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The scatter in the failure strain, load and stress of high-tenacity polyester and aramid varns is
studied experimentally. From the data, the failure strains of polyester and aramid yarns can be
fitted to a two-parameter Weibull distribution. However, the log-log dependence of the strain
on the gauge length is best represented by the Watson-Smith modification. Whereas the
strengths of polyester yarns are best described by the two-parameter Weibull distribution,
those of aramid yarns are best represented by the Gumbel distribution. The effect of strain rate
on the strength distribution of aramid yarns is also examined. The strength of aramid yarns
decreases slightly with an increase in the strain rate. This is contrary to theoretical predictions

but in line with other test data.

Nomenclature

H Cumulative distribution function

H, Sample cumulative distribution function

[ Length

/7 Load

m Number of sub-bundies

A7 Number of yarns

R Strain rate

x  Constant associated with exponential-law break-

down rule

Constant Weibull scale parameter

[ Location parameter for Gumbel distribution

v Euler's constant

& Scale parameter for Gumbel distribution

n Constant associated with power-law breakdown
rule

1. Introduction

Polymers and brittle materials used in many engineer-
ing applications exhibit a large scatter in their mech-
anical properties. As a consequence, the value of the
mean as a design parameter is lost and the exact
material properties are difficult to predict.

The need to understand the variability in the mech-
anical properties has received considerable attention.
The scatter is attributed to the fact that brittle mater-
ials contain flaws which weaken them [17. The study

of fibre strength is often made with the assumption
that a fibre consists of an aggregate of links; the fibre
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therefore fails with the failure of the we
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[2-5]. This can also be formulated in terms of the
stics of extremes [2
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specine ioad, then the

¥ Shape parameter associated with breakdown
rules

k. Breakdown rule

u.  Mean strength of a sub-bundle

v Length constant associated with Weibull distribu-
tion

p  Weibull shape parameter

o Failure stress

o, Standard deviation of strength for a sub-bundle

¢ Constant associated with power-law breakdown

rule

Constant associated with exponential-law break-

down rule
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probability of failure for the whole fibre, H,, is given
by H, =1 (1 — H,}".

The conventional Weibull distribution [37 assumes
a constant fibre diameter and gives the cumulative
distribution function of strength, =, as

Hz) = 1 a:’%;?%

where a and o are material constants and [ is the fibre
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The basic weakness of the conventional Weibull-
‘'weakest-link model is its inability to deal satisfactori-
ly with the size effect [7, 11-147]. This has led to the
introduction of other variants such as the multimodal
and the volume versions [15-18].

Watson and Smith [13] tried to reconcile experi-
mental values with the Weibull/weakest-link model
and gave an explanation which is based on the ran-
dom variation in the fibre diameter. By using a limit
theorem they modified the dependence of the strength
on the length by raising the length [ in Equation 1 by a
power. The physical significance of the power is un-
clear, but the modification does resolve the length
effect for long fibres. Although the modification is
based on diameter variability, it does not address the
transverse size effect. Knoff [19] also introduced
modification into the Weibull model to deal with the
length effect. His model works for fibres at short
lengths, but for long fibres it becomes equivalent to
the conventional Weibull model.

The strength of polymeric fibres are also known to
depend on the strain or extension rate during tensile
tests, but the response differs from one fibre to an-
other. Aramid fibres are reported to be relatively
insensitive to the strain rate [16,20], while high-
strength polyethylene fibres exhibit a pronounced
strain-rate effect [16]. Carbon fibres show different
behaviour at low and high strain rates. At a low strain
rate the strength of carbon fibres is reported to in-
crease slowly with the strain rate whereas a strong
decrease 1s observed at high strain rates [20].

Normally, the stochastic concept for the failure of
single fibres is used to predict the effect of the strain
rate on the strength of fibres. The two models used,
based on the power-law and the exponential-law
breakdown rules of fibres, are not easily differentiated.
Whereas the former gives the relation ¢ = RV )
where o 1s the failure stress, R the strain rate and na
positive material constant, the latter gives o = InR. In
both cases the strength is expected to increase with
strain rate. 1 is known to be large for many fibres and
the dependence of strength on strain rate turns out to
be mild.

The theory has failed to resolve the dependence of
the strength on the strain rate for some materials. As
pointed out by Wagner er al [207], this may be at-
tributed to the fact that different mechanisms of failure
may dominate at different strain rates.

A yarn s usually deseribed as a group of fibres
which are assembled with or without twist. Parall E
lay ropes are normally made from twisted aramid or
polyester yarns and are used in many civil cngn 1eering
projects [21-237 The behaviour of the :*1 e
plex and requires analysis from the con
ments. Although yarns are 1 adc from tr% res, and data
from fibres are available {7, 12,17, 241, there are in-
consistencies in the varn properties. These mconsis-
tencies may be due 1o the inherent scatter in the fibre
racteristics combined
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49 aramid and high-tenacity polyester yarns are in-
vestigated.

