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This Paper is the second of three on the behaviour of

anchorage zones for prestressed concrete. Details are

presented of a plasticiry approach 1o the ultimate strength

analysis of concrete prisms strip-loaded through rigid steel

plates.

Such a loading arrangement is assumed 1o

represent adequately the transfer of force from tendon 1o

concrete at the anchorage of a prestressed concrete

structure. The effects of steel reinforcement are included
in the analysis, which is assumed 1o satisfy plane strain
conditions. The Modified Mohr-Coulomb failure criterion
with non-zero tension cut-off is used for the concrete. A

maodel, based on experimental evidence, is used as the

basis for the plastic analysis, and good correlation is

obtained between the theory developed here and the

observed test results. It is concluded that such a plasticity

approach is useful in assessing the strength of concrete
under concentrared load.

Notation

a half-breadth of test specimens

a half-length of loading plate

e cohesion of the concrete

Je “effective’ concrete compressive strength

Jeu concrete cube compressive strength

I effective’ concrete tensile strength

1 concrete split-tensile strength

hr height of concrete prism

/. length of basal crushing extent

A full length of wedge vield line

7! length of section / of wedge yield line

r lever arm from point O 1o any point i on wedge

Iy lever arm from point O to steel crossing point
i on wedge

o lever arm from centre of relative rotation 10 any
point on wedge

1 resultant relative displacement between two
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Dase
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vertical and horizontal (respectively) com-
ponents of u

width of test specimens

axis labels

v and y co-ordinates of the inner limit of basal
crushing

v and y co-ordinates of the centre of relative
rotation

angle between r; and the vertical

angle between r; and the vertical

total area of reinforcing steel crossing a plane
basal frictional force

total energy dissipated along a yield line by
concrete shearing

energy dissipation rate along a vield line by
concrete shearing

compressive force acting on half-wedge
applied ultimate load capacity
predicted ultimate load capacity

inttial estimated load capacity of prism
total  tensile
reinforcement

force exerted by the sieel
basal work done by concrete crushing

total energy dissipated by the entire system
energy dissipated by concrete shearing

total external work done on the system
angle between yield line and relative
displacement vector

angle between vield line and relative
displacement vector at point i

angle between yield line and relative
displacement vector at steel crossing point i
half-wedge failure angle (1o the vertical)
shear %mm across a vield line

relative di
blocks
relative displacement vector between two rig

isplacement vector between two rigid

blocks at point {

relative displacement vector between two rigid

blocks at steel crossing point |

normal Lmd tangential components of §
vidth of viel

prmcm;t% straing

t
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€q normal strain across a yield line

€ tangential strain across a yield line

7 relative rotation of rigid blocks across a yield
line

angle between r~ and the horizontal
angle between yield line and horizontal

v ‘effectiveness factor’ for concrete
v, ‘tensile effectiveness factor’ for concrete
¢ internal angle of friction of concrete

oy, 0-, 0y principal stresses

Introduction

In a previous Paper', failure mechanisms of centrally
strip-loaded concrete prisms were reported in some detail.
It was found that, in general, failure of these strip-loaded
prisms occurred in a two-step process. Initial central
cracking, extending nearly the full length of the
specimens, preceded planar wedge formation beneath the
loading plate. Figure 1 shows the overall loading
arrangement, steel reinforcement layout and general
wedging failure mechanism of the test specimens of Ref.
1. The present problem may thus be considered as a case
of shearing along yield lines at failure, which has been
studied extensively by several researchers,” ™ with some
favourable correlations between such plasticity methods
and test results being obtained. It was thus considered
worthwhile to apply the upper- and lower-bound methods
of analysis to the present problem.

Preliminary assumptions

The following assumptions are made regarding the
plasticity solutions formulated in this Paper.

(ay Rigid perfectly-plastic collapse occurs. Elastic
deformations are negligible.

