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Uniaxial Stress-Strain Relationship of
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by Hau Yan Leung and Chris J. Burgoyne

A theoretical model is developed to describe the uniaxial stress-
strain relationship of spirally confined concrete. As well as using
one single spiral, concrete confined by two interlocking spirals is
also studied, using a finite element model to determine the
magnification factors caused by multiple confinement. Predictions
Jfor the behavior of compression specimens with various types of
reinforcement are given. Methods of determining the behavior of
concrete in the compression zone of beams in flexure, which are
subjected to strains that vary through the depth, are also
presented. Experimental verification is not presented herein but
has been carried out and is referred to in other work.
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INTRODUCTION

The advent of fiber-reinforced polymer (FRP) as rein-
forcement or as prestressing tendons for concrete has many
advantages because it is more durable than steel. However, it
shows no ductility before failure (although its large strain
capacity normally means it is are unlikely to snap), which
means that beams will normally be designed to be over-
reinforced. Thus, instead of failure being initiated by
yielding of the steel, with the concrete failing later, it will be
caused by crushing of the concrete. Up until now, it has been
enough to say that the concrete has sufficient strength,
without requiring an extensive understanding of the actual
failure process; however, if the concrete is going to fail first,
more detail is required.

It is also desirable for the concrete to have greater
ductility and, to this end, it has been suggested! that spirals
of reinforcement should be included in the compression zone
(with their axes aligned parallel to the compressive force) to
provide additional confinement; if FRPs are being used as
the tension reinforcement, it is logical to use them also for
the hoop reinforcement. Although rectangular links can be
made from steel, they are not ideal for FRP because of
strength loss in the corners. In addition, they are less efficient
at generating confining stress than circular links.

The applications envisioned are in beams, where it makes
both structural and practical sense for them to have rectangular
compression flanges. Thus, to maximize the area that is to be
confined, it is possible to envision a rectangular compression
flange that contains a series of overlapping spirals. There
will thus be three types of concrete to be considered—the
unconfined concrete in the cover region, the singly confined
concrete inside one spiral, and doubly confined concrete in
the regions where two spirals overlap (Fig. 1). This paper
provides an analytical model for both types of confined
concrete; space does not permit the inclusion herein of the
tests that have demonstrated the validity of this approach, but
they have been carried out and are reported elsewhere.
Papers in preparation will report the extension of this work
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to the determination of the moment-curvature relationship
for beams and tests on a full-scale beam with confined
compression zone and external aramid prestressing tendons.

Many tests>? have shown that unconfined plain concrete,
in particular high-strength concrete, exhibits a brittle failure
mode; the failure may be explosive and marks the termination
of the stress-strain curve and loss of load-carrying capacity
shortly after the peak load. Under deformation control, the
stress-strain curve normally includes a monotonically
increasing branch up to a peak value, followed by a
descending part that gradually flattens to a constant value.
The initial portion of the ascending branch is linearly elastic,
but at about 70% of the ultimate strength, the presence of
microcracks leads to nonlinear behavior, with a reduction in
tangent modulus. In the subsequent descending branch, the
concrete is severely damaged with prominent cracks. There
is a small lateral expansion during the ascending phase,
associated with normal Poisson’s ratio effects and an increase
in volume caused by the microcracks, but the lateral expansion
increases dramatically after the peak as the cracks expand.

If there exists a lateral pressure that resists this sideway
expansion, however, the core concrete will be in a state of
multi-axial compression. It is accepted that when the
concrete is experiencing multi-axial compression, both the
deformation capacity and strength are improved.!%17 There
are two means of confinement to provide the lateral pressure:
active and passive. Both aim to restrict the core concrete
from expansion, but the mechanism used to induce the
confining pressure is different.

In active confinement, the lateral pressure is applied by an
external force whose value is known or can even be
controlled in response to the applied load. Kotsovos has
presented the results of a study of concrete loaded in this
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Fig. 2—Schematic model for passive fiber-reinforced

polymer confinement.

way, which can be used to determine the relevant load-
extension curves. It does not, however, represent the behavior of
concrete where the confining stress comes from reinforcement
inside, or on the surface of, the concrete.