Parafil ropes are made by Linear Composites Ltd;
they contain a core of parallel yarns, with a slight
degree of twist, within a non-structural polymeric
sheath. A variety of fibres can be used, but those of
interest here are the Type A ropes, which have poly-
ester yarns in the core, and Type G ropes which have
Kevlar 49 aramid yarns. The fibres tested here were all
taken from the cores of such ropes, unless stated
otherwise.

2. Experimental procedure

Kevlar 49 aramid and high-tenacity polyester yarns
were removed from parallel-lay ropes to determine the
statistical distribution of their short-term properties.
Hach yarn thus came from a different spool. The
failure strain was considered to be the strain at which
the load dropped significantly during a test. This
could be dependent on the frequency with which the
logging program sampled the force and the manner in
which tests were carried out; however, a drop of 50%
of the force between two successive strain readings
proved to be a reliable criterion.

A Howden tensile testing machine was used for the
experiments and was operated under strain control.
The yarns were clamped by pneumatically operated
jaws and the nominal gauge length was found by
measuring the distance between the clamps of the jaws
with a ruler. The data were recorded directly by
Schlumberger Solatron SI3531D Orion data acquisi-
tion system.

Yarns from a 5 tonne Parafil Type A {polyester)
rope and two different batches of 6 tonne Type G
(Kevlar 49) rope were carefully separated from the
rope sheath with minimum disturbance. This was
done to make sure that the original twists of the yarns
were maintained. The yarns from the two batches of
the Type G rope were labelled as batch 1 and 2. Fach
yarn was assigned a number and a list of random
integers was generated to select the specimens for the
tests.

Each specimen was weighed with an Oertling chem-
ical balance which is capable of measuring to 0.001 g
and the lengths of the yarns were measured with a
metre rule. This allowed the nominal limear density to
be obtained. Ten aramid yarns were weighed and put
nto a "T!Om;sm‘r and Mercer
temperature of 1207°C
maoisture

electronic oven at a
for half an hour to remove the
varns. They were then
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and 327 mm for batch 2 of Kevilar 49 aramid yarns,
and 497, 397,297 and 197 mm for polyester yarns were
performed. Loads were applied at a strain rate of 10%
min~ ! for all the tests involving the aramid yarns
except the tests at 676 mm gauge length, where a
strain rate of 6.3% min~ "' was used. Tests involving
the polyester yarns were carried out at a strain rate of
35% min" '

Two batches of non-twisted Kevlar 49 aramid
yarns, taken directly from the manufacturer’s spools,
were tested at five different strain rates to study the
effect of strain rate on the yarns at an effective gauge

length of 560 mm.

3. Analysis of yarn data

The failure forces, stresses and strains of the yarns
were fitted to normal, log-normal, Weibull and Gum-
bel distributions and the best distribution was chosen
for each case. Full details of the various distributions
can be found elsewhere {27} It was conjectured,
however, that the linear densities would follow the
normal distribution so the linear densities were fitted
to the normal distribution only. The Kolmogorov
Smirnov (K-8} test was used to select the best fit for
the yarns, and a computer program based on the
maximum likelithood [27] method was written to
determine the parameters for the Weibull and Gumbel
distributions.

The goodness-of-fit was used to determine the best
distributions for the yarn characteristics because a
non-parametric test was desired. Non—pzmimctric tests
have the advantage of being independent of the forms
or the values of the parameters in the distributions.
The K-8 test was chosen instead of the well known y?
test because the latter requires the grouping of data
which might result in a loss of information. The K-S
test also detects smaller deviations in the cumulative
distribution which the y? test might miss [28].

In the analysis, a significance level of 5% was
chosen. For the sake of consistency, apart from the
distributions rejected at this level, the distribution
which was found to be valid for test data of a particu-
lar yarn at all gauge lengths and with the smallest D
[ 28] value was selected to represent cach yarn charac-
teristic,

To estimate the cumulative distribution of a sample,
the data for n values were mdu:ud and ranked from
the smallest to the largest value. The saumple cumula-
tive distribution function (CDF), H,, was then estim-
ated from its rank k by the median position method
which 1s given by

ko 03
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fibres and varns can be represented by

distribution. In accordance with Coleman [30] the
distribution function for the time to failure of a yarn
under load /(1), t = 0 can be assumed to be of the form

Ld

,w{ lx[/(z)]dz § (

where A[/(1}] is the breakdown rule, x is the shape
parameter (a positive constant) for the lifetime, and #
is a non-dimensional parameter representing the vol-
ume of the yarns; for simplicity # can be assumed to
be unity. The two commonly assumed functional
forms of & are the exponential-law breakdown rule

x) = sexplx) (4
and the power-law breakdown rule
Mx) = dxn {5)

where o, ¢, ¥ and 1 are positive constants [31, 321
For the short-term strength the linearly increasing
load history /(1) = Rt, t 2 0 1s considered where R is
the loading rate.

