Eur. J. Mech., A/Solids, 15, n® 2, 243-266, 1996

Monte-Carlo simulations of the time
dependent failure of bundles of parallel fibres

G. AMANIAMPONG * and C. J. BURGOYNE #*#*

ABsTRACT. — Monte-Carlo simulations have been used successfully to predict the lifetimes and the variability
in the lifetimes of bundles of parallel elements. Good agreement has been obtained between the simulations and
lifetimes extrapolated from empirical results for parallel-lay ropes. An increase in the scatter of the elements’
lifetimes reduces that of the bundle; similarly, reducing the scatter could significantly increase the lifetime of
the bundle.

Nomenclature

Aj; Cross-sectional area of an element ¢

CV  Coefficient of variation

E[t] Mean value of ¢

H (t) Cumulative distribution function for lifetime of element

k Boltzmann’s constant

14 Normalised bundle load

ly Load carried by a surviving element ¢

L Constant load of a bundle

m Number of sub-bundles in a rope

n Number of parallel fibres in a sub-bundle
Weibull shape parameter

L Time

T Absolute temperature

U (-) Thermal activation energy
Uy Stress-free activation energy
U A constant related to stress-free activation energy

o A constant related to exponential-law breakdown rule
8 A parameter related to Gumbel distribution

¥ A constant related to exponential-law breakdown rule
) A parameter related to Gumbel distribution

7 A Weibull constant
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244 G. AMANIAMPONG AND C. J. BURGOYNE

A Power of power-law breakdown rule

(-} Breakdown rule

e Mean lifetime of a sub-bundle

v Activation volume

o Stress

o Constant stress

o (t) Stress at time ¢

&) A constant related to theoretical bond strength

oy, i Stress of the i-th element of a bundle of n elements
Cte Standard deviation of the lifetime of a sub-bundle

T Mean time between failure events

T Period of bond vibration

¢ A constant related to power-law breakdown rule
w Weibull scale parameter

Er Bundle lifetime efficiency

I'(-) Standard gamma function
() Cumulative distribution function of a normalised uniform variate
(-) Shape function

1. Introduction

An important characteristic of a well designed structure is its ability to support the
applied loads during its operating lifetime. Many materials which survive initial applied
loads well below their ultimate load fail after a period of time. Creep-rupture (failure
under sustained load) is therefore a major concern for engineers, particularly when dealing
with materials, such as prestressing tendons, which sustain high permanent loads.

Parallel-lay ropes, made from synthetic materials, are being used increasingly as
prestressing tendons in the civil engineering industry. The ability to predict the lifetimes
of the ropes under stress is therefore very important, since the ropes are made from
materials which exhibit a creep-rupture phenomenon.

Models to predict the lifetimes of bundles of parallel elements (e.g. parallel-lay ropes)
have been proposed by Phoenix [1978a; 1978b; 1979a], and Smith & Phoenix [1981]. A
statistical process known as the quantile process was used to model the bundles; it was
assumed that the lifetime distributions of the bundle elements follow the conventional
Weibull distribution and they concluded that the distribution of the times-to-failure of the
bundles made from a large number of elements is Gaussian. The Weibull distribution was
chosen to represent the elements’ lifetime because of mathematical difficulties associated
with the use of other distributions with the quantile process [P, 1979a; S & P, 1981].

The asymptotic results obtained by Phoenix and Smith are believed to underestimate the
bundle strength {S & P, 1981] and because of mathematical complexities, the exact results
for bundles with a few or a moderate number of elements were ignored. Despite these
models, the failure process of bundles of parallel elements is not well understood and
therefore studies into the lifetime behaviour of such bundles are needed to successfully
predict their creep-rupture.
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The strength and the lifetime distributions of twisted yarns, the basic elements of
parallel-lay ropes, are argued to follow the Gumbel distribution [Smith, 1982] since the
constituents of the yarns, the fibres, are numerous and are not bonded with a matrix.
This argument is supported by the findings of Amaniampong & Burgoyne [1994], and
Amaniampong [1992] that the Gumbel distribution best represents the aramid yarn
strength. Thus the lifetime distributions of yarns do not always obey the Weibull
distribution.

In this paper, a short review of the bundle theories about the creep-rupture (time-
to-failure) of the bundles of parallel elements is presented. A Monte-Carlo study of
the lifetime of bundles of parallel elements is conducted. Both Weibull and Gumbell
distributions are used to represent the lifetimes of the elements. This allows a study
of the differences in the times-to-failure of the bundles brought about by the different
statistical distributions. Monte-Carlo simulations are also used to check the convergence
of Phoenix’s asymptotic results.

An attempt is also made to model the time-to-failure of parallel-lay ropes from the
filament. Empirical data for aramid filaments obtained from the literature is used in the
model and the results are compared with creep-rupture data of Parafil Type G ropes
which have aramid yarns as the core material.

1.1. DEFINITIONS

In this paper, reference will be made to a number of different levels in hierarchy of
rope construction, and the terms used for these are often not consistent in the literature.
To avoid ambiguity, they will be defined here.

The smallest indivisible element is the filament, typically produced by a single hole in
a spinneret or die; in the case of the aramid fibre Kevlar, the filaments have a diameter
of about 2 microns.

Filaments are not usually used individually in rope construction; they are brought
together to form yarns immediately after spinning. Depending on final use and filament
diameter, the number of filaments may vary between a few hundred and a few thousand.
Yarns usually have a degree of twist, which has great influence on the final properties, but
can be supplied untwisted. There is an optimum twist level that maximises the strength
of the yarn; less twist results in a lower strength due to bundle effects; more twist reduces
strength since the fibres are no longer axial.