Passive confinement arises when the lateral expansion of
the concrete is resisted by confining reinforcement; the
confining pressure is highly dependant on the relationship
between axially applied stress and the induced lateral strain.
The concrete bears the axial load because of the stress state

induced by the lateral reinforcement. In the ascending part of

the stress-strain curve, the confining effect is small because
the lateral expansion is insignificant, at least until high stress
levels, but the descending portion of the stress-strain
response is dominated by the behavior of the confining
reinforcement that resists the lateral expansion, establishing
a multi-axial state of stress in the core concrete.

RESEARCH SIGNIFICANCE

The paper presents an analytical method of determining
the stress-strain curve of concrete that is confined by spiral
reinforcement that can be either linearly elastic (aramid) or
elasto-plastic (steel). Because stress-strain curves can be
determined for concrete that is unconfined, confined by a
single spiral, or confined by overlapping spirals, and can also
be applied to concrete that'is not loaded axially, a wide range
of cases can be studied. Because the equations presented
herein are based on an extensive set of triaxial tests, and are
verified in a set of tests reported elsewhere, they can be
applied in many different circumstances.

ACTIVELY CONFINED CONCRETE
The analysis presented herein is based on Kotsovos’ study
of concrete subjected to active hydraulic pressure.6 It was
recognized that most concrete structural members are
subjected to a multi-axial stress state. Kotsovos and

446

Newman made a mathematical prediction of the stress-strain
response of concrete in terms of the hydrostatic stress o,

" and deviatoric stress T, invariants.1%1° They performed an

extensive experimental study to obtain the stress-strain profile
of concrete cylinders subjected to different hydraulic pressures
and proposed empirical equations. Crack extension was
identified as the main cause of fracture; deviatoric stress tends
to give a unidirectional fracture in the direction of maximum
compressive stress, while hydrostatic stress gives random crack

- propagation that reduces the rate of fracture caused by the

deviatoric stress. Because any state of stress can be decom-
posed into hydrostatic and deviatoric stresses, the behavior of
concrete under a generalized stress condition can be defined
by using these components. The work was later extended® by
introducing the concept of an internal stress c;; that allows a
deviatoric stress T, to generate a hydrostatic strain €g).

By using Kotsovos’ model, the complete stress-strain
profile for actively confined concrete subjected to any
combination of constant lateral pressures can be obtained.
The model assumes that the axial stress is the major principal
stress o1, and the lateral confining stresses o, and o3 are
known (or can be assumed). The model then gives the variation
of the corresponding strains as the axial load changes.

A key feature in Kotsovos’ model is the point he identifies
as OUFP: the Onset of Unstable Fracture Process. For an
actively confined sample, this marks the peak on the stress-
strain curve. Before this point is reached, the axial strain on
the concrete increases with axial load; after this point, the
strain continues to increase but at decreasing load. For the
passively confined concrete considered in the following, this
point still exists but it does not necessarily mark the peak load.

For completeness, the detailed equations are given in the
Appendix. The procedures can be summarized as follows:

1. The values of o, and o3 are fixed;

2. The value of o; that corresponds to OUFP is then
calculated; ‘

3. The ascending portions of the axial stress-axial strain
and axial stress-lateral strain curves are calculated; and

4. For the post-OUFP state, the variation of the stress state
8o; and strain state d¢; (i = 1, 2, 3) can then be found.

This formulation is applicable to concrete subjected to
constant (active) confining pressure. When concrete is

- surrounded by reinforcement, however, it is subjected to a

passive confining pressure; the established model is not
adequate because the confining pressures are not known.

ANALYTICAL MODELING OF CONCRETE
WITH SINGLE SPIRAL

When spiral reinforcement is used to provide lateral
pressure to the concrete, the confining pressure varies
throughout the course of loading. With a linear-elastic
confining material, like aramid, the. confining pressure
continues to increase until the spiral breaks, but with an
elasto-plastic material, like steel, the pressure plateaus when
the steel yields. The linear elastic case will be considered
first and then modified to allow for steel plasticity.

Consider a circular concrete cylinder reinforced with a
single spiral whose properties are known. Symmetry requires
that oy = 63 = oy; final failure is expected when the spiral
snaps, which is not usually at the peak load. The analysis
can be performed in the following steps, which are shown
diagrammatically in Fig. 2:

1. Compatibility between the transverse concrete strain &,
and the strain of the confining spiral reinforcement &g, is
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Fig. 3—Schematic model for passive steel confinement.

assumed, so &, = gg,: The breakmg strain of the spiral £,
then defines the ultlmate lateral strain &5.