The cumulative distribution function for the break
load /7 follows the Weibull distribution under the
power-law breakdown rule [31], since

/\\m'
H{/)y = 1 — exp| - ) /=0 (6)

a
where

R 4+ Lty + 1)
a *( “1¢f ) (7

is the scale parameter and w = k(0 + 1} is the shape

parameter. The mean breaking load becomes [31]
, Rin + Hyorn !
L0y = / IR , &)
/1 \ ¢ ) i K6 + 1) )

The effect of the loading rate on the breaking load is
therefore reflected by the factor RV YA Jog-log
graph of the mean failure load against the strain rate
would be a straight hine and the mean failure load
would increase with an increase in strain rate since n is
a positive constant. This dependence is mild if n i
large.

Under the exponential-law breakdown rule, the
resulting distribution {unction for the short-term fail-
ure load 1s not the Weibull distribution but rather a

double exponential distribution with the mean
o U SURY v
E[/7 = - In| " ) (9)
' Yl K
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TABLE I Statistical data for tensile tests of aramid (KR) and polyester (PR) yarns

Test Guauge no. of Breaking stress Breaking strain Breaking force Linear density

length yarns

{mm) Mean SE (Y Mean SE v Mean SE v Mean SE v

(MPa)  (MPa) (%) (%) (%) (%) (N) (N} (%) (dtex)  (dtex) (%)

KRI45 6762 146 24778 18.259 8.9 1.78  0.0100 6.8 4222 3149 9.0 24703 2134 10
KRI34 5662 100 2461.4 22414 9.1 1.72 0.0133 7.7 4194 3941 94 24700 2988 1.2
KRI24 4662 100 2467.5 24.608 10.0 1.71  0.0130 7.6 4194 4196 100 24636 2850 12
KRIT4 3702 100 25200 22.194 8.8 1,70 00111 6.5 4293 3869 9.0 24697 2,748 11
KRII45 6334 149 2299.1 18.892 10.3 1.87 0.0125 8.2 3944 3248 (0.1 2487.7 19064 09
KRII34 5234 99 2270.5 22.510 9.9 1.80  0.0143 79 3889 3861 99 24837 3039 12
KRII24 4234 100 23844 16.636 7.0 1.83  0.0103 5.6 407.0 2934 7.2 24753 2773 L
KRIII4 3274 100 24173 17.959 74 1.89 00113 6.0 4144 3194 7.7 24853 2447 10
PR50 4974 200 920.5 3725 5.7 11.08  0.0389 4.7 750 0.291 5.5 11243 1.641 2.1
PR40 3974 200 879.7 4.042 6.5 11.07 0.0661 8.4 787 0316 6.6 11253 1566 20
PR30 2974 198 887.2 4.803 7.6 11.56 0.0582 7.1 722 0.398 7.8 11230 1536 19
PR20 197.4 200 909.0 4.525 7.0 11.54 0.0555 6.8 737 (383 7.3 11183 1639 2.1

TABLE Il Parameters of conventional Weibull distribution defined by the cumulative distribution function H(x) = 1 - exp[ — (x %)}
for aramid (KR) and polyester (PR} yarns

Test No. of yarns Failure stress Failure strain Failure force

" n % P % p

(MPay (%%} (1N
KRI45 146 2566.9 16.40 1.83 20445 437.6 1595
KRI34 100 25543 1524 1.78 16.696 435.7 14.60
KRi24 100 25634 1535 1.77 17.372 4359 1487
KRI14 100 2608.5 16.89 1.75 20.366 4449 1595
KR4S 149 23934 14.05 1.94 15.548 410.7 1377
KRII4 99 2365.6 13.31 1.87 14.685 405.4 1294
KR4 100 2451.2 2128 1.83 23.650 419.0 19.25
KRIN4 100 2491.6 18.77 1.94 21161 4277 17.70
PRS0 200 944.7 20.10 11.30 28.024 76.9 2049
PR40 200 904.7 18.59 11.50 12.909 73.7 18.08
PR30 198 916.5 16.31 1193 15.749 74.6 15.65
PR20 200 937.5 16.71 11.92 13.904 76.1 15.31

TABLE I Parameters of Gumbel distribution defined by the cumulative distribution function Hix) = | expl — explix — Byl for
aramid (KR} and polyester (PR} varns