For parallel-lay ropes, a large number of yarns are brought together to form the rope,
with no additional twist being introduced. Tests on Parafil ropes are referred to in this
work, which are made by Linear Composites Ltd; the Type G ropes are made from 1000
filament yarns of Kevlar 49 aramid fibres, twisted to give the optimum strength.

The term fibre will be used to refer to a generic component of a bundle. A yarn can
be regarded as a bundle of filaments, and a rope as a bundle of yarns.

Associated with each level of rope structure will be a characteristic length. This can
be regarded as the length which is affected by a broken element. For an untwisted
parallel-lay rope, this length will be of the order of a few metres, while for twisted yarn,
it may be as small as a fraction of a millimetre.
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2. Models for predicting the lifetime of bundles of parallel elements

2.1. CREEP-RUPTURE LIFETIME OF SINGLE FILAMENTS

The general form of the probability distribution function for the lifetime of single
filaments (elements) under constant load with stress history o (1), t > 0 is assumed to
be [Coleman, 1958]

1
(1) H(t; 0)=1-exp {—\I/ [/ h‘,((f(lf))dt}}, t>0
Jo

where  (-) and W (-) are known as the breakdown rule and the shape function respectively.
% (-) also represents the rate parameter associated with the failure events of molecules
which follow the exponential distribution [Kausch, 1978]. The time-to-failure of many
filaments can be adequately represented by the Weibull distribution [P, 1978a] so the
shape function, W, is commonly assumed to be of the Weibull form

(2) U () =na®, x>0
where s and 7 are positive constants. The constant 7 is a non-dimensional parameter
representing the volume of the filament.

The forms commonly assumed for x are the power-law breakdown rule,

3 k(o) = pa?, o>0

and the exponential-law breakdown rule,

4 k(o) = a exp (vo), o>0
where ¢, 6, « and ~y are positive constants.
For creep-rupture, there a constant stress history, i.e., o ({) = o, for £ > 0. Combining
Egs. (1) and (2) and using the constant stress history gives
(5) H(t)=1—exp{-nlc(c)]*t’}, t>0

The distribution of the filament lifetime may be written in the conventional Weibull
form

) H(t)=1—exp {_G)}

where the Weibull scale parameter, w, is given as

exp (—yoy)
ant/s

(7 w =
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for the exponential-law breakdown rule, and

1

8 R
(8) o=

for the power-law breakdown rule.
The mean, F M, and the coefficient of variation, CV, of the lifetime of the filaments
under constant load or stress are given as

(i)
©) B} = —p—rts

nts k(o)

where ' (-) is the standard gamma function. The power-law breakdown rule gives a
linear relationship between In (£ [t]) and ln (o¢) with slope —6, but the exponential-law
breakdown rule leads to a linear relationship between In (F [t]) and o, with slope —~.

The mean time, 7, between failure events for a given molecule under constant stress,
o¢ > 0, 1s given by the molecular theory of absolute reaction rates as [K, 1978]

U (o0)
kT

(1) 7 (0p) = 19 exp {

where 7q is the period of bond vibration, U (o) is the thermal activation energy required
for the event at applied stress, oy, T' is the absolute temperature, and £ is Boltzmann’s
constant. The time until such an event occurs is a random variable which follows the
exponential distribution with a rate parameter « (oy) = 1/7 (o¢) [K, 1978]. Thus, if A (t)
is the density function for the failure event then,

(12) h(t) =k exp(—rt)

The function U (o) can be approximated by the linear function [Eyring, 1936; Zhurkov,
1965]
(13) Ulop) = Uy — voy

where 1 is the activation volume and Uy is the stress-free activation energy. Phoenix
& Tierney [1983] argued that a logarithmic approximation to the function, U (o), fits
better than the linear one and suggested the relation

(14) U (o) =~ —Uy ln <ﬂ>

ag
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where Uy is a positive constant related to the stress-free activation energy and oy is a
positive constant related to the theoretical bond strength.

The power-law breakdown rule Eq. (3) arises when Egs. (11) and (14) are combined,
with 1/k replacing 7 so that

1
(1) V= T
0 Ty
and
Uy
1 -
(10 kT

The exponential-law breakdown rule (Eq. (4)) results from the combination of Eqgs.
(11) and (13), and replacing 7 with 1/x whereby

_ Uy
(17) a=1 ! exp {— i TJ
and
v
(18) T=EIT

2.2. LIFETIME OF BUNDLES OF PARALLEL ELEMENTS UNDER CONSTANT LOAD

The lifetime of bundles of parallel elements (e.g. parallel-lay ropes) under constant
load is asymptotically normally distributed, if the elements’ time-to-failure under constant
stress (or load) follows the Weibull distribution [P, 1978a; 1978b, 1979a; S & P, 1981].