() The Modified Mohr-Coulomb failure criterion with

ﬁ‘_T
—.—«—M———n—-‘ 1 oy ‘.;ﬂ._ff
- |
== .
7 5 ‘
7 \,
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h = 750 mm

| 2a-250mm |

Fig. 1. Overall arrangement of the test specimens, showing
ivpical steel reinforcement and final wedging failure

non-zero tension cut-off is assumed for the concrete
in areas of shear-tension or shear-compression
failure. Figure 2 shows details of this failure surface.
The internal angle of friction, ¢, i1s assumed to be
a constant 37°%° for all combinations of stress. In
separation failures, a limiting tensile strength of
concrete 1s assumed, where applicable.

(¢) The steel bars carry axial tension forces only. Any
dowel effects are ignored.

The ‘effective’ strength of concrete

It is not possible in practice for a reinforced concrete
structure to undergo large deformations at a constant stress
level, which is a necessary assumption in a rigid-plastic
collapse idealisation. Moreover, the stress—strain curve

Relative
displacement
Cohesion c. = Vf, cos g vector | ¢ ‘nternal angle of friction
1+ sin g

|

v 1 - sin ¢
¢ TTtes g

Fig. 2. The Modified Mohr-Coulomb failure criterion, with non-zero tension cut-off
£ | . 4l
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Fig. 3. Discontinuiry zone between two rigid blocks under relarive displacement

for concrete in compression has a falling branch beyond
its ultimate strength, and ductility is limited. Therefore,
in order to obtain reasonably satisfactory predictions using
the assumptions of rigid-plastic collapse, a reduced
strength of concrete must be assumed. The ‘effectiveness
factor’, v, is introduced to create an effective concrete
strength, f.. which s equal to »f.. f. being the
measured compressive cube strength of the concrete.
Similarly, the ‘tensile effectiveness factor’, »,, is used to
reduce the tensile strength of the concrete, [, to f,, for
similar reasons. Several values of p are assumed for a
variety of problems, but for the case of shearing in
concrete, v = 0-67 has been suggested™ and is assumed
throughout this Paper. A range of effective tensile
strengths of concrete has also been suggested by Chen and
Drucker.” varying from as highas f, = f./5t0 f, = 0,
for purposes of comparison with specific test results.

cu

Upper-bound analysis

Formulation of planar rigid-plastic upper-bound
methods

The following formulation is documented in Nielsen’s
book,” but is included here for completeness. Consider
two rigid blocks, A and B, separated by a distance A, as
shown in Fig. 3. The relative normal and tangential
displacements are 6, and 6, respectively. The resultant
relative displacement is §, inclined at angle « to the yield
line; 6 and « are permitted to vary along the full length
of the yield line, subject to compatibility requirements.

Consider the thin layer between the rigid blocks. Plastic
flow is assumed to occur only in this region. Hence, the
plastic strains are

6[\ 51
€ = 0, €n — ’E‘* Yoo T A (b
and
b, = dsina. & = & cos w (2)
so that
S sin o 5 COs
(=0 = osima o _dcosa g
A A

The principal strains are ecasily shown to be

[

O sine + 1) (4a)
A

m‘w
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(sin o — 1 (4b)

1\2‘»«—‘
B o

The energy dissipation rate per unit length of vield line,
for an element of unit thickness, is

D = Algje, + 0265) (5)

where o, and o, are the principal stresses corresponding
to the principal strains e, and «,.

By combining the above equations, it can be shown that
for a plane stress problem, assuming the tensile strength
of concrete is negligible,

D= %}‘}5(1 ~ sin «) per unit length (6)

in the full range 0 = o < 27

For a plane strain problem, once again ignoring the
tensile strength of concrete. equation (6) still holds, but
a restriction is placed on o« such that ¢ < o <= 7 — ¢,
where ¢ is the internal angle of friction for concrete. (See
Fig. 2).