Test No. of yarns Failure stress Fatture strain Fatlure force

3 3 5 B & 8

(M Pa) (MPa) (%) (%%) (™) (N}
KRI45 146 14895 G.O871 1.836 43860
KR4 100 166,30 01039 1781 436.84
KRI24 100 15745 00993 1.769 436,99
BRI 100 147,28 030840 [.751 44583
KR4S 149 01219 1.942 411,88
KRIT34 99 17062 0126 1.872 406.64
KR OO SR 245424 (LOROS 1.RT3 41965
KRITI4 100 128.61 2495 46 00914 1945 478,47
PRSO 206 46.66 94591 0.3962 76.96
PRAG 206y 4853 G604 08915
PR3O 198 : 918,360 0.7429
PR20 200 5568 339,79 0.8907
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TABLE IV Mean p and standard deviation o for aramid (KR) and polyester (PR} yarn data when fitted to the Gaussian distribution
Fest MNo. of yarns Failure stress Failure strain Failure force

u s} n o i 3

(MPa) (MPa) (%) (%) (N} (N)
KRI45 146 24778 220.62 {78 0.121 4222 38.05
KRI34 100 24614 224.14 1.72 0.133 419.4 39.41
KRI24 160 2467.5 246.08 1.71 0.130 4194 41.96
KR4 100 2520.0 22194 1.70 0.111 4293 38.69
KR4S 149 2299.1 230.61 1.87 0.153 394.4 39.65
KRII34 99 22705 22397 1.80 0.142 889 38.42
KRII24 100 2384.4 166.36 1.83 0.103 407.0 29.34
KRII14 100 24173 179.59 1.89 0.113 414.4 31.94
PRS5G 200 920.5 52.68 11.08 0.522 75.0 411
PR40 200 879.7 57.16 11.07 0.935 717 4.47
PR30 198 887.2 67.59 11.56 0.819 722 5.60
PR20 200 909.0 63.99 11.54 0.785 73.7 5.41
TABLE V Mean p and standard deviation o for aramid (KR} and polyester (PR) yarn data when fitted to the log-normal distribution
Test No. of yarns Failure stress Failure strain Failure force

i i i 53 1 54

(MPa) (MPa) (%) (%) (N} (N
KRI4S 146 7.811 0.0956 0.576 0.0713 6.041 0.0968
KRI134 100 7.704 0.0967 0.540 0.0806 6.034 0.1000
KRI24 100 7.805 0.1089 0.534 0.0794 6.033 0.108%
KRIT4 L00 7.828 0.0946 0.529 0.0679 6.058 0.0969
KRII4S 149 7.735 0.1075 0.624 0.0849 5972 0.1075
KRII34 99 7.723 0.1037 (.587 0.0806 5.958 0.1034
KRI24 100 7.774 0.0742 0.601 (0.0585 6.006 0.0764
KRIll4 100 7.788 0.0782 0.637 0.0619 6.034 0.0811
PR30 200 6.823 0.0581 2.404 0.0484 4316 0.0555
PR40 200 6.777 0.0673 2.401 0.0856 4.271 0.0642
PR30 198 6.785 0.0793 2.445 0.0729 4276 0.0806
PR20 200 6.810 0.0723 2.444 0.0676 4.297 0.0750

stress is best represented by the Weibull distrnibution.
The failure strain of the polyester yarns is, however,
best represented by the Weibull distribution.

The conjecture that the linear densities follow the
Gaussian distribution has been vindicated by the fact
that the linear densities of both aramid and polyester
varns are well represented by the normal distribution
and pass the K-S test at all the gauge lengths con-
sidered.

4.7.1. Kevlar 49 aramid yarns

4.1 1.1, Failure stross and breaking force. Figs 1 and 2
show examples of the Gumbel plots for the failure
stress and force. The plots are reasonably straight,
confirming the K-S tests to be valid. It is worth noting
fd {from the resulis of the K-8 tests shown in Table
V1, the Weibull distribution could
model the force and the stress behaviour of the yarns
at tﬁ'ic 5% significance level for all the gauge lengths

also be used

considered, except that of batch 2 at a gauge le
633 mm (KRI145% The results for the Weibull dis-

hmu, are close to those of the Gumbel distribu-
1, but the {mr‘zzb” distribution is m;«umr as seen

11 coup ed with the fact

are zzt@u;z%ﬂy not considered,

ngth of

could be the reason why the Weibull distribution has
been used extensively to describe the strength behavi-
our of materials. The results obtained here, however,
agree with the argument of Smith and Phoenix {33]
that yarns with mild bonding or friction between
fibres may follow the Gumbel distribution
As far as the authors can determine, no one has used
the Gumbel distribution to model either stress or foree
behaviour. The Weibull dzsmhumm has been used
extensively to describe the strength of many materials
{e.g. [7. 247, although there are still a fot of un-
answered questions as regards the length effect of the
distribution. Phoenix and Wu [ 347 and Schwartz e al.
[16], among others, used the Weibull distribution to
model Kevlar 49/epoxy strands. Apart from the fact

that they dealt with composite varns, no investigation
was made into the possibilities of other distributions
fitting their data. Chambers | also used the Wel-
bull distribution to model m atlure
not consider the possibility of other

stress of Kevlar
49 yarns. He did

distributions describing the yarn stress behaviour,

A be described by the

cumulative kmmh zzwzé function H as
Hixy =1 expi(x — B8] v X <
(1)