For a bundle of n parallel elements under a constant load, L. = nf, the cumulative
distribution function for the lifetime of the elements (Eq. (5)) becomes

(19) H(t)=1-exp{—nlr (£)]*t°}

Here k9 1s a breakdown rule which is associated with the load instead of the stress. xo has

the same form as « (Egs. (3) and (4)) but with the parameters ¢ and -y replacing ¢ and .
If H(t) =G (kat), where G (z), z > 0 is a continuous function with G (0) = 0 and
ge's)

e*ydG (y) < oo for z > 0, Then G (y) is given as

(20) Gy)=1-exp{-ny’}
If
1
N o 0<z <1
e b
2D Q(x, P) = {/‘\12 (l - :IT)}
0 r=1
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is bounded and has a continuous derivative on [0, 1], and ¢ (¢), 0 < ¢ < 1 is the
right-continuous inverse function of G (y) for y > 0, i.e. inf {y; G (y) > t}, then the
mean, /i, and the variance, o2 /n, for the lifetime of the bundle of n parallel elements
are given by [S & P, 1981]

1
(22) Hie = = / QO (t, £)g(t)dt
JO
‘ 1 t
ol =2 / s (s, £)dg(s) / (1—1) Q' (t, £)dg (t)
JO JO

dQ (x, )

h QO (x, =
where (z, 1) i

3. Monte-Carlo study of the lifetime of bundles of parallel elements

In the rest of this paper, the lifetime of bundles of parallel elements under a constant
load is modelled with the Monte-Carlo method. For a specific applied load, the time-
to-failure of the element with the lowest lifetime is evaluated (generated). After the
element’s failure, the load is redistributed among the surviving elements by a specific
rule and more elements may fail. This process continues until the last element fails and
the bundle’s lifetime is the time elapsed until the rupture of the last element.

The process is involved and requires complicated mathematical formulation but the
Monte-Carlo simulations allow the study of the behaviour with relative ease when the
complexity makes it too difficult to formulate an answer analytically [A & B, 1992]. The
main components of the prodecure are discussed in the subsequent sections.

Since parallel-lay ropes are made from yarns, the creep-rupture behaviour of the
ropes are modelled from the yarns. The yarn characteristics are first generated from
the filaments by using the series-parallel model [S, 1982]. The procedure is described
in detail in Section 3.3.2. The lifetime characteristics of the yarns are generated from
the filaments because data on the creep-rupture of bare yarns is not available. This s,
however, likely to introduce some errors since the effect of twist on the creep-rupture
is not well understood.

3.1. RANDOM NUMBER GENERATION

For a bundle of n elements, n random numbers are generated to characterise their
lifetimes. It is assumed that the lifetime distribution of the elements is governed by
the Weibull distribution and the exponential-law breakdown rule given by Eqgs. (6) to
(8), or the Gumbel distribution. The cumulative distribution function of the Gumbel
distribution is given as

(23) H(t)=1—exp [_ exp {Q—%@H

where J and 6 are constants.
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The random numbers from the Weibull and the Gumbel distributions are obtained
from the inverse transform method by equating probabilities [Rubinstein, 1981]. Thus,
if A(7) is the probability associated with 7 from a normalised uniform distribution,
then A (7) = H (t) = 7. The normalised uniform random numbers are generated by the
multiplicative congruential method [see, R, 1981].

From Equation (6) a Weibull random number, 1, is obtained as

(24) b=wl[~In(1—A)/

Since 1 — A is distributed in the same way as A, ¢ can also be written as

(25) t=w[-InA]'/*

Similarly, a random number, ¢, from the Gumbel distribution is obtained from Eq. (23) as
(26) t=4In[-InAl+
3.2. DETAILED ASSUMPTIONS OF THE MODEL

A system of n parallel elements under a constant load is considered. It is assumed
that the elements exhibit creep-rupture behaviour and fail randomly as time passes. It
is also assumed that the elements come from the same population so that the lifetimes
can be represented by a parametric distribution (Weibull or Gumbel distribution). At any
specific time the surviving elements share load according to a specific rule. Two main
load sharing rules are considered:

(1) The load is shared among the surviving elements according to the equal load sharing
rule (ELS rule) and the elements are assumed to have the same cross-sectional area. The
implication is that surviving elements have both the same stress and carry the same load
at any specific time. This assumption allows comparison with the asymptotic results by
S & P [1981] which were formulated under similar assumptions.

(i1) Equal stress sharing rule (ESS rule). The cross-sectional area of the elements
varies and follows the Gaussian distribution; at each stage of the process, surviving
elements carry loads which are proportional to the ratio of their areas to the total area
of the surviving elements.

Under case (1), if o is the initial stress of the system and § < n elements have failed
prior to a specific time, the stress of each surviving n — j elements, o, ;, is given as

a

27) Onj = ;
1L
n
Under case (ii), if L is the load applied to the system and j < n elements have failed
prior to a specific time, the load, I, carried by a surviving element, ¢, is given as
A,
(28) ly =L ——%—

Z A,j

1=n-—J
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where A, is the cross-sectional area of the element, g. The stress of each surviving
element, o, j, becomes

L

> 4

t=n—j
Thus at each stage of the process, stresses are shared equally among the surviving
elements.

(29) Op,j =

Let T}, ; be the expected lifetime of a surviving element acting alone under stress o, ;
and Aty ; be the actual time the element spends under stress, o, ;, because of the failure
of weaker elements. A basic assumption is that each element consumes a fraction of
its lifetime during each portion of the stress history. The following cumulative damage
laws are therefore considered:

(a) no cumulative damage; only time and stress since the last element’s failure is
taken into account, so the failure of an element in a particular stage of the process is
independent of the previous stress history.