Uniform translation of outer blocks at failure

Chen and Drucker” carried out a plane strain analysis
of an unreinforced concrete prism strip-loaded as shown
in Fig. 4. Planar failure of this type was encountered in
virtually all of the present tests.! This mode is assumed
throughout the present analysis, even though Chen and
Drucker postulated that such behaviour ought only to
occur for it < 2a. (For h > 2a, the mechanism of failure
proposed by Chen and Drucker contained no longitudinal
central crack, but rather inclined slip planes beneath the
wedging region.) They assumed that the two outer
surrounding blocks (IT) in Fig. 4 translate laterally on a
frictionless base during wedging failure.

Using the velocity relations from Fig. 4, and applying
equation (6), together with a term for the inclusion of
separation work along the central crack (under the
assumption that such work can indeed exist at collapse),
they found the total dissipation, D, to be

< I — sin ¢ > C2aw

D = . u
2 ““sin B

+ 2wfi(h — ay cot i sindB + o) (T

where « 1§ here assumed to equal ¢ at failure, The external
work, Wy, is given by

41



Ibell and Burgovne

lcfam A )
e
P
Uy
2/
s ty
B SR
' ‘/ W\ .
U 0

T

(Frictionless base)

Fig. 4. Chen & Drucker’s fuilure mechanism and velocity relarions

Wy = P, cos(B + ¢) (8)

Setting these expressions equal, the following upper-
bound solution is found.

2agw

b §<1~s:inqb>‘
© sin B cos(B + Qb)‘\ 2 s

+ sin(B + d>></%z sin 5 — cos /3>/{‘ ©)

a,

Minimization of (9) with respect to 8, and setting f, =
0. produces the trivial solution
P = 2awf. (10

with 3 = 7/4 — ¢/2.
With non-zero tension cut-off, in the general case, 8
may be found from

cot B = tan ¢ -+ sec ¢

h/ay cos ¢ -
X = o
Aﬂ(l-—-sin ¢>> o
T -~ SN ¢
SN 2 /

Results from experiments® showed it to be unlikely
that any work could be dissipated along the central crack
during failure of the prisms, as this crack formed well
before failure in general. There are also conceptual
problems with the idea of plastic work in a brittle tensile
failure. The contribution of this work was therefore
removed entirely from the formulation of the failure load
for all subsequent analyses, by assuming that f, = 0.

Chen and Drucker’s analysis is extended 1o include steel
reinforcement by neglecting any dowel action, and
assuming that stretching of the steel is its only form of
energy dissipation. It is also assumed that the steel stirrups
are fully yielded at failure, in accordance with
experimental observation and plasticity theory alike.

Equation (9) then becomes

42

_ Da,w < I — sin ¢ > i
P= sin B cos(f + @) \ 2 ,‘fC
+ 27T tan( + ¢) (12)

where T is the total steel force in the yielded bars.
Setting dP/0 = 0 for minimum F. it is found that

l/'(<~£—_—5m>cos(2[3 + ¢y — 7_7_
2 (13)

The non-linear nature of this equation leads to the
necessity for a numerical method of solution for 5. The
Newton-Raphson method was chosen for this purpose.
Figure 5 shows detailed comparisons between the above
prediction for failure loads and strip-loaded test specimen
results. There is reasonable correlation between
predictions and experimental results.

The effect of variable positioning of steel reinforcement

150 y-
125 ¢
-~ 100
Q.
e
s}
2
o 751
@
°
o
@
a
50 Average PP = 0-97
-] Std. deviation = 0-078
Coeff. of var. = 80%
25 B Unreinforced
¢ Reinforced over 2a
o Reinforced over = 2a
0 . ] | ; )
o] 25 50 75 100 125 150

Actual load P: t

Fig. 5. Comparison berween test results and predictions
Sfrom the translational plasticity model
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in the prisms is not modelled by this method, as uniform
translation of the blocks is assumed. Note that it is
necessary (under the assumption of uniform translation
of the outer blocks) to assume that @/l steel has yielded
in these specimens, even though it was found
experimentally that only steel 1o a depth of 2-da (300 mm)
had actually yielded.’

