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Abstract—In a previous paper, the authors considered the linear response of a solid prismatic elastic
member to a torque which varied along the length of the member. The cross-section considered was
only restricted by the requirement of two axes of symmetry. That restriction is removed in the
present work, but its removal implies that the response to torque will generally now involve bending,
so the treatment has been extended to allow arbitrary loading in torsion/flexure.

It transpired that a satisfactory analysis is incompatible with the concept of a “shear centre”, and
the existence of a shear centre, as part of a rigorous theory or as an approximation, is clarified in the
paper.

NOTATION

A cross-sectional area
E, G elastic constants
I,,J second moments of area
L length of member
M, internal couple
P; internal force
T torque (= M,)
e, eccentricity of load
i =123
g; linear intensity of distributed load
u; displacement
v; displacement of centroid of cross-section
warping displacement (= u,)
x; global Cartesian coordinates
n, t local coordinates (see Fig. 2 of Ref. [9])

Greek letters
o,. stress
w torsional rotation

INTRODUCTION

The linear response to load of prismatic elastic members is usually analysed by the super-
position of four basic responses, each of which relates a simple deformation component
(extension; major-axis bending; minor-axis bending; torsion) to a corresponding stress
resultant. When the cross-section does not have two axes of symmetry it is traditional to
uncouple these four problems—so that each deformation component is controlled by only
one stress resultant—by invoking the concept of a shear centre. The axial force stress
resultant is taken to act at the centroid of the cross-section, and the zero-extension axes of
the bending deformations (the neutral axes) also pass through the centroid; the shear force
stress resultants, however, are taken to act at the shear centre, defined as that point of
a cross-section through which the lines of action of lateral external forces must pass if
torsion is to be avoided. Provided the member is appropriately supported the shear centre
axis is asserted, by the reciprocal theorem, to be the axis of twist for a pure torsion loading,
and the shear centre becomes synonymous with the centre of twist, which must further give
the axis of a varying rotation when the member is subjected to a varying torque, or
nonuniform torsion.
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The centre of twist

The question of the existence of a shear centre in a general sense needs clarification. There
certainly exists a point in the cross-section at the free end of a cantilever through which
a lateral load may be applied without causing torsional rotation (see, for example,
Sokolnikoff [1]), and the position of that point is independent of the length of the cantilever.
The end cross-section, however, does not remain plane under such a loading; if an extension
piece were added, so as to give a cantilever loaded at an intermediate cross-section, the piece
would therefore suffer some stress and correspondingly would change the stresses and
displacements of the original cantilever, and this change could include twisting. The shear
centre for an intermediate load may thus differ from the shear centre for an end load. If so,
then we can no longer assert from the reciprocal theorem that the application of a torque
anywhere along the member will produce zero lateral displacement of any point on the
shear centre axis, for no unique shear centre will exist.

Again, consider the cantilever under uniform torsion. If a centre of twist exists and an axial
coordinate x; has its origin at the fixed end, then the displacement of the centroid is given by
aw'xy, where a is the radius of the centroid from the centre of twist and o’ (or dw/dx,)is the
constant rate of twist. Thus, for small rotations the displaced centroids lie on a straight line.
In nonuniform torsion, the twist rate o’ varies along the member and the displaced centroids
describe a curve. This destroys the intended uncoupling, pure torque loading having caused
curvature of the centroidal axis.

There are other problems in the hypothesis that nonuniform pure torque loading will
result in pure torsional rotation about an unmoving axis of twist, but the decisive difficulty
is that the hypothesis makes it impossible to satisfy the equations of equilibrium. In the
torsion analysis that follows we shall postulate a displacement system having four elements:
lateral displacements of the centroid v,(x,) and v5(x,), torsional rotation about the centroid
w(x,), and an axial warping displacement w(x,, x,, x3). The concept of a fixed centre of
twist will be abandoned, and indeed it becomes the authors’ contention that in a general,
useful, sense the shear centre does not formally exist. Its role as an approximation will be
considered later.

The authors are not of course the first to consider the validity of the shear centre concept.
Earlier writers, for example Trefftz [2], Koiter [3], Nowinski [4], Reissner [5] and Pearson
[6], studied the position of the shear centre of an arbitrary cross-section and especially the
discrepancy arising from two possible definitions of it. Their discussions, however, were
mostly restricted to the behaviour of a tip-loaded cantilever. The topic featured also in the
search for a general theory of flexure and torsion for closed thin-walled cross-sections,
culminating in the work of Hadji-Argyris and Dunne [7], and here a much wider class of
problems was considered. The theory was extended in certain respects more recently by
Wittrick [8], who showed in passing that in the context of a thin-walled prismatic tube
a shear centre, in a general sense, does exist; he gave formulae for its position.