(b) linear law cumulative damage; the proportion of the lifetime remaining of the ¢**
element to fail, R, is given as

q—2

JAN
(30) Rq:H <]MTIJ%)’ qg=2,...,n
J=0 ©
(¢) root law cumulative damage;
q—2 0.5
Aty
31 Rq:H 1——<—f—-q—-]~> , g=2,...,n
j=0 &)
(d) square law cumulative damage;
q=2 2
AN
(32) Ry=]] 1_<—T-1—f-> . g=2,...,n
L,

7=0
Thus the time that an element ¢ spends under the stress history o, 4—1 before failing

becomes R, Ty 41

3.3. MONTE-CARLO PROCEDURE

3.3.1. Bundles of parallel filaments

The lifetimes of the bundles of parallel filaments are simulated with the assumption
that the filament’s times-to-failure follow the Weibull or the Gumbel distributions. These
filaments are referred to as Weibull or the Gumbel filaments respectively. For the Weibull
filaments, Eqgs. (6), (7), and (25) are used to generate the lifetimes directly, but for the
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Gumbel filaments, it s assumed that they have the same mean and the standard deviations
as the Weibull filaments. The Gumbel parameters, S and 6, are therefore obtained as

SD [3] V6
(33) B =TEx] +0.57726 5] V/6

™

where FE [x] and SD [x] are the mean and the standard deviations obtained from Eq. (10).
The resulting values of [ and 0 can then be used in Eq. (26).

3.3.2. Parallel-lay ropes

The times-to-failure of parallel-lay ropes are modelled in two stages. The lifetime
characteristics of the yarns are first simulated from the filaments and the yarns are then
used to obtain the lifetime behaviour of the ropes.

Filaments to yarns. — The yarns are assumed to consist of a chain of m sub-bundles
with n parallel filaments in each sub-bundle (bundles of parallel filaments), in accordance
with the series-parallel model [S, 1982]. The lifetimes of the yarn are assumed to be best
represented by the Gumbel distribution, and therefore the Gumbel parameters, § and 3,
(Eq. (23)) are obtained as [S & P, 1981]

(34) L —
v (2nlnm
and
(35) B=puc+056In(lnm)+In(47) — 4Inm]

where oy, and ji. are the standard deviation and the mean lifetime of a sub-bundle.

For the parallel-lay ropes, Weibull filaments are used to generate yarns whose lifetimes
follow the Gumbel distribution (Gumbel yarns). This is because the Weibull distribution
has been found to be adequate for representing the filament lifetime distribution of
aramids [Wagner et al., 1986]. The Weibull filaments are used to generate the lifetimes
of a large number of bundles of parallel filaments at a given characteristic length (sub-
bundles). The mean, ., and the standard deviation, o¢., of the sub-bundles are then
evaluated and these values are inserted into Egs. (34) and (35) to obtain the Gumbel
lifetime parameters, § and &, for the yarn at the required characteristic length of the
rope. The process is carried out for a large range of applied loads, and the relationships
between the Gumbel parameters and the applied loads (or stresses) are established by
using a regression analysis. With the Gumbel lifetime parameters known, the lifetime of
the yarns are generated from Eq. (26).

Yarns to ropes. — The process of generating the lifetimes of the bundles of parallel
fibres (or parallel-lay ropes which are bundles of parallel yarns) is started by assigning
normalised uniform random numbers to the bundle elements. Eq. (26) (for the Gumbel
yarns) or Eq (25) (for Weibull filaments) is then used to generate the lifetimes of the
elements under a specified applied load. The failure time of the weakest element is
recorded as the failure time of that stage. After an element’s failure, the applied load
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is re-distributed among the surviving elements according to the load sharing rule. The
ELS rule is used for the parallel-lay ropes but both ELS and ESS rule are tried for the
bundles of parallel filaments.

The new lifetimes of the surviving elements under the re-distributed load are then
generated by using the corresponding random numbers and Eq. (26) or (25). The time-
to-failure of the weakest element at this stage of the process is recorded after applying
the required cumulative damage law (Sec. 3.2) as the failure time for the stage. The
process continues until all the elements have failed and the failure times for the stages

Input the parameters for the breakdown rule, fibre characteristics,
the number of generations and the bundle load

Input the number of fibres in a bundle or sub-bundle and generate the
corresponding uniform random numbers

Input the characteristic lengths for a yamn
and a rope and re-evaluate the fibre
parameters at the yarn characteristic length.
Input the possible load range for the rope and
the number of yarns in a rope

Y

Set the load to the lowest of the
range. Set j=1

Are parallel-lay
ropes under
consideration

Are Weibull Activate the
fibres under Gumbet
consideration routine

> i Calculate the load carried by a fibre or a yarn

Generate the lifetimes of the fibres or yamns and select
the failure time for the first stage of the process

Y

Re-evalvate the load carried by a fibre or a yarn after applying
the load sharing rule for the next stage of the process

Have all the

stages been

considered
9

Fig. 1. — Flow chart showing the Monte-Carlo procedure to evaluate the lifetimes of bundles.

EUROPEAN JOURNAL OF MECHANICS, A/SOLIDS, VOL. 15, N© 2, 1996



254 G. AMANIAMPONG AND C. J. BURGOYNE

i

Sum up the failure times of the stages to give the bundle's lifetime

¥

Generate a new set of
uniform random numbers to
represent the fibre or the yarn
elements

Has the number of
generations been
reached

Increase the load on the rope and
generate a new set of uniform random
numbers to represent the yarns

Is the load beyond
the load range
9

Use the recorded Hfetimes of the yarns and the
series-parallel model to evaluate the Gumbel
@—‘- parameters for the yams at the rope's
characteristic length. Generate the uniform random
numbers (o représent the yams

Fig. 1 continued.

are summed to give the bundle’s lifetime. The whole process is repeated to generate a
large number of bundle lifetimes which can be used with standard statistical methods to
make predictions. The procedure is illustrated in Figure 1.
4. Results and discussions

Two different processes are considered in this section. The first process is the simulation
of the lifetime for bundles which are made of parallel filaments and the second process
is about bundles made from parallel yarns (parallel-lay ropes). All the results discussed
below come from one thousand simulations.