Because this method is based on plane strain conditions.
the experimental results used for comparison are those
in which plane strain conditions were approximated.
However, several test specimens failed in an out-of-plane
wedging mode'® and such specimens are not included
either in Fig. 5 or in the correlation calculations.

Rotation of outer blocks during failure

During failure of the test specimens, it was noticed that
the outer blocks rotated outwards about the base, allowing
the wedge to penetrate the prism. It was decided to include
this rotation of the outer blocks in upper-bound analyses
of the problem. Figure 6 shows the general failure
mechanism assumed. In the Figure, a straight wedge yield
line has been shown, but a curved yield line could also
be considered and will be discussed later.

Rotation of the outer blocks is assumed to occur about
point O (x,, v,) on the base. Point O is the innermost
limit of compressive stress on the base, allowing rapid
calculation of the resultant reaction force on the base,
assuming pure crushing of the basal concrete over this
region, with f. = 0-67/,,.

The wedge is assumed to move down by unit
displacement. A rotation (x) about point O is chosen and

f,

‘ P2

‘ P2

Fig. 6. Rotarional model of the experiments, showing
position of point O, and equilibrium of forces
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the relative displacement vectors 6, are found at discrete
points p; along the yield line, as shown in Fig. 7. The
angle between the slope of the yield line and the relative
displacement vector is «;.

The energy dissipation rate at point p, is given by

f)1 = %wﬂ\é,(l — Sin ;) per unit length  (14)

from equation (6), for the unreinforced case.

When steel stirrups are present, the extra work
dissipated due to stretching of these bars is added to the
above expression. In accordance with plasticity theory,
it is assumed that all steel bars have yielded, even when
the steel is spread over depths greater than 2a, the
commonly accepted bursting region in anchorage zone
design.' Where the steel bars cross the wedge planes
(which might be at positions different from those chosen
to calculate D, above), the additional energy dissipation,
;. due to this steel alone is

DY = 24%,6,sinler; + B) (1s)

for each double-legged stirrup, where AY is the area of
a stirrup crossing the wedge plane, and f, is the yield
strength of the steel. Where additional steel bars cross
the central crack below the wedge, the extra energy
dissipated is

[):l = 24 S‘/‘ynrsi COS I (16)

for each double-legged stirrup, where A is the area of
a stirrup crossing the central crack.

In addition to the above work calculations for dissipation
along the yield lines, work is also considered to be done
on the specimen base, where the concrete crushes. This
energy is

Wh;xxc = Pmil/tl (17)
2
where Py, 1s the initially guessed value of failure load
and /. is the length on the base over which crushing is
assumed to occur in each outer block.

Failure slope

(X9 Vo)

OlXo, Vo)
i I, l T,

Fig. 7. Failure mechanism and velocity diagram for the
rotational plane strain analvsis
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The total energy dissipation in the system is then found
by summing the energy over the length of the yield lines,
over the number of stirrups, and over the base, so that

s, NSW ,
Wx’yxtcm = \/\]l)i dl + E D::
' 1=
NS .
+ E D:l + Whasc (I 8)
1= NS+

where 1! is the total length of both wedge yield lines,
NSW is the number of steel stirrups crossing the wedge
yield lines and NS is the total number of yielded steel
stirrups crossing any yield line in the system.

Two specific formulations are now presented, under
differing assumptions.

(a) The wedge yield lines are straight, and the bottom
point of the yield line has o« = ¢ = 37°, with «
increasing in value up the wedge, in accordance with
¢ = a7 — 9.

The wedge yield lines are curved such that o = a
= ¢ = 37° at every point along the wedge planes.

(b)

Straight wedge yield lines, o = ¢ = 37° ar bortom of

wedge
The detailed steps of this analysis are outlined below.

(a) Choose a failure angle, 3.

(b) Estimate a failure load, P,

(¢y Calculate x, ordinate, based on crushing of basal
concrete.