It is not surprising that the convenience of the shear centre has led to its widespread
adoption by engineers, not only for the analysis of thin tubes; however, the authors know of
no published work establishing its accuracy as an approximation in general. The acceptance
of the shear centre may indeed have inhibited the solution of the general torsion/flexure
problem, without which the approximation could not be assessed.

NONUNIFORM TORSION AND FLEXURE

The nonuniform torsion of a doubly symmetric elastic member has been treated
previously (Burgoyne and Brown [9]), with a solution not restricted to thin-walled
cross-sections. Notation from that paper will not be redefined here, but note that the origin
of orthogonal coordinates x; is the centroid of an end cross-section, that X, is measured
axially and that the x, axis is not necessarily a principal axis.

The stress resultants are given by

P1:J‘ 0,1 dA4, (1)
A
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n

M, = | (x3013 — x30,3)d4 = T(x,), ()

JA

P,=] o0,,dA, P;= J o,3dA (taken at the centroid), (3)

JA A

Mzz X3O’11dA, M3=—J‘X2011d/4. (4)
A A

[y

The displacements will be expressed as:

Uy = wlxy, Xz, X3) — X305(x1) — x3053(xy),
Uy = va(xy) — xz(xy), (5)
us = v3(xy) + xa0(x;),
and Hooke’s law, with zero Poisson’s ratio, then gives the significant stresses:
o1; = {Ew, — x305 — x305), G(W 3 — x30"), G(w,3 + x,0')}. (6)

If there is no axial force acting (P; = 0), then Eqn (1) shows, since the origin is at the
centroid, that:

J w,dA4 = j (x2v5 + x3053)dA = 0. )]
A 4

The moment stress resultants become:
GJ (xzw,3—x3w,2)dA+GJa)’:G§wtds+GJco'——-T, (8)
A
where the coordinate t is defined in Fig. 2 of Ref. [9],
J= J‘A(x% + x3)dA

[cf. Eqn (10) of Ref. [9]), and:

J’ X3W'1dA e 12305 et 121)’:; = Mz/E,
A
)
“J XZwvldA + 13U5 + 1230’3’ = M3/E,
A

where I, = [ ,x}dA, Iy =[,x3dA, I3 =[,x;x3dA. Principal axes are often incon-
venient; the labour involved in finding them, so that I,3 = 0, will rarely be repaid.

The only stress-equilibrium equation to be retained, since we wish to establish a theory in
terms of stress resultants, is the axial one:

o1, ;= 0,
which, by Eqn (6), leads to:
GV2w + E(w_ 1y — X305 — x305) =0, (10)
where V2 = §2/0x3 + 02/0x2%. The corresponding boundary condition is:

Oi1 Xin
G
[see Fig. 2 and Eqn (8) of Ref. [9]1].

As before, it can readily be shown in view of Eqns (3), (6), (9), (10), (11) and Gauss’s
theorem that:

=W, +to =0 (1

PZ:‘_MI3, P3:M/2

WS 36:1-D
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The lateral equilibrium equations:
2+ q2=P3+q3=0
(where g5, g3 are components of distributed load) now combine with Eqns (9) to give:

f XaWw gy, dA + 4z
4

T e

Iy I vy” J g3 ‘

X3w 11 dA + =

4 E

Equations (12) show immediately that nonuniform torsion, leading to a varying warping

function w, will in general cause bending of the centroidal axis even in the absence of
distributed load (when ¢, = g3 = 0).

The analysis problem for a member under a given loading is to find the displacement

functions vy, v3, w and w by solving Eqns (7), (8), (10), (11) and (12) together with appropriate

end conditions.

End conditions

Most of the simple end conditions of interest take familiar forms: any of w, v,, v3, v5 and
v may take specified values representing end constraint, or alternatively T, P,, Py, M, or
M; may take specified values if the corresponding components of end displacement are
unrestrained. It is, however, necessary to consider separately restraint against, or freedom
of, warping.