2. The relationship between the tensile stress in the spiral,
Oy and the spiral strain £g, is known

O, = Exp sp = E

0<g,<¢e, 6))
where E, denotes the elastic modulus of spiral.

3. For any given ¢,, the equivalent active confining stress
o}, (= 0, = o3) is then calculated by

o, = st { -d—)E )

where A - is the cross section area of spiral, d,. is the diameter
of confined concrete, and s is the spiral spacing; the term
(1 - s/d,) reduces the confining effect as the spiral pitch
increases and implicitly assumes that s < d,..

4. The cy-g5 and ©;-g| curves are generated for the
calculated o; using Kotsovos’ active model, as described
previously. The axial stress oy that generates the assumed
value of &, is then determined from the 6;-g, curve.

5. The corresponding value of g; can then be found from
the G;-g; curve. This represents one point on the passive
stress-strain response of the specimen.

6. By repeating Procedures (2) to (5) for a range of values

of ¢, from 0 to eX, the complete oy-g; profile for the
Sp Sp p. 1€ P

passively confined concrete cylinder can then be established.

The procedure is slightly modified when steel reinforce-
ment is used, as illustrated in F1g 3. The confining stress
reaches a limiting value (at o;) when the steel reaches its
yield point, but it continues to sustain a load as the steel
yields with the confining stress remaining effectively
constant. The stress-strain curve of the steel-confined
concrete then follows the active ¢;-g; curve for cz .

It should be noted that OUFP does not play a particularly
important role in the behavior of passively confined
concrete. The confined concrete can be identified as being
before or after OUFP, and the slope of the resulting stress-
strain curve changes as this point is passed, but it does not
necessarily indicate the peak load that the concrete can
sustain. The confining pressure will continue to increase
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Fig. 5—Effect of varying concrete strength (aramid spirals,
spacing = 20 mm).

beyond OUFP, usually by a significant amount, and this may
be sufficient to allow the concrete to carry further axial load.
The ultimate failure, which will probably not occur at the
peak load, occurs when the spiral snaps. At this point, the
confining action suddenly disappears and the concrete can be
expected to disintegrate.

Results for actively confined concrete

All the results presented in this section are for a c1rcular
cylinder confined within a spiral of aramid reinforcement.” The
dlameter of the spiral is 90 mm, with a cross-sectional area of
5.3 mm?. The effective strength of the spiral is 456 MPa at a
strain of 1.53%. The uniaxial cyhnder strength of the
concrete is varied, as is the spiral spacing. ‘

The effect of varying the spiral pitch is shown in Fig. 4 for
concrete with a strength of 40 MPa. Reducing the spiral pitch
increases the strain capacity of the concrete; for s less than
approximately 15 mm, the concrete gains strength and a
significant enhancement of capacity is predicted for spacings
of 5 mm. Also shown in Fig. 4 is the 6;-g; response, for
unconfined concrete, as predicted by Carreira and Chu.? 1t
can be seen that the confining reinforcement has very little
effect until internal fracture starts to occur in the concrete
with a corresponding increase in specimen volume.

The effect of varying concrete strength is shown in Fig. 5.
The spiral spacing is held constant at 20 mm, but the
concrete strength is varied from 20 to 80 MPa. (It should be
noted here that Kotsovos’ equations are only calibrated up to
65 MPa). As expected, the stiffness increases as the concrete
gets stronger, but the beneficial effects of the confinement
are reduced; stiffer concrete produces less lateral expansion,
so the confining stress is reduced in real terms, and even
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Fig. 7—Concrete section with two interlocking spirals.

more so as a proportion of the concrete strength. This shows
that weaker concrete can benefit from the effects of
confinement, but for stronger concrete the effects are much
less marked. If the objective is to maximize the energy
dissipation by increasing the area under the stress-strain curve,
then the use of a moderate concrete strengih (=40 MPa) is
preferable to the use of very high-strength concrete. The
numerical results also showed that for high-strength concrete
(>60 MPa), the spirals did not reach their ultimate strength,
with the concrete strength reducing to negligible values
before the spiral snapped.