(d) Calculate nine sets of co-ordinates, p;(x;, y;), along
the yield line, for use in numerical integration.

(e) Calculate all co-ordinates, pg(xg, vg), of steel
stirrups crossing the yield lines (wedge and central
crack).

(fy Calculate r; and z; at each integration point and r
and z,; at each steel crossing point.

(g) Let the value of « at the bottom of the wedge yield
line be ¢ (37°). This defines the rotation n from the
velocity relations of Fig. 6.

(h) Calculate ; and 6; by use of the cosine rule, applied
to the velocity relations.

(i) Calculate ; and «;, by use of the sine rule, applied
to the velocity relations.

(j) Calculate D, = <~l—‘*§—mﬁ>ng{.5i.

(k) Calculate the total energy dissipation in the system,
due to concrete shearing, steel stretching, and basal
crushing from equation (18), using Simpson’s Rule
for the numerical integration of the concrete
contribution to W ...

([y The guessed external work is P, x 1 and the

corresponding calculated internal work is W g,

Therefore, go back to step (b), and vary P, until

the external and internal work values are close in

magnitude. The average value between the computed
internal work and the initial estimated external work

44
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Fig. 8 Comparison berween test results and predictions
from the rotational plasticiry model with o« = ¢ = 37° ar
the bottom of the (straight) wedge yield line

is used as the updated value of Py, for each
iteration.

(m) Go back to step (@) and vary the wedge failure angle,
8, until the minimum value of P is found.

In general, between (2) and (10) iterations were
necessary to determine the final value of P for each value
of 3, depending upon the original estimate of Py

Results from this analysis are shown in Fig. 8 and are
compared with the same test results as before. Correlation
between theory and experiment is reasonable on the
whole, the predictions being about 11% higher than the
test results.

The average value of predicted load to actual failure
load from Fig. 8 is higher than that of Fig. 5. Thus, the
upper-bound method incorporating rotation of the outer
blocks predicts higher failure loads than those found under
purely translational assumptions. During testing, the
rotational mode of failure was indeed observed. The fact
that the translational mode is predicted to occur in
preference is explained as follows. Frictional forces on
the base of the specimens would have attempted to prevent
a translational mechanism in the tests. These forces ought
thus to be considered in a full translational mechanism
model, but have been neglected for simplicity. It does
seem, however, that in practice, friction on the base of
the specimens allows the rotational mechanism to occur
in preference to the translational one.

Curved wedge vield lines, o« = ¢ = 37° along entire
wedge

It was considered possible that the relative displacement
angle « could be kept at a constant value of ¢ along the
wedge yield line, under rotation of the outer blocks. This
implies the formation of a curved yield line to
accommodate this behaviour.
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Fig. 9. Rorarional model for plane strain analvsis, where «
= ¢ = 37° all along the curved wedge vield line

Consider the curved yield line shown in Fig. 9. Rotation
of the outer block occurs about point O. It is assumed
that the wedge remains still and the outer block moves
vertically up one unit at point O. Combining the rotation
and vertical displacement of the outer block, the relative
centre of rotation between the wedge and outer block is
located at point R, a horizontal distance 1/9 from point O.

The value 6 i1s now § = ar\ (from Fig. 9) and « is
the angle between 6 and the tangent to the yield line at
point p(x, v).

wedge. From Fig. 9,

dy = tan(x) (19)
dx
or,
dy = tan (r — (w/2 — §) — @) (20)
dx
= tan (w/2 + 8 — ¢) 20

where 8 is the angle onto the horizontal from the origin
to point p. Also,

6 = arctan (v/x) (22)
so that
dy ;
== = tan (w/2 + arctan {(v/x) — @) (23)
dx
The substitution p = p(x) = v/ is made and the

differential equation separated into two independent
integrals. The solution to this differential equation then
takes the form

i

arctan (v/v) + cot ¢ In| ——

1
V(1 -+(y/.r)j) |

—cotdlny + C =90 (24

where C is a constant of integration which can be found
from the known conditions at the top of the prism.
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When v = &,
x=101=1l/p — 1. +a — a (25)
Whence,
C = —arctan (h/]) — cot ¢ In ' - 1— 7
LN
+ cot ¢ Inl (26)

From equations (24} and (26), the relationship between
x and v produces a curved wedge yield line profile.