4.1. BUNDLES OF PARALLEL FILAMENTS

The simulations of the lifetime process are based on the following sets of parameters
which are derived from the experimental results of 50 mm long Kevlar-49 aramid
filaments [W er al,, 1984; 1986]:

* temperature =21°C;
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= exponential-law breakdown rule parameters (Eq. (4));
v=1.789 x 1072 mm?/N, a=4.105 x 1072* hrs;
« cross-sectional area of filaments;
mean =1.236 x 107 mm?, standard deviation=0.2394 x 10™* mm?;
* Weibull lifetime parameters (Egs. (6) and (7));
shape parameter, s=0.1985, length parameter, n=1;
* Weibull strength parameters;
'scale parameter =3400 MPa, shape parameter=10.3.

Figure 2 shows typical results comparing the lifetimes of bundles for different
cumulative damage laws and also shows Smith and Phoenix [1981] asymptotic results
(Eq. (22)). Different applied stresses are used for the two cases of the load sharing rules,
so the lifetimes from Figures 2 (a) and 2(b) are not comparable. The square law and the

»
1091; + no cumulative damage
[ E ° linear law cumulative damage
é E 2 root law cumulative damage
o 3
@ 1()7—; o} square law cumulative damage
B b ® - - - - - asymptotic model (Eq 22)
g E
< 3
g 10° e L4 applied stress=2040 MPa
B 3 @
& E @
= 3 @
5 10 € op.ss i 5
s - o)
3 o
S 99882 3% oo
E P T T S UER IR
1] 4 A a
10 T T T T T r— 77}
1 10 100 1000
Number of fibres
(a) Equal load sharing
1017 E
_i. + no cumulative damage
— N 3 ° linear law cumulative damage
é lul 1% A root law cumulative damage
2 E @ O square law cumulative damage
'c =3
S 1P+ el asymptotic model (Eq 22)
O 3
= -
@ @ applied stress=1854 MPa
V) E P!
- @
£ 19 2
& .
= E ? . +
=1 B +
-u o o
g 1d E §§ % § g & o
= &
1()2ﬁ T TTTTTET T T T T T TV YT
1 10 100 1000

Number of fibres
(b) Equal stress sharing

Fig. 2. - Comparison of the lifetimes of bundles for different reduction factors.

EUROPEAN JOURNAL OF MECHANICS, A/SOLIDS, VOL. 15, N® 2, 1996



256 G. AMANIAMPONG AND C. J. BURGOYNE

no-cumulative-damage law lead to functions of the size which have a minimum. Thus as
the number of elements in the bundle increases, the lifetime first drops, but eventually
rises. This behaviour is quite unexpected. The root law gives rise to bundles whose
lifetimes are monotonically decreasing functions of the size, whilst the linear law yields
bundles whose lifetimes decrease with size and eventually become asymptotic.

The simulations with no cumulative damage give bundles with the longest lifetime
followed by the square law and the linear law. The root law gives bundles with the
shortest lifetime. The differences in the time-to-failure become apparent only for medium
and large sized bundles. In the given results this occurs when the bundle contains more
than twenty elements.

It is not expected that lifetimes of the bundles will decrease and later increase with size,
neither is it believed that in reality the lifetime is a monotonically decreasing function

1010y
17y °
@ E °
& 18y
= [+
3 i 2040 MPa
'2 107} applied stress=’
3 3 L3
5 16 ) °
£3 3
X
“5 l()s"% %
2 10 x
-3 3 x o o
E‘?. 103'5 <
g 109 ¥ xx x x
= 101} ° Gumbel fibre lifetime distribution{ © o
14|  x  Weibull fibre lifetime distribution N
1014 Ty T T
1 10 100 1000
Number of fibres
(a) Equal load sharing
3
fi
- 1y e ©  Gumbel fibre lifetime distribution
= e ° x  Weibull fibre lifetime distribution
% 1073 applied stress=1854 MPa
funl 4
L e x °
ks E x °
L83
1009
g 3 X o
» x
% E *x ox o x x
% 103’; P
o 3 <
= - °
10t e T e T
10 100 1000
Number of fibres

(b) Equal stress sharing

Fig. 3. — Comparison of results from elements which obey Weibull and Gumbel distributions.
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of the size. The linear law for the cumulative damage therefore seems to be closer to
reality and the subsequent studies are based on it. In fact, empirical evidence is lacking
and, to the authors’ knowledge, no work has been reported in the literature about the
best cumulative damage law to be used.

In Figure 3, results for bundles (yarns) which are made from fibres (filaments) whose
lifetimes follow the Weibull and the Gumbel distributions are compared. The mean and
the standard deviations for the lifetimes of the fibres are assumed to be the same for
both distributions.

Small bundles with elements whose lifetimes obey the Gumbel distribution survive
longer under the same applied stress than those with Weibull elements, but the reverse is
true for large bundles. Thus the size effect is less pronounced for bundles with Weibull
fibres.