The effect of using steel for confinement is shown in
Fig. 6 for concrete with a strength of 40 MPa and a spiral
pitch of 20 mm. Results are shown for steel with yield

- strengths of 250 and 500 MPa (Young’s modulus 200 GPa

and cross-sectional area 5.3 mmz). The additional stiffness
of the steel increases the passive strength of the concrete
above that of the aramid spirals, but when the steel yields,
no further enhancement of strength occurs and the applied
stress drops rapidly.

CONCRETE WITH TWO INTERLOCKING SPIRALS

The analysis given previously applies to axisymmetric
cylinders. For sections with overlapping spirals, the confining
stresses 6, and o3 cannot be expressed as simple functions
of the spiral strain and will also not be equal. Thus, the
degree of confinement can be ¢xpected to vary and a method
is required that allows the 1-g curve to be obtained for the
more realistic situation.

One possibility is to perform a global analysis of a beam
using a finite element analysis that incorporates Kotsovos’
model and also includes the spirals themselves as discrete
elements. In general applications, however, it will not be
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sensible to perform a finite element analysis each time;
instead, a method is sought that allows the effects of the
interlock to be taken into account more easily.

Consider the case of concrete reinforced with two inter-
locking spirals. The concrete inside the overlapping area
experiences a higher confining stress than that in the outer
areas because it is under stress induced by both spirals
simultaneously. If the uniform confining stress induced by a
single spiral is oy, then the concrete inside the interlocking
area must be subjected to a stress between o7 and 26;. The
concrete in the outer area might also be affected by the
interlocking action but the variation can be expected to be
significantly smaller.

If two interlocking spirals are placed inside a rectangular
column, the cross section can be divided into three zones: a
doubly confined area, a singly confined area, and cover
concrete (Fig. 7). Inside the doubly confined area of
concrete, the spacing of the spiral can be idealized as being
half that of the singly confined area, assuming the spirals
have equal pitch. The lateral pressure on the inner boundary
of the doubly confined area is larger than that on the outer
boundary of the singly confined area. Tanaka and Park! used
the concept of the volumetric ratio of spirals and pointed out
that the degree of confinement for the compression zone in
the extremities of the core section confined by interlocking
spirals may be less than that in the rest of the interlocking .
area. This is due to the uneven lateral pressure distribution
that is generated. To take this into consideration, global x-y
axes are defined and the coordinate system is applied to the

. layout of interlocking spirals (Fig. 7). It is proposed that

magnifying factors & should be used to allow for the variation
in confining stress in the two areas. Separate factors will be
used for singly confined and doubly confined regions, with
different factors for the x- and y-directions, giving a total of
four factors.

For the singly confined area,

24 s
oy = d—czﬂ@ "Z) o kix = o kix 3)
24 s
oy = 7{;2(1 —(7) o,kry = Orky @)

For the doubly confined area,

dc _ 2A d d

oy = d—czi-’(l —i) okix = Orkiy (5)
de _ 24 5 d d

o = d—c;l-’@ _Zz') Sukly = oikly  ©

The values of k;x and &7y largely depend on the ratio of
the center-to-center distance c;, of the two interlocking
spirals to the diameter of spiral dﬁ;. Using the same pitch for
the two spirals, the variations of the correction factor in two
orthogonal directions in both the doubly and singly confined
areas can be determined by means of a finite element analysis.

The finite element analysis assumes that the concrete is
linearly elastic and that each spiral induces a uniform inward
pressure, which is equivalent to stating that stress in the
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spirals is constant around the complete loop. The principal
stresses induced at each node in the two confined zones are
determined, but because the orientation of the principal
directions vary over the section, the stresses in two fixed
orthogonal directions are calculated. These are then averaged
over the two regions to give the four values for the correction
factor. These correction factors are then used to vary the
lateral stresses applied in the actively confined analysis.

A notional lateral pressure of 100 units was assumed. The
nodes along the axes of symmetry, and those along the
spirals themselves, were specified and an automatic mesh
generator then produced the rest of the nodes inside the
spirals. Triangular elements were adopted throughout; typically
about 1000 elements were used.

The nodes along the axes of symmetry were restrained by
* roller support conditions to maintain symmetry (Fig. 8). A
plane-strain linear-elastic material was assumed because the
object of the exercise was to determine the magnitudes of the
principal stresses everywhere.