The detailed steps of the full upper-bound analysis are
given below.

() Estimate a failure load, P

(b) Choose a rotation, ».

(¢) Calculate the co-ordinates (xg. vg) of point R.

(d) Calculate nine (x;. y;) co-ordinates along the length
of the wedge curve from equations (24) and (26),
based on evenly spaced x-ordinates.

(e) Calculate all {xg, y) co-ordinates of steel stirrups
crossing the yield lines and central crack.

(fy Calculate §; and &; at all relevant points. 8, = 9%
for all steel stirrups crossing the wedge, and 6, =
nry; for all steel stirrups crossing the central crack.

(g) Calculate the length (assumed straight) of line [}
between each point p; and p;., on the yield line.

(hy Calculate the energy dissipated in the concrete
shearing. per unit length, at each point p; along the
wedge yield line from equation (14), and integrate
using Simpson’s rule to get W oeree.

() Calculate the total energy dissipation in the system
due to concrete shearing, steel stretching and basal
crushing.

mite

NS

— W -
W\\ stem T WL‘UY\CF'C[C + E A\‘lf'\é\! Sin 9\]
e

NS
S v . iy
+ E A:«/j}éﬂ COS I + Pmn/cn'/-'
NS -

(/) Go back to step (b) and vary » until a minimum value
of Wiem Is found.

(ky The guessed external work is P, x 1 and the
corresponding calculated internal work is W o
Therefore. go back to step (@) and estimate a new
Pmn’

(I} Repeat until Py, X 1 = W, em. the minimum
internal work for optimum rotation, 7.

This method has again been applied to the test specimens
of Ref. 4. The results are shown in Fig. 10 together with
the test results. The behaviour of the specimens is again
predicted reasonably where the assumed mode of failure
occurred.

On the whole. this method involving a curved vield line
predicts Jower failure loads than those from the straight
yield line case formulated before, under similar rotational
assumptions, but higher failure loads than those under the
simple translational assumptions. Therefore. although the
rotational  mechanisms occurred during testing, the
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Fig. 10. Comparison between test results and predicrions
Sfrom the rotarional plasticity model with o = ¢ = 377 all
along the length of the (curved) wedge vield line

trranslational mechanism is again predicted to occur first,
due to the neglect of friction on the base of the specimens
in this model. If it is therefore considered impossible that
such a mechanism can occur in practice, the upper-bound
analyses predict a curved yield line to occur in general.
with « = ¢ = 37° along the length of this yield line.
However, the actual failure mechanisms of the test
specimens were not studied closely enough for specific
geometric comparisons to be made with the theory.

Lower-bound analysis
Equilibrium-based plasticiry solurion

Consider the failure model of a prism shown in Fig.
I'l, where the concrete is isolated from the steel. It is
assumed in this model that central cracking has occurred
along the entire length of the specimen (a similar
assumption made under energy-balance calculations
before) and that the position of the basal force P/2 is
central on the half-prism. It is further assumed that an
equilibrium force F, acts on the half-wedge at the level
of the loading plate'" and that horizontal equilibrium is
maintained by a frictional force C on the base of the
specimen and the applied steel force T (yielding of all bars
oceurs). The assumed existence of the frictional force C
is based on experimental evidence.” where it was found
that, in general. before wedging failure, the central crack
propagated to within a few centimetres of the base., without
actually reaching it.

For overall equilibrium of the half-prism shown, the
following conditions must be satisfied.