Since the lifetimes of the Kevlar-49 aramid filaments are best described by the Weibull
distribution [W et al., 1986; Wu et al., 1988], the subsequent results are based on the
Weibull distribution. Three different plotting scales, namely the log-log, the semi-log and
the linear plots, are used for the subsequent graphs.

Typical results of the effect of the two load sharing rules, the equal load sharing (ELS)
and the equal stress sharing (ESS), on the lifetime of bundles are presented in Figure 4.
The size effect is also shown.

The equal stress sharing rule results in bundles with longer lifetimes. However, the
effect of the load sharing rule on the lifetimes diminishes as the bundles size increases.
For instance, maximum relative differences of 659% and 3% are obtained for 20-element
and 1000-element bundles respectively (Fig. 4).

ES
—~ 109'% + equal load sharing (ELS)
i2] -
é e o ° equal stress sharing (ESS)
2 74 ~ — — asymptotic model (Eq 22)
g E v ° applied stress = 2040 MPa
b —g °
g 1004 AP
E +
03 -1 ©
£ 3 +
= 3 +
g 103'5 o
3 +
= - 2 2% & @ @
10! — T T T

10 100 1000
Number of fibres

-

Fig. 4. — Typical results of the lifetimes of bundles under ELS and ESS
(Weibull fibres; linear cumulative damage law).

There is a profound size effect associated with the lifetime of the bundle. For example,
the mean lifetime of a 1000-element bundle (Fig. 4) is about nine orders of magnitude
less than that of a single element. This agrees with the approximation by [P, 1978b}.
He approximated the bundle lifetime efficiency, &, (ratio of the mean lifetime of the
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bundle to that of an element) by & = (vo)™'/* where o is the stress, s is the Weibull
lifetime shape parameter and y is a parameter of the exponential-law breakdown rule
(Eq. (4)). The above expression gives & = 1.3 x 10~® whilst the corresponding value from
the simulation is 2 x 10~® for the 1000-element bundle.

The lifetime decreases rapidly with increasing size of the bundle. The asymptotic results
[S & P, 1981] is too conservative and is worse for bundles with a small or moderate
number of elements. For instance, by taking the reference lifetime as the asymptotic
value, Figure 6.4 gives relative differences of 768% and 155% for 100-clement and
100-element bundles respectively. The convergence to the asymptotic results is very slow
and indeed 1000 elements are not enough for its applicability. It is not immediately
obvious that the results will ever converge to the asymptotic result. But this depends
heavily on the cumulative damage law used. It may be that a 0.9 power law would
converge to the asymptotic result.

In Figure 5, typical results of the effect of the scatter in the elements’ lifetime on
the bundle are presented. The scatter is reflected in the Weibull shape parameter; the
variability of the elements’ lifetime is inversely proportional to the shape parameter.

7 7
3 ®
’5 6 3 ° equal load sharing
= b .
3 + equal stress sharing
R
* 5
‘q'; 7 no. of elements=1000
=] 3 applied stress=1700 MPa
ERERE i .
2 1
G 37
@ 3
o p
=] 2
B E .
H 1] 5093
= 3 ®
b5 3 L less scatter
E 0 ? e & o @
-l—xr:l!|l|!'xx|»]v1|1|-||vl
0 0.5 1.5 2 2.5

1
‘Weibull shape parameter

Fig. 5. — Effect of the variability in the lifetime of elements on the lifetime of the bundle
(Weibull fibres; hinear cumulative damage law).

The lifetimes of the bundle decrease dramatically with increasing scatter in the fibres’
lifetimes. This is because the larger the scatter, the more likely it is that a group
of elements may fail at an early period, thereby increasing the load on the surviving
elements and facilitating the failure process. Thus if the fibres can be made more uniform,
the Weibull shape parameter will increase and a very large increase in bundle lifetimes
may be possible.

Figure 6 shows the response of the bundle’s lifetime to the applied stress. At very high
stresses, the bundle fails quickly but the lifetime is substantially improved when moderate
stresses are applied. As an example, by dropping the applied stress of a 1000-element
bundle from 73% (2380 MPa) to 52% (1700 MPa) of the filament’s ultimate tensile
stress (UTS), the lifetime increases from 6 minutes (7 minutes) to 12 years (14 years),
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according to the ELS (ESS) version of the model. The reason for the dramatic increase
in the lifetime of the bundle lies in the exponential function which is associated with
the failure of the elements.

10000
= ]
[a¥ ~ a
2 "o
A »e
§ 4
- »
5 I000: no. of elements=1000
=l b oW
2 b
8 4
< R o equal load sharing (ELS)
E X equal stress sharing (ESS)
0077 T T T T T T T T T T T T T T

0% 102 100 102 1t 1P 1 f 1010 1012 q0l4
Mean lifetime of bundle (hrs)

Fig. 6. — Response of the lifetime of bundle to stress
(Weibull fibres; linear cumulative damage law).

The effect of the variability of the elements’ cross-sectional area on the lifetime of
the bundle is presented in Figure 7. This study is only possible for the equal stress
sharing (ESS) rule. The larger the scatter in the cross-sectional area, the longer the
bundle survives. The effect is significant, however, only for moderate and large scatter.
For instance, the increase in the lifetime given in Figure 7 is significant only when
the coefficient of variation of the cross-sectional area is 25% or above, which is very
unlikely in practice.