{1



TABLE VI Maximum absolute deviations for Kolmogorov-Smirnov test of aramid (KR)

and polyester (PR) yarns®

Test Failure stress Failure strain

Normal Log-normal Weibull Gumbel Normal Log-normal Weibull Gumbel

D, D, D, D, D, D, D, D,
KRI45 0.1152 0.1370 0.0861 0.0739 0.1049 0.1190 0.0476 0.0527
KRI34 0.1147 0.1327 0.0785 0.0802 0.0673 0.0811 0.0701 0.0828
KRI24 0.1776 0.1981 0.1061 0.0865 0.0891 0.1073 0.0631 0.6623
KRI14 0.1640 0.1843 0.1081 04.0936 0.0817 0.0976 64.0579 0.0689
KRI145 0.1828 0.1968 0.1318 0.1138 0.0803 0.0984 0.0498 0.0454
KRI134 0.0992 0.1197 0.0820 0.0795 0.0644 0.0682 0.0626 0.0682
KRII24 0.14353 0.1618 0.0816 0.0741 0.1008 0.1068 0.0933 0.1004
KR4 0.1082 0.1236 0.0545 0.0494 0.0734 0.0843 0.0824 0.0851
PR50 0.0395 0.0513 0.0580 0.0669 0.1019 0.1103 0.0638 0.0648
PR40 0.0772 0.0673 0.0440 0.0509 0.0267 0.0300 (0.0682 (.0831
PR30 0.0686 0.0851 0.0242 0.0284 0.0460 0.0405 0.0878 0.0953
PR20 0.0607 0.0683 0.0466 0.0566 0.0453 0.0367 0.0913 0.1114

* Underlined values show lowest D values (best fits) and values in italics show

TABLE VI (continued)

distributions which failed the test at 5% limit.

Test Failure force Linear density 5% limit

Normal Log-normal Weibull Gumbel Normal

D, D, D, D, D, D,
KRI45 0.1139 01354 0.0765 0.0615 (.0458 0.1126
KRI34 0.0987 0.1162 0.0603 0.0563 0.0782 0.1360
KRI24 0.1693 0.1932 0.0948 0.0841 0.0822 0.1360
KRI14 0.1651 0.1877 0.0903 0.0770 0.1103 0.1360
KRII45 0.1600 0.1793 0.1087 0.0911 0.0589 G.1114
KRII34 0.1072 (.1264 0.0779 0.0736 0.0888 (0.1367
KRII24 6.1223 0.1414 0.0807 0.0693 0.0859 0.1360
KRII4 0.1050 0.1231 0.0513 0.6453 0.0820 (0.1360
PRS0 0.0458 0.0496 (1L.0978 0.1065 0.0450 0.0962
PR40 4.0663 0.0803 0.0712 (.0801 0.0485 0.0962
PR30 0.0577 0.0747 0.0285 0.0353 0.0414 G.0967
PR20 04.0462 0.0615 0.0649 0.0762 0.0439 (0.0962

where B is the location parameter, which may take
values from — =« to o, and § is the scale parameter
which determines the spread of the distribution. The
mean E[x] and the standard deviation SD[x] are
given [26] by

E[x] =B — 057726 SD[x] = 0408215 (11)

From Equation 11 the mean and the variance of the
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Gumbel distribution can be obtained from the max-
imum likelihood parameters § and § shown in Table
[T1. These values were used to estimate the population
means and the standard deviations for the various
gauge lengths and the results are presented in Table
VIL A comparison of these estimates with those estim-
ated by ordinary statistics (Table VII) reveals that
there are differences between them, albeit very small.
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TABLE VII Comparison of mean and variance for the stress of aramid yarns obtained from normal statistics and Gumbel parameters

Tests Values from normal analysis Values from Equation 11

Mean, p Standard Mean, p Standard

(MPa) deviation, o (MPa) deviation, o

(MPa) (MPa)

KRI45 24778 220.62 2486.2 191.04
KRI34 2461.4 224.14 2467.7 205.59
KRI24 24675 246.08 2478.5 201.94
KRI114 2520.0 221.94 2528.5 188.89
KRII45 22991 230.61 2306.2 208.17
KRII34 2270.5 22397 2274.2 218.83
KRII24 2384.4 166.36 2390.0 142.65
KRIT14 24173 179.59 24212 164.95

Whilst the means obtained from Equation 11 are
higher, the standard deviations are lower than those
from the normal distribution. The maximum relative
difference for the means is less than 0.5%, which can
be considered to be neghgible. However, the max-
imum relative difference for the standard deviations is
about 22% which is quite high.

4.1.1.2. Failure strain. Figs 3 and 4 show examples of
the Weibull plots for the strain data. The results are in
accordance with those of Steenbakkers and Wagner
[36] who used the Weibull distribution to model the
fatlure strain of Kevlar 149 aramid fibres. The Gumbel
distribution could also be used to describe the strain
behaviour. In fact, it passes the K-S test at the 5%
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level for all the gauge lengths considered, but the D
values are generally higher than those for the Weibull
distribution. This indicates the superiority of the Wei-
bull distribution in representing the strain behaviour.
The normal and log-normal distributions also pass the
K-S test at the level considered for all the gauge
lengths dealt with; however, for the same reason of
higher D values, these distributions were not chosen to
represent the failure strain.

