the steel reinforcement, whereas the rest is
stored as strain energy that can be recovered when the beam
is completely unloaded, as shown schematically in Fig. 12.
This recoverable energy is known if the corresponding
unfoading M-« relations are known.

Unloading M-k relations

The unloading M-« relations of a strengthened section can
be determined in the same way as the loading curves, but
with the unloading propetties of the constituents, and for
actions applied along the opposite directions to those upon
loading. It is assumed that all the constituents are linear-
elastic upon unloading, so the corresponding M-« relations
are linear irrespective of the moment from which the
unloading takes place. Thus, the flexural strain energy (SE)
available in a beam segment of unit fength at a given effective
moment M,z .., is shown in Fig. 12 and calculated from

1 .
SE = EMeff-cenKUL (20)

where Mz ., is already known from the loading analysis,
but the corresponding change in curvature upon complete
unloading (k) is unknown.

The values obtained from Eg. (20) are then integrated
along the beam span and added to the strain energy in the
FRP and the axial effects of the concrete. Full details are
given elsewhere, 2
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Change in curvature upon complete unloading

As shown in Fig. 12, only the change in curvature upon
complete unloading (ky;) from M,z ., is required for the
strain energy determination. The value of x;; can be
determined from section analysis for the actions of equal
magnitude but opposite sense to those applied upon loading.
Therefore, in the present model, a strengthened section is
analyzed for an axial force (F,) and moment (M_g.cen) both
acting along the opposite directions to those upon loading.

It is assumed that the steel and concrete are both linearly
elastic, with the extent of cracking as found from the loading
analysis. This matches reasonably with test data,!® which
shows that there is some residual strain when the structure
has been completely unloaded.

This unloading section analysis is applicable with
uncracked and fully cracked sections, for which the tensile
contribution of concrete is exactly known. The RC section is
taken as uncracked for applied moments (M, p-mic) Smaller
than that causing first cracking (M,,.,.;q), an(f the section is
fully cracked when M, app-mid 18 greater than that causing first
yielding of tension steel (M,_,;;). Therefore, the change in
curvature upon complete unloading at applied moments smaller
than M,.,.,,,;q and greater than M, ;s can be found. The situation
is more complex when the section is partially cracked.

Change in curvature of partially cracked sections

The present loading model interpolates the properties of a
partially cracked section (that is, when M_, ... < M, p-mid <
M, ;) between those of the corresponding uncracﬁed and
fuﬁy cracked sections. This interpolation is based on the
present-extent-of-cracking concept (Eq. (6)) and has proven
to be accurate. A similar concept will be used for the
unloading analysis of partially cracked sections. There is
little experimental evidence, however, to confirm whether
expressions similar to those for the effective equivalent
clastic stiffness (Eq. (11)) and the effective centroid (Eq. (13))
used in the present loading analysis are applicable upon
unloading. Morais'® reported experimental findings of
unloading deflection data for concrete beams internally
reinforced with either steel or aramid fiber-reinforced
polymer rods. The focus was on the unloading behavior from
the vicinity of the ultimate failure; approximately linear
unloading paths were experienced. These data, however, are
insufficient to study the unloading behavior over the entire
load range. To avoid having to define effective values for the
stiffness and the centroidal location, a slightly modified form
of the interpolation used in the loading analysis is employed
fo determine the change in curvature upon complete
unloading of a partially cracked section.

Curvature upon loading and the corresponding change in
curvature upon complete unloading of the section at M,.,,.;;
and M,,_,.; can be calculated from the relevant uncracked
and fully cracked section analysis, respectively. The residual
curvatures are then determined (Ak,. ., from the state at first
cracking and Ax,., from the first yielding state}. The corre-
sponding residual curvature of a partially cracked section
{Ax,) is then interpolated between these values by

Ak, = KpAK, o + (1 - KDAK,.,, (21)

where the interpolation coefficient is the extent-of-cracking
parameter that is already known from the loading analysis
(K}, in Eq. (6)). Because the curvature upon loading (xp)is

ACI Structural Journal/January-February 2009



—_ . . . r
% 0l
220 L ]
g o ]
g} .
8 — Loading

o] -~~ Unloading
m 0 X L

2.0
Curvature K (x10° mm")

Fig. 13—Loading and unloadmg curvarures. (Note I kNm =
0.738 f-kips; and 107 m! = 2.54 x 107% in.7!)

known (x in Eq. (12)), the unloading curvature is then
calculated from

Kyr =Kp— l&l(r (:ZQJ

The present model can thus be used to predict both the
loading and unloading M-k relations of FRP strengthened
RC beams. A typical result is shown in Fig. 13.

Complex stress distributions in vicinity
of neutral axis

At any given applied moment, the section’s neutral axes
depths upon Ioading and complete unloading (x;, and xy;,
respectively) are not identical. Depending on the relative
locations of x;, and xg;y,, some concrete ‘that cracked in tension
upon Ioading may now be subjected fo compressive stresses
upon unloading or vice-versa. In both cases, the actual
unloading stress distributions over these concrete zones would
differ from those used in the present analysis. These complex
stress zohes are located in the vicinity of the neutral axis, so
the stresses will be small and will make little contribution to
the strain energy of the beam. Thus, no attempt has been made
to resolve this issue as it is thought to be a minor error by
comparison with the natural variability of concrete.

CONCLUSIONS

A moment-curvature model has been presented for the
strain energy determinations of RC beams with external FRP
plates. The model is valid for the full range of applied
moments of the strengthened beam and includes nonlinear
stress-strain relationships of constituents and also the tension
stiffening effects of cracked concrete.

It has been shown how the model can be extended.into the
inelastic regime and also how axial forces are taken into
account. Comparisons with the available test data have
demonstrated that the present model is accurate.

The odel has then been used to calculate the stored strain
energy on the assumption that the beam would unload
elastically from any loaded state. Tension stiffening effects
of cracked concrete are included in the analysis both on
loading and unloading.

This model can now be applied to the study of plate
debonding. The results of that study are the subject of a separate
publicatio’n.2

The model should also be valid for combined bending and
axial force in general and so should be applicable to
prestressed concrete, but it has not been calibrated for the
much higher levels of axial force present in such bears,
which are rarely cracked to the extent envisaged herein.
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NOTATION

" cross sectional area of FRP plate

area of compression reinforcement
area of tension steel reinforcement
width of RC section

effective depth to tension steel
effective depth to compression steel
Young's modulus of FRP plate
compressive strength of concrete
height of RC section

length of FRP plate

shear span of beam specimen
effective span of beam specimen
thickness of adhesive layer
thickness of FRP plate
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