In forming the best-fit equation, cg dsp is used as the
parameter indicating the degree of overlapping of the spirals.
A third-order least-squares fitting is used, and the magnification
factors for the singly and doubly confined portions of
concrete in the two global directions are determined separately.

For the singly confined areas,

- . ¢ c.\2 I 3
K = 13721 1.2103(%) + 1.5177(‘1&) 0.6835(%) %)
2 3
K, = 13059 - 0.8711(%13) + 0.8657(%2) - 0.3017(‘%2) (8)

(34 sp sp

whereés for the doubly-confined areas,

Kl - 1.9999—0.8869(‘%2) + 1.5434(‘%2)2_ 1.3374(2—52)3 )
» sp sp

K5 = 19913 - 0.4046( 22) + 0.2178(

sp

%)2+0.1615(;—Zi)3 (10)

S

These expressions are plotted in Fig. 9 for 0 < ¢y,/dg, < 1.
When cg,/dy, = 0, a complete overlap is formed and there is
no singly confined area; k,% and ky‘lc are both 2, as would be
expected. When ¢,,/d,, = |, the two spirals touch each other
and there is no doubly confined region; &, and ky“ are both

1, again as would be expected.

ACI Materials Journal/November-December 2005

All doubly All singly
confined confined
2.0 A

A B A

R SR k,ae
e kldo

R U TS T

—&— Kk~

k factors

I I I I
0 2 4 .6 .8 1.0

Cup/ Ay

Fig. 9—Variation of magnification factors with degree of
overlap of spirals.

s«

444

3Q)

2q)
——————— + Cp/dy=0.75
s, = 20 mm

/s N, T No spiral

Axial stress o,

T T T 1
o] .002 .004 .006 .008 .010
Axial Strain e, :

Fig. 10—Effect of degree of overlap on behavior of doubly
confined concrete. )

The analysis then proceeds as before, with Eq. (3) to (6)
replacing Eq. (2), using the appropriate k factors obtained from
Eq. (7) to (10). These specify revised values for the lateral
stresses G, and 63, which are then used in the active analysis.

It must be stressed that, in the analysis given herein, it is
assumed that the strain in the spiral takes a constant average
value, which is given by &g, = &,. This allows the assumption
that the inward pressure from the spiral is uniform, and hence
allows the use of the k factors determined from the finite
element analysis. If this assumption is not made, it would be
necessary to perform detailed finite element analyses to see
how the spiral strain varied around the circle. -

Figure 10 shows the passive confinement responses for a
concrete with a strength of 40 MPa and aramid spirals with a
pitch of 20 mm. The responses for the doubly confined
concrete with four different cy,/dg, values are shown. There
is a small variation with this fgctor, but it is not significant.
Also shown are the responses for singly reinforced concrete
with spacings of 20 and 10 mm. The response for s, = 10 mm
is not the same as that for cg,/d, = 0.0 because otp the effect
of the (1 — s/d.) term; doubling tﬁe area of the spiral does not
produce exactly the same effect as halving the spacing due to
the reduced confinement between the spirals.

When determining the overall load-extension response of

* an element containing all three types of concrete, the stress-
-strain curves for each element should be multiplied by the

appropriate cross-sectional area. Due to the differences in
the stress state of the singly confined area and doubly
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confined areas, the end-points of these stress-strain curves
are different. It is postulated that the section reaches its
failure state when the first spiral snapping occurs, at which
point the confinement ceases to be effective and the concrete
becomes unconfined. Therefore, the smaller strain value of
the two end-points gives the failure strain of the concrete
with interlocked spirals g, (Fig. 11).

ECCENTRIC ANALYSIS FOR CONCRETE
WITH INTERLOCKING SPIRALS

The analysis thus far has assumed that the external force is
applied axially so that the resulting force is aligned with the
center of the specimen and the axial strain is uniform across
the section. If this analysis is to be applied to the compression
zones of beams, however, the strain can be expected to vary
across the section.