4.1.2. Polyester yarns

4.1.2.1. Failure stress and breaking force. Whilst the
failure force is best described by the normal distribu-
tion, the failure stress is best represented by the Wei-
bull distribution. The Weibull and the log-normal
distributions could also be used to describe the force
behaviour; both distributions pass the K-8 test at the
5% level, but since the aim of the experiment is to
select the best distribution for the yarn characteristics,
the yarns are not represented by these two distribu-
tions. The Gumbel distribution also adequately repre-
sents the failure stress; it passes the K-S test at the 5%
level for all the gauge lengths considered, but the
Weibull distribution is superior. Figs 5 and 6 show
examples of the normal and Weibull plots of the
failure load and stress, respectively.

Although the Weibull distribution has been used by
many authors to represent the fatlure stress of many of
materials, apart from Peirce [2] and Frenkel and
Kontorova [4], the normal distribution has not been
seen, 1n the literature, to model the failure load of
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Figure 6 Typical Weibull plot for polyester yarns (stress data): (€)

data points for PR50, ( ) max. likelihood estimate. Sample size
= 200.

materials. However, from Daniels [37] the failure
stress of a bundle of fibres, under certain circum-
stances, follows the normal distribution. Daniels’
work was related to stress, but the cross-sectional area
of the fibres was assumed to be constant and therefore
stress and force were equivalent.

4.1.2.2. Failure strain. A typical Weibull plot of the
failure strain is presented in Fig. 7. In fact the normal
distribution also adequately represents the strain for
tests at low gauge lengths (below 497 mm). The K-S
values for the normal distribution are lower than
those for the Weibull distribution for all the tests
except test PR50. This suggests that the normal dis-
tribution fits the data better at the lower gauge
lengths; unfortunately the normal distribution fails at
the 5% level for test PRS0 and cannot be selected as
the best distribution for the strain data.

4.2. Gauge length and yarn distributions
4.2.1. Failure stress
Fig. 8 shows the mean stress against the gauge length
for both batches of Kevlar 49 aramid yarn. There is a
slight drop in the strength with increasing test length.
However, in view of the large scatier in bundle
strength it is not easy to make a definitive judgement
about the way the yarn strength decreases with in-
creasing test length merely by using the experimental
data.

Ifitis assumed that the strength of the yarns follows
the Gumbel distribution because of the series-parallel

2.10 216 2.202.
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model [33], then the parameters of the Gumbel dis-
tribution defined by Equation 10 can be expressed by

8= e (12)
(2.4 Inm)y' =
and
" . O /in(lnm) + In(dn) — 4lnm’
SIS ,
& 2471 *’( (2inm)’
(13}

where p. and o, represent the mean and the standard
deviation of each sub-bundle, respectively. By using
Equations 12 and 13 and other properties of the
Gumbel distribution. the mean g, and the standard
deviation o, of the sub-bundles can be calculated. The
relationship between the test length and the yarn
f;ircwz%} can then be obtained.

i, and o, the number of the fibres per
varn 4 ana:% the number of sub-bundles m should be
known évci‘mc tguations 12 and 13 can be used. There
are 1000 filaments per yvarn but m is unknown, so
another cguatum is needed. This can be obtained by
using the following property of the Gumbel distribu
tion [6]:

ht2u — B) (14)

i

where b6} is the density function of the sub-bundle, B
is the parameter of the Gumbel distribution, and u is
the corresponding mean strength of the vai
length under consideration.

bundle at the bundle



With the mean and the standard deviation of the
yarn at the required length known, Equation 11 1s
used to obtain 6 and 3. Equations 12, 13 and 14 can
then be solved simultaneously to obtain p, o, and m.

The above method was employed to obtain p,
== 44729 and 4156.3 MPa for batches 1 and 2 of the
aramid yarns, respectively. Standard deviations
o= 18 544.04 and 17 121.42 M Pa were also obtained
for batches 1 and 2, and the lengths of the sub-bundles
{specimen length/m) were evaluated as 0.344 and
0.371 mm, respectively. The yarns have about 2.2
turns per inch (1 turn in about 10 mm). One would
thus expect that the effect of a broken yarn would be
limited to a length of the order of a few millimetres,
and because of the twist, it is probable that the yarn is
not really behaving as a parallel bundle even within
that length. The values for the means and the standard
deviations are very high, the mean strengths being
higher than any filament tests reported (=~ 3500 M Pa).
These high mean strengths (4200 MPa), extremely
high standard deviations and very short sub-bundle
lengths probably mean that the series-parallel model
is not correct.