L
(=3
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w +
(=] [
o <
loaasday gy

] reference lifetime=0% CV
200 no. of elements=1000
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-100-‘1‘!1'||II'lllll)x!!!s|!|§llll|1\||
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Area coefficient of variation of the fibres, CV (%)

Fig. 7. — Effect of the variation in the cross-sectional area of elements on the lifetime of the bundle
(Weibull fibres; linear cumulative damage law).

As an example of the way the process works, Figure 8a shows two separate simulations.
Stage n of the process represents the time which elapses between the failure of the
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(n — 1)-th element and that of the n-th element. The bundle’s failure is triggered by the
failure of a small fraction of the elements. in the example, the bundle’s failure is brought
about by the rupture of about 36% of the clements.

50077
] Weibull distribution for fibre lifetime
400_‘ : 200-element bundle
2 g stage n= time taken from the failure
é N 2y of the n-1 th fibre to the failure of
o 300 it the n th fibre
:—§ ] applied stress=1870 MPa
€7 i
2 200
5 B
B Y | T T I ©---- process one
= 1 ~———~— DIOCeSs (WO
100
R B L e
o 10 20 30 40 50 60 70 80
Stages of the process
(a) A bundle of filaments
90
k Gumbel distribution for lifetime of yarns
-+ A 188-yarn bundle
__ F maximum lifetime for stage 1:
w67 R 20588 hrs for process one
é 7 Y 20618 hrs for process two
] T .
5 1 stage n= time taken from the failure of
5 a5+ f " the n-1 th yarn to the failure of the n th yam
by ]
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£ 7
= 227
S e ©---- process one
B — X process two
O e 2 e e A B i
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Stages of the process

(b) A bundle of parallel yarns

Fig. 8. — Typical failure process of bundles of parallel elements.

4.2. PARALLEL-LAY ROPES (BUNDLES OF PARALLEL YARNS)

The following values are used for the simulations:
= yarn characteristic length, 6* =0.3575 mm;

* temperature =21°C;

¢ length of rope=6.2 m;

= number of fibres per yarn=1000.
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The characteristic length of the yarn is the average value obtained from [A, 1992] and
the length of the rope is the characteristic length associated with Parafil Type G ropes
[Burgoyne & Flory, 1990].

An extrapolation of the lifetime distribution associated with the 50 mm long Kevlar-49
and aramid filaments is required to obtain a corresponding distribution at the length of
0.3575 mm. With the assumption that the parameter 1 (Eq. (5)) is directly proportional
to the specimen length, the extrapolation is possible. However, application of this to
the filaments resulted in extraordinarily long-life ropes (e.g. the average lifetime of
94-yarn ropes (6.2 m long) at an applied stress of 2040 MPa was 1.0 x 1013 hrs). An
alternative is to assume that y = K [ [Watson & Smith, 1985], where v and K are
positive constants. Phoenix et al., [1988] obtained v=0.6 for the strength distribution
of Kelvar-49 aramid filaments. The use of this value of v also resulted in ropes with
long lifetimes, although shorter than the results from the direct proportionality (e.g. the
average lifetime of 94-yarn ropes (6.2 m long) at an applied stress of 2040 MPa was
4.4 x 108 hrs). The conservative approach is therefore adopted in the present simulations;
the lifetime is assumed to be independent of length so that the lifetime distributions for
both the 50 mm and the 0.3575 mm aramid filaments are the same. In this case, the mean
fibre lifetime at an applied stress of 2040 MPa would be 4.4 x 10° hrs.

Figure 9 shows the relationship between the Gumbel parameters and the applied stress
for a 6.2 m yarn. The length of a sub-bundle is taken as 0.3575 mm. The semi-log
plot gives a straight line, which is an indication that an exponential relationship exists
between the stresses and the Gumbel parameters. The knowledge of this is helpful in
any future asymptotic model.
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Fig. 9. — Relationship between Gumbel parameters and stress of a 1000-filament Kevlar-49 yarn.

In Figure 8b examples of the failure process are presented. Stage n of the process
represents the time which elapses between the failure of the (n — 1)-th element and that
of the n-th element. Like the bundles of parallel filaments, the rupture of the rope is
triggered by the failure of a small proportion of the yarns. Failure of about 20% of the
yarns 1s enough to cause the immediate rupture of the rope. This has an implication in
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the rope construction. A rope with a large scatter in the lifetime of the yarns is likely to
rupture more quickly than one with yarns with similar lifetime properties. The processes
indicate that the lifetime of the first yarn to fail is crucial for the total lifetime of the
rope. In the example, the first yarn fails after over 20000 hours, while the maximum
duration for each stage of the rest of the process is only about 80 hours.

The effect of size on the bundle’s lifetime is presented in Figure 10. Surprisingly, the
rope’s lifetime increases with increasing size. This is contrary to the behaviour observed
for the bundles of parallel filaments. The increase in the lifetime is possibly due to the
dispersion associated with the number of yarns in a rope. It is worth noting, however,
that the increase in the lifetime is so slight that it may not be observable. The lifetimes
of a 47-yarn rope and a 188-yarn rope at the stress of 2040 MPa are 96 and 98 hours
respectively. The differences cannot be attributed to noise since the rise is consistent,
however for pratical purposes little will be lost in ignoring these differences.

b applied stress=2040 MPa

Mean lifetime of parallel-lay ropes (hrs)

7 ) S e e e e B e e L A B S S S S

0 40 80 120 160 200
Number of yarns

applied stress=2040 MPa

Mean lifetime of parallel-lay ropes (hrs)
!
>
B
2
53

B e e e A s e e LS s e

0 40 80 120 160 200
Number of yarns

Fig. 10. — Effect of size on the lifetime of Parafil Type G ropes.
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Figure 11 shows the relationship between the applied stress and the lifetime of the
ropes. The ultimate tensile stresses (UTS) for the ropes were obtained by extrapolation
from the stress versus logarithm of lifetime graph in Figure 11. Under the UTS the rope
would fail immediately, and for the purpose of normalisation 1 second was assumed
to be reasonable time that the rope would withstand the ultimate tensile stress before
rupturing. Ultimate tensile stresses of 2669, 2670, 2670 and 2681 MPa were obtained
for 1.5, 3, 6 and 60 tonne ropes respectively.