If it is assumed that the stress-strain curves for unconfined,
singly confined, and doubly confined concrete, as determined
previously, are still valid, then it is possible to use these to
determine the force/moment versus axial strain/curvature
relationships as required. ’

For example, to determine the ultimate value of the axial
force applied at a fixed eccentricity e, the position of the
neutral axis of the section can be varied until the resulting
force and moment match the required eccentricity. Failure is
assumed to occur when the confined concrete reaches its
ultimate strain &%,. It is assumed that when concrete is
subjected to a tensile strain, it cracks and carries no load. The
procedure can be summarized as follows:

1. Determine the eccentricity e from the applied force and
moment;

2. Assume a neutral axis depth x;

3. The concrete section is then divided into small slices;
each may contain three kinds of elements. By assuming that
the ultimate strain of the confined concrete, €2, , is reached
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at the most confined edge, the strain at the middle of each
element can be calculated;
4. The appropriate stress-strain model for both confined and

- unconfined areas is then used, from which the corresponding

stress values are determined (Fig. 12);

5. The axial force N, moment M, and corresponding
eccentricity are obtained by summing the effects of the
elemental stress and the associated area;

6. If e does not equal the chosen eccentricity, the neutral
axis depth is adjusted and the process repeated until a
satisfactory value is obtained; and

7. The curvature « and axial strain g, are then calculated.

It should be noted that this analysis requires that the strain
in the spiral varies across the depth of the compression zone
and takes the value it would have had if a uniaxial compressive
strain of the appropriate value were applied to the section.
This is not necessarily the case but is a reasonable assumption.

This procedure can be adapted easily to find other relation-
ships; for example, to determine the moment-curvature
relationship for a given value of e, the extreme fiber strain can
be varied from zero up to the failure value assumed previously.

CONCLUSIONS ,

It has been shown that Kotsovos’ model for triaxially
confined concrete can be used to determine the behavior of
concrete contained within passive spirals of reinforcement.
This has been applied to cylinders reinforced with spirals of
aramid fibers and the effects of varying both the spiral pitch
and the concrete strength have been studied. High-strength
concrete does not benefit significantly from -confinement
because it is stiffer and does not generate sufficient lateral
expansion to mobilize the confining stress. The best effect of
confinement (in terms of the energy dissipated) is obtained
for concretes of moderate strength.

The differences associated with the use of steel reinforcement
have been studied. Steel is more effective at providing
confinement up to yield, due to the higher stiffness, but once
the steel yields, the strength drops off rapidly. '

It has been shown that the area contained within the over-
lapping region of two spirals can be studied by the use of a
finite element analysis. This allows the effect of the varying

geometry on the confining stresses to be determined, which .

can then be used in the passive model to obtain different
stress-strain curves for the singly and doubly confined regions.
Finally, it has been shown how the model can be used to
determine the behavior of confined concrete in the compression
zone of beams where the strain varies through the depth.
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NOTATION

Ay = cross-sectional area of spiral

d, = diameter of spiral

Esp = Young’s modulus of spiral

e = eccentricity of compressive force

kf§ and

kS = magnification factors in x- and y-directions for singly confined
concrete

kf% and

k,‘fﬁ =  magnification factors in x- and y-directions for doubly confined
concrete

M = moment on compression zone

N = compression force

s =  pitch (spacing) of spiral

x = neutral axis depth
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ds; = variation in principal strain (i =1, 2, 3)

8c; = variation in principal stress (i =1, 2, 3)

£ = axial strain in concrete cylinder

g = lateral strain on concrete cylinder

€, = axial strain on concrete beam

€4 = maximum lateral strain in concrete

Egp = strain in spiral

Egp = breaking strain of spiral -

o(d) = hydrostatic strain caused by internal stress
= curvature

G1, Op,

andoy = principal stresses

Giq = internal stress

oy, = lateral confining stress

or* = limiting confining stress when steel spirals used

o, =  hydrostatic stress

Sy =  stress in spiral

T, = deviatoric stress

REFERENCES

1. Tanaka, H., and Park, R., “Seismic Design and Behavior of Reinforced
Concrete Columns with Interlocking Spirals,” ACI Structural Journal,
V. 90, No. 2, Mar.-Apr. 1993, pp. 192-203.

2. Leung, H. Y., “Aramid Fibre Spirals to Confine Concrete in Compression,”
PhD thesis, University of Cambridge, UK, 2000, 200 pp.

3. Choi, S.; Thienel, K. C.; and Shah, S. P,, “Strain Softening of Concrete in
Compression under Different End Constraints,” Magazine of Concrete
Research, V. 48, No. 175, 1996, pp. 103-115. : : :

4. Hsu, L. S., and Hsn, C. T. T,, “Complete Stress-Strain Behaviour:of
High-Strength Concrete under Compression,” Magazine of Concrete
Research, V. 46, No. 169, 1994, pp. 301-312.