The values obtained above are used to obtain the
graphical relationships between the yarn strength and
test length which are shown in Fig. 9 as the theoretical
results. With p, and o, determined, the relationship
between length and strength 18 obtained from Equa-
tions 13 and 11. The theoretical values fit reasonably
well with the experimental results. The yarn strength
depends on the test length but the change is small and
can be masked by the scatter in the yarn strength,

Fig. 9 shows the log-log graph of the mean failure
stress against the gauge length of the polyester yarns.
The plot of the data does not give a straight hine as
predicted by the Weibull distribution; by assuming a
limear relationship a correlation coeflicient of 0.275
was obtained. A r-test of the hypothesis of a zero slope
or a zero correlation coeflicient gave a r-value of 0.41
which corresponds to a significance greater than 20%
(1, = 1.89), so the hypothesis of no correlation was
accepted. Thus the failure stress of the polyester varns
does not depend on the test length. Watson and Smith
137 suggested a modification to the Weibull distribu-
tion so that the cumulative distribution function H of
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rimental, | by o= 67428 4+ 0010955 xp o= 0275,

the Weibull distribution could be represented by

Hix) = | - cxp( 1"( * )‘J x>0 (15)
%o/

[

where [, p and v refer to dimensionless parameters
representing the length, the shape parameter and a
constant, respectively, and o, is a constant scale para-
meter. If the constant v is equal to or close to zero then
the failure stress will be independent of length, and if v
= 1 the conventional Weibull distribution is correct.

The parameters v, %, and p were determined by the
maximum likelihood method to be 0.06, 926.5 MPa
and 16.94, respectively. The small value of v confirms
that the strength is independent of the length. Since
the r-test above also accepts the hypothesis of no
correlation between length and stress, it is reasonable
to take v = 0, which modifies the maximum likelihood
estimates of %, and p to o, = 92585 MPa and p
== 17928, These are taken as the parameters of the
distribution.

4.2.2. Failure strain

Fig. 10 shows the log-log graph of the failure stram
versus the gauge length for both batches of aramid
yarn. The data do not fit a straight line as would be
predicted by the Weibull distribution. Whilst the fail-
ure strain for batch 1 increases slightly with an in-
crease in length, that of batch 2 first decreases and
then increases as the length increases. Without the
contributions of the tests at higher gauge lengths, the
log-log curves for both batches would be straight
lines. A i-test of the hypothesis of a zero slope gives ¢-
values of 2.57 and 0.52 for batches | and 2, respect-
ively. At a 10% significance level (1, = 2.94) the hypo-
thesis of zero slope is accepted. Thus it 18 concluded
that the failure strain is independent of the length. By
using the maximum likelthood method, a value of v
= 0.00001 is obtained for both batches. This further
confirms that the failure strains of both batches are
independent of test length, and the modification of the
Weibull scale parameter given by Watson and Smith
[13] is considered to be the most appropriate with
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TABLE VIII Experimental results for aramid yarns: failure load, strain and strain rate

Test Strain Rate, R In R Failure load, £ Failure strain, ¢ In e
(% /min) (N) (%)

TBI-1 2.0 0.6931 238.8 2.073 0.7300
TBI1-2 5.0 1.6094 2346 2.049 0.7174
TB1-3 8.0 2.0794 240.9 2.093 0.7386
TB1-4 10.0 2.3026 243.2 2,105 0.7443
TBt-5 15.0 2.7081 238.6 2.084 0.7343
TB1-6 20.0 2.9957 232.8 2.024 0.7051
TB2-1 2.0 0.6931 2238 1.957 0.6714
TB2-2 5.0 1.6094 2226 1.927 0.6560
TB2-3 8.0 2.0794 220.8 1.932 0.6586
TB2-4 10.0 2.3026 221.5 1.949 0.6673
TB2-5 15.0 2.7081 221.3 1.915 0.6497
TB2-6 20.0 2.9957 2178 1.897 0.6403

in Fig. 11 the log-log graph of the failure strain
versus the gauge length of the polyester yarns is
presented. By fitting a straight line through the points,
a correlation coefficient of 0.861 is obtained. The
failure strain decreases as the length increases. From
the slope of the straight line in Fig. 11 the Weibull
shape parameter p can be calculated. A value of p
= 19.065 is obtained from the graph but the average
value of p from the data in Table Il is 17.647. The
difference can be accounted for by using a maximum
likelihood method based on Equation 15, giving val-
ues of v = 1.082, 04 = 11.63 and p = 15.302. The slope
of the line in Fig. 11 should be equal to the ratio of v to
p. This ratio gives a value of v/p = 0.07, whilst the
slope of the graph is 0.05. Although there is a differ-
ence between these two values, the maximum likeli-
hood value is accepted because of the wide scatter in
the plots and indeed another acceptable line can be
drawn to give a slope with the value of 0.07. The
modification by Watson and Smith is thus considered
to be the most appropriate for the failure strain of the
polyester yarns, with v = 1.1, The fact that strength
appears to be independent of length, while strain is
not, is a problem that must be solved by further
testing.
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4.3. Effect of strain rate on Kevlar 49
aramid yarns

A summary of the results for the failure load and strain
of the aramid yarns at various strain rates is presented
in Table VI In Fig. 12 the mean failure loads and
strains are plotted against the strain rate.