100
— ]
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=2 807
3
a2 R
3 =
L 704
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-5 e
= 1§ —=a — 3 tonne rope
B 60“: = =+ - § tonne rope
=]
& 1] - - © - - 60 tonne rope Lyr
] |
50.H,,..,.,,x.il.,.,],”.
-5 0 5 10 156 20
In (Lifetime (hrs))

(b) Stress in UTS

Fig. 11. - Relationship between applied stress and lifetime of parafil Type G Ropes.

A behaviour similar to that of the bundles of parallel filaments is observed, although
the rate of increase in lifetime with respect to decreasing stress is greater here. A decrease
of the applied stress from 2380 Mpa to 1700 MPa increases the lifetime from about
7 minutes to 16.3 years as against 7 minutes to 14 years for the bundle of parallel
filaments. A further drop of the applied stress to 1423 MPa improves the lifetime
dramatically to about 4926 years.

In Figure 12 a comparison of the simulated and empirical results, from the literature,
of Parafil Type G ropes [Chambers, 1986; Guimardes, 1988] is presented. The applied
stress is expressed as a percentage of the UTS in order to compare with empirical data.
As pointed out by G [1988], a reliable prediction is made if the stress is expressed in
terms of the UTS, since the size effects on the break load associated with the ropes are
at least minimised by this method.

Guimaraes’ reasoning for normalising the stress-rupture plots in this way was that it
removed the bundle theory effect on the short term strength, and also because it fitted
the data. But there is a philosophical point that cannot be resolved in this paper. Bundle
effects on stress-rupture are taken into account already in the work described here, and
there is a very small size effect, as shown in Figure 10. And yet, Guimardes found a
considerable size effect on stress-rupture, as shown Figure 124, and it is well known that
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Fig. 12. — Comparaison of Monte-Carlo simulations and experimental results.

there is a bundle size effect on short term strength [A & B, 1995]. It may well be that
the solution to this problem lies in the interaction of strength and lifetime variability.
The strength of individual components (and its variability) is not taken into account in
the present analysis, but it is at least plausible that weak yarns are also the yarns with
the shortest lifetime. So ropes that contain a disproportionate number of weak yarns, and
so lie at the bottom of the strength spectrum, would also have the shortest lifetimes.

Such a postulate remains pure speculation in the absence of data. As noted already,
there is insufficient data on the stress rupture of yarns, and as far as the authors are
aware, no data on the interaction with strength effects, either for filaments or yarns.

An extrapolation of the empirical data for Parafil Type G ropes predicts that an
applied stress of 50% UTS would cause the rope to fail after 100 years [G, 1988]. The
corresponding applied stress predicted from the simulation is 60% UTS. The simulations
compare well with the experimental results, despite the assumptions made and the way
the ultimate tensile stresses were obtained.
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5. Conclusions

Monte-Carlo simulations have been used to study the failure process of bundles of
parallel filaments and parallel-lay ropes. This was to give an insight into the process, in
view of the fact that there is no satisfactory analytical model to predict creep-rupture.

The method has proved successful in predicting the lifetime, and the variability in
the lifetime, of bundles of parallel elements. Good agreement with empirical results was
obtained for the maximum stress required for Parafil Type G ropes to survive for over a
hundred years when the applied stress was normalized by the ultimate tensile stress.

The following main conclusions are drawn from this study:

(a) There is a lateral size effect associated with the lifetime of bundles of parallel
filaments such as yarns. The larger the size of the bundle, the shorter is the lifetime.
This behaviour is not observed in parallel-lay ropes (Parafil Type G ropes). Although the
lifetimes of Parafil ropes increase slightly with increasing size, the increase is so slight
that it can be ignored for practical purposes.

(b) The variability in the lifetime of the fibres has a major influence on the lifetime of
the bundle. The larger the scatter, the shorter the time the bundle survives.

(c) The failure of a bundle of parallel elements is precipitated by the rupture of a small
proportion of the elements. For a higher applied stress on the bundle, a lesser proportion
of failed elements is required to cause the immediate rupture of the bundle.

(d) Under high stresses, bundles of parallel elements made from aramid filaments and
yarns fail very quickly, but the lifetime is greatly improved under moderate stresses.

(e) From the simulations, it is shown that under a stress of 60% of the UTS, Parafil
Type G ropes should last over 100 years.

(f) There are a number of things that could be done to improve these predictions.
Stress rupture data on yarns would, if available, allow the first stage of the analysis,
from filaments to yarns to be omitted. Care would be needed that this data was obtained
for yarns with the correct amount of twist, since the characteristic length of the yarns is
heavily dependent on twist. A study of the scatter of the results would also be useful.
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