T = C + F, (horiz. equil.) (27)
and
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Fig. 11, Lower-bound equilibriiun model of failure
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{mom. equil. about Q) 28)

where all symbols are as shown in Fig. 11.

From consideration of the resultant stresses acting on
the failure wedge., the following equations of equilibrium
may be written, taking o and 7 as uniform along the
wedge plane.

apw amw P
T OS5+ 0 —— sin § = —
sin 3 S 2
(vert. equil.) (29}
and
apw apw .
g o~ COS 3 = 7 o Sin 3 o= F
Sl sin
(horiz. equil.) (30y

where w Is the width of the prism.
In addition, the Modified Mohr-Coulomb failure
criterion for concrete states that

T o= .k ootan ¢ 30

«

along the failure plane.

Equation (31) is substituted into (29) and (30). The
expression for £ from (28) is then substituted into (30),
leaving two simultaneous equations (29) and (30) in
unknowns ¢ and P, under the assumption that the failure
wedge half-angle 8 1s a constant.

Solution of these equations yields the expression for u
given in equation (32),
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D,
2

r

(32)

1 I 1 I >
aywh cot § — a;wh tan ¢ — -—2~~aa,w tan ¢ cot B + 7(1;%’ tan ¢ cot 3 — Taalw + 7agw

Substitution of ¢ into equation (31) provides the value of

7 and equation (29) finally yields the predicted failure load
of the prism, P. This solution procedure is carried out
numerically under varying values of 8 until a minimum
failure load for each specimen is reached. This
methodology was considered more sensible than
attempting to minimise the failure load with respect to
analytically.

Results from this analysis procedure are shown in Figs
12 and 13, against the existing test results.' Correlation
calculations again only include those predictions where
wedging failure occurred in the tests. Because this is an
equilibrium calculation, it is assumed that either all the
steel yields or only the steel to depth 2-4a yields.'

Comparison between the correlation calculations of Figs
5 and 12 shows that the equilibrium method predicts fairly
similar failure loads to those of the simple plane strain
translational upper-bound method. Where only steel to a
depth of 2-4a is assumed to have yielded at failure (Fig.
13), accurate correlation is again obtained.

The equilibrium method is clearly simple and fairly
accurate when compared with the test results, so it is
useful for general wedging analysis of prisms. [t suffers
from similar limitations to those encountered in the upper-
bound methods developed earlier in that it is a purely
planar analysis technique. However, out-of-plane effects
ought to be checked in practice to ensure that unexpected
fatlures do not occur. In addition, the presence of ducts
in practical prisms for anchorage zones cannot be
modelled adequately by this method due to the planar
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Fig. 12. Comparison between 1est results and predictions
Srom the equilibrium model, with all steel assumed 1o have
vielded
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nature of the analysis technique. Moreover, the necessity
for some measure of the cracking resistance of the prisms
exists. These requirements are beyond the scope of this
method.

Conclusions

Predictions from the upper-bound plane strain analyses
developed here are reasonably good on the whole. It has
been found that, although rotation of the outer blocks
occurred during testing, the translational mechanism is
predicted to occur before any rotations, based on zero
friction on the base of the specimens. This friction clearly
affects the analysis and if it is therefore assumed (from
experimental evidence) that the translational mechanism
cannot develop in practice, it has been shown that, in
general, a curved wedge yield line ought to develop. It
is, however, debatable whether there is a necessity for
such sophistication in the model. The original plane strain
model, including simple translation of the outer blocks
only, produced fairly accurate predictions
regardless of the neglect of friction on the base.

A particularly simple equilibrium solution was
developed for the wedging failure mechanism. It is clear
that this method allows quick and simple solutions to the
wedging problem for strip-loaded rectangular prisms to
be obtained.

It has not, however, been possible to compare results
from the above plasticity solutions with those experimental
results where failure was predominantly by out-of-plane

itself.
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wedging. In addition, the presence of ducts and prediction
of the initial cracking behaviour of the test specimens
cannot be modelled by such plasticity methods.
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