Although there is a large scatter for batch 1, there is
a general trend whereby the failure load and strain
decrease slightly as the strain rate increases. The
log-log and semi-log plots which arise out of the
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power-law and exponential-law breakdown rules
(Equations 8 and 9} also follow the same trend (Figs 13
and 14). This behaviour does not agree with the
statistical theory described in Section 3.1 despite the
fact that the Weibull distribution was found to be
appropriate for both the failure load and strain of the
yarns tested. The discrepancy may be because the
failure process is not atiributed to a statistical dis-
tribution of defects in the yarns, which is an implicit
assumption in the theory.

From the linear regression results (Figs 13 and 14) it
is impossible to distinguish between the power-law
and the exponential-law breakdown rules, although
long-term experiments done by Wu and Schwartz
[38] with single fibres of Kevlar 49 indicated that the
exponential version of the model might be the more
appropriate.

The inability of the theory to predict the effect of
strain rate on the strength of fibres has also been
observed by Schwartz er al. [12] and Wagner et al.
[20}. Schwartz et al. [12] observed that the strength of
ultra-high strength polyethylene fibres generally in-
creased with increasing strain rate, but the behaviour
was bilinear. Results from Wagner et al. {207 showed
that the log-log and semi-log plots for the mean
strength and strain rate for carbon fibres had two

5.88 -
_5.78-
5 5.68
o0 4
2558
e 3
3 =z — _—
256484 o— o Oy
- 1 & — — s
£5.38- A o — —a oy
ay 3
Es.28-
& :
5.18 3
T R — —
05 1.0 15 20 25 30 3.5
(a) In [strain rate (% min ')}
0.9-
~ 0.8
f i
©
@ Oy I o)
g 0.7 © 8]
% 1 & — 4
. ER e Ay
[
‘é 0.6
<
R R —
0.5 1.0 1.5 2.0 2.5 3.0 3.5
(B} in [strain rate (% min ")l

Figure 13 Effect of strain rate on aramid yarns: a power-law break-
down maodel. (a) Failure load. Batch 11
5483 SHTTE < 107 S r

) experimental, by
= 0.261. Batch 2: (&) experimental,

{ b= 54193 - 98227 % 107 Yk o= 0877, (b) Failure strain.
Batch 11 (73) experimental ( Vo= 073761 - 46192 % 10 Yy
(.266, Batch 20 ( &) experimental, | by o D6RT TS 11855

X107 e 0853,

260
250

240 -
2301
220

Mean failure load (N)

210
200

L4 N—
0.5 1.0 1.5 2.0 2.5 3.0 3.5
(a} in [strain rate (% min'}]

NN
WP
! L

(%)

21

MoNN
T 9
I
&
O

Mean failure strain
N
w w O

- e
o N
o i

[CLINE:

. T e B e —p .
1.0 1.5 2.0 2.5 3.0 3.5
iy [strain rate {% min'1}

T

Figure 14 Effect of strain rate on aramid yarns; an exponential law
breakdown model. (4) Failure load. Batch 11 (€7} experimental, { j
y = 240.62 — 1.2209 x;r = 0.258. Batch 2:{ &) experimental, (- ~) v
= 22569 — 21719 x; v = 0.879. (b) Failure strains. Batch 1 {1}
experimental, ( oy o= 20887 — 8.5990 x 107 *x; r = 0.235. Batch
2: (&) experimental, { by = L9757 « 22870 x 107 2xir = 0.853.

regimes. At very low strain rates up to a rate of
0.24 min 7" there was a slight increase of strength with
strain rate, whereas at higher rates a pronounced
decrease occurred. In the same paper, they reported
that Kevlar 29, Kevlar 49 and Kevlar 149 fibres were
insensitive to the strain rate.

5. Conclusions

A study of the variability in the mechanical properties
of Kevlar 49 aramid and polyester yarns has been
conducted. The major findings are as follows:

1. The failure stress of the aramid varns is best
represented by the Gumbel distribution but that of the
polyester yarns is best represented by the Weibull
distribution. The log log dependence of the strength
on the gauge length for the polyester yarns is not
linear as predicted from the weakest-link and the
Weibull models for failure. The strength of the poly-
ester varns is found to be independent of the gauge
length, whereas that of the aramid yarns decreases
stightly as the gauge length increases.

2. The fatlure strains of both yarns follow the Wei-
bull distribution. However, the log-log dependence of
the strain on the gauge length is not as predicted by
the weakest-link and the Weibull models. The modifi-
cation of Watson and Smith [137] is found to be
adequate for the failure strains of both types of yarn.
Whereas the fatlure strain of the aramid yarns is found
to be independent of the gauge length, that of the
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polyester 1s found to decrease with an increase in the
gauge length.

3. The strength of the aramid yarns is found to be
slightly dependent on the strain rate. The strength
decreases with an increase in strain rate, which is
contrary to theoretical predictions but in line with
other test data.
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