5. Imran, I, and Pantazopoulou, S. J., “Experimental Study of Plain
Concrete under Triaxial Stress,” ACI Materials Journal, V. 93, No. 6, Nov.-
Dec. 1996, pp. 589-601.

6. Kotsovos, M. D., and Pavlovic, M. N., Structural Concrete, Thomas
Telford, London, 1995, 550 pp.

7. Lahlou K.; Aitcin, P. C.; and Chaallal, O., “Behaviour of High-
Strength Concrete under Confined Stresses,” Cement & Concrete Composites,
V. 14, 1992, pp. 185-193.

8. Mansur, M. A.; Wee, T. H.; and Chin, M. S., “Derivation of the
Complete Stress-Strain Curves for Concrete in Compression,” Magazine of
Concrete Research, V. 47, No. 173, 1995, pp. 285-290.

9. Morales, S. M.; Nilson, A. H.; and Slate, F. O., “Spirally-Reinforced
High-Strength Concrete Columns,” Report No. 82-10, Cornell University,
Ithaca, N.Y., 1982, 255 pp.

10. Kotsovos, M. D., and Newman, J. B., “Behavior of Concrete under
Multiaxial Stress,” ACI JOURNAL, Proceedmgs V. 74 No. 9, Sept. 1977,

pp- 443-446.

11. Kotsovos M. D., “Consideration of Triaxial Stress Conditions in
Design: A Necessity,” ACI Structural Journal V. 84, No. 3, May-June
1987, pp. 266-273.

12. Kotsovos, M. D., and Pavlovic, M. N., Ultimate Limit-State Design of
Concrete Structures: A New Approach, Thomas Telford, London, 1999, 208 pp.

13. Mander, J. B.; Priestley, M. J. N.; and Park, R., “Theoretical Stress-
Strain Behavior of Confined Concrete,” Journal of Structural Engineering,
ASCE, V. 114, No. 8, 1988, pp. 1804-1826.

14. Mander, J. B.; Priestley, M. J. N.; and Park, R., “Observed Stress-
Strain Behavior of Confined Concrete,” Journal of Structural Engineering,
ASCE, V. 114, No. 8, 1988, pp. 1827-1849.

15. Mander, J. B.; Priestley, M. J. N.; and Park, R., closure of “Observed
Stress-Strain Behavior of Confined Concrete,” Journal of Structural
Engineering, ASCE, V. 117, No. 2, 1991, pp. 628-629.

16. Richart, F. E.; Brandtzaeg, A.; and Brown, R.'L., “A Study of the
Failure of Concrete under Combined Compressive Stresses,” University of
Illinois Engineering Experiment Station Bulletin No. 185, 1928.

17. Saadatmanesh, H.; Ehsani, M. R.; and Li, M. W., “Strength and
Ductility of Concrete Columns Externally Reinforced with Fiber Composite
Straps,” ACI Structural Journal, V. 91, No. 4, July-Aug. 1994, pp. 434-447.

18. Kotsovos, M. D., and Newman, J. B., “A Mathematical Description
of the Deformationnl Behaviour of Concrete under Complex Loading,”
Magazine of Concrete Research, V. 31, No. 107, 1979, pp. 77-90.

19. Kotsovos, M. 1., und Newman, J. B., “Mathematical Description of
Deformational Behavior of Concrete under Generalized Stress beyond
Ultimate Strength,” AC1 JOURNAL, Proceedings V. 77, No. 5, Sept.-Oct.
1980, pp. 340-346.

20. Carreira, D. J., and Chu, K.-H., “Stress-Strain Relationship for Plain
Concrete in Compression,” ACI JOURNAL, Proceedings V. 82, No. 6, Nov.-
Dec. 1985, pp. 797-8(M,

ACI Materials Journal/November-December 2005

APPENDIX—KOTSOVOS’ MODEL
FOR ACTIVE CONFINEMENT

This appendix simply lists the equations used in the active
analysis. Full details and, explanations are to be found in
Kotsovos’ papers. 6,19 The numerical values have been obtained
by curve-fitting to experimental results obtained from triaxial
tests. All equations assume that stresses and elastic moduli
are expressed in MPa.

The model works in terms of hydrostatic stress 6, and
deviatoric stress T, invariants defined by

c:M:i (AD)

o 3 A/g

T =3 (o, —62) + (0, — 0'3) + (03— csl)2 = é (A2)
aﬁd
1
9= —(o;4+0,-2 (A3)
cos rJS(GI a,—203;)

The uniaxial strength of the concrete is ;. .

Onset of unstable fracture process

The peak of the stress-strain curve occurs at a point that
Kotsovos identified as OUFP—the Onset of Unstable Fracture
Process. This occurs when the applied stress-invariants o,
and T, satisfy

2 2
A 21,.(t,,—1,,)CO08 %
0 4(1:‘2,0 - 136)00328 + (T, + 21:06)2
(A4)
2 2 2 2
0c(2Toe— tac)J4(toc— T,.)c0s 8+ 51, - 41,7,
4(1‘2,C - rie)coszs + (T, + Zrae)2
where
T, u 0.724
—u = 0. 944( + 0. 05) (A5)
GC O-C
and
1, u 0.857
—u = 0. 633(— +0. OS)
a, o,

Ascending curve
The initial values of the bulk and shear moduli are given by

K, = 11,000+ 32(c%)’ (A6)

and

G, = 9224 + 136" + 3296 x 105(c)" "
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When % < 31.7 MPa then

A, =0.
¢ = 0516 . M, = —F (A13)
C, = 3.573 ol (G (jmk
. : K
*dy = 2.12+0.0183 x " (AT) o
m, = —2.415
nk = 1.0 o’id To n
. —4 = My -2
When o, > 31.7 MPa o, c
- (o, +0,\ 3v, Al4
4o 0.516 e=( oG i) AR A
k= u 2 s 5
1+0.0027(c%-31.7) - (GZMM) N
c - 3.573 "\ 26,/ B
L u 1.414
1+0.0134(c%~31.7) (A8) . _ .
do =27 This allows the construction of the ascending c-g; and
k= G1-€, curves up to OUFP.
my = ~3.531 + 0.0352c, o
. Descending curve after OUFP
g = 0.3124 + 0.02170 For 6% <31.7 1
In all cases . . . P1 = 3.6167
| . L 6 §=107 (A15)
b,=20+181%x10"(c,) , T = 0276
4.0 ’
k= (A9) -
1+1.087(c" - 15.0)% For o4 >31.7
I = 0.222 +0.010865" — 0.000122(c")"
P, = 3.61u67 _
When o,/c% < 2 1+0.0382(c,-31.7)
X S= 1.(3,7 1.589 (Al6)
i __1__;__1 (A10) 1+0.0186(c" - 31.7)
Koy +Ak(°_ﬂ ) e 0276
o, 1+0.0230(c" - 31.7)"**
When 6,/o; > 2 . - In all cases
K, _ 1 ‘
o - o AID 0, = 0.0546 — 0.01746" + 0.0003(c")’
1425 A —2 by~ 1)Ak[—3 . 2
o R, = 6.3822 - 0.19536" + 0.0018(c*)
P, =—19.992 + 0.4804c" - 0.0032(c*)>  (A17)
In all cases . w2
0, = 20.897 - 0.58065" + 0.0043(c%)
G _ —1 | | R, = 6.1928 - 0.1363¢" + 0.001 (c")’
=
o1+ C,{EJ
y A1) F=—0 (A18)
2K, G, - 140, %"
§ 3Ks + Gs 1 Gu
_3K,-2G,
: 6I<s + 2Gs . For 0'0/0'1:. <0.8
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For 6,/o¢ > 0.8

0.25(0—9 -02
P, o

+

R2
1+ Q2 x 0.8 (g;ﬂ +02

F2=
(s}

For o,/c% < 28/3T.

For o,/ > 28/3T

3
x, = 25

21T

(A19)

(A20)

(A21)

(A22)
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Inall cases

flz(%)o.z
Ao (-0)() a2

f3 =2fi-fa

8¢, = (F, +X,)8%,.f, - (A24)

ry =Ff;

- (A25)
ry=Fyf;

581 -
147y +7r3 (A26)

882 = r21581

883 = r318£1

These additional strains are added to the strain state at
OUFP. Note that these strains are in mm/m and therefore
have to be divided by 1000 to give true strain.
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