The second and third terms of the expression (5) for uy, giving a planar displacement of
the cross-section, do not involve warping; to achieve zero warping we must have w = 0
throughout the cross-section. Similarly, the o,, stresses arising from the bending curvatures
v3,v5 in Eqn (6) provoke no warping, so that the unrestrained warping conditionisw ; = 0,
not oy =0.

Solution by trigonometric series

The choice of series appropriate to a particular problem is governed, as it was in our
previous paper, by the end conditions. As a convenient example we shall consider “simple
support” at both ends of the member:

w =0,
02:—'03:()’ (13)
M, =M, =0,

w =0, for all x,, x5.

In establishing the necessary differentiability of our series we have to consider continuity of
the derivatives, and since we may well wish to handle point loads (discontinuous vy, vy,
w 1) and torsional couples (discontinuous ') we shall work from Eqns (8) and (9) rather
than from Eqns (12) and an equivalent torsional equation, finding expressions for 7, M,
and M by preliminary equilibrium calculations, if necessary in terms of unknown support
reactions.

Then we postulate the following series for the highest-order derivatives needed:

i mmn

mm
w =Y —chosi—xlﬂ-ao,

m=1 L
o0 3.3
m’n mn
0/2/ = }: 3 VszOS -— Xy + bo,
m== L L
B e min? mn
vy = — ) 5= V3,€08 — x; + co,
m=1 L L
m?n?

mi
1 bR Wm(x2> XS)COS T Xy + VVO(XZJ X3).
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Since all lower-order derivatives will be continuous, we can integrate to obtain series
expressions for , v;, v; and w with polynomial terms added involving arbitrary constants,
all of which vanish by virtue of Eqns (13) except for one in the expression for w. The
resulting series are differentiable as often as we need:

w= Y Qmsinmxl,
m=1 L

Dy, = Z Vz,,,sinT—nx;,
m=1 L

> (14)

o0

. mn

vy =Y, V3,,,smfx1,
m=1

- mn
W= WO(X29 X3)+ Z Wm(xZ, X3)COSTX1.
m=1 -

When these expressions are inserted into the field equation (10) and its boundary
condition (11) we find, in view of the orthogonality of the trigonometric functions:

VZW,=0 with W, , =0 on the boundary, (15)
m*n® E m3*n3 E )
VW, — TG W, = — _LTE(XzVZ"' + X3 Vam),

with W, , = ——"{fznm on the boundary + (m=1,2,...) (16)

and j W,d4 =0 from Eqn (7).
4

J

We see immediately from Eqn (15) that W, is a constant, whose value controls axial
rigid-body movement.
The linearity of the system of Eqns (16) suggests a solution in the form:

Wm = (xm(x29 x3)Qm + ,Bm(xla x3)V2m + ym(XZa x3)V3m’ (17)

where a,, is defined by the system:

m2n? E
VzamM-L—zaamzo, JvAamdAz(),
(18)
Oy = %t on the boundary
and B, ym by the systems:
m?n* E m3nd E h
B — =5 = B = — 3 = X mdA =0,
v ﬁm Lz Gﬂm L3 G,x?. JAB |
(19)
Bm.n =0 on the boundary, J
m?n* E m3d E 1
VZ m " T T Y [ US— S m — ,
Y 12 G Y I’ G X3 J\A Y d4 0 X
(20)
Ymn =0 on the boundary, J
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Each of these three systems is of the form:

Vi~ Cf=X, (a)
f»= At on the boundary, (b)
J fd4 =0, (c)

It is readily shown by Gauss’s theorem that fA V2fd4 = §f,, ds, where § . . . ds traverses the
whole perimeter of the cross-section, and it follows that any function satisfying (a) and (b)

will automatically satisfy:
CJ fdA=A§tds—f X dA.
A A

If {(n,, ny) gives the components of the outward normal to the element ds, then §tds
=§ (xzn3 — x3n;)ds = 0 by Gauss’s theorem; furthermore [4XdA =0 for all three sys-
tems, since the origin is at the centroid. As C # 0, it follows that equation (c) above is
automatically satisfied by solutions of (a) and (b).

Systems of equations like Eqns (18), (19) or (20) were met in the previous paper [9];
a numerical solution will usually be necessary. With a,, 8, and y, thus established
numerically, the warping function W,,(m = 1,2, . . ) will be known once the coefficients Q,,,
Vim» Vam have been found.

Evaluation of the Fourier coefficients
In solving Eqns (8) and (9) for the coefficients we shall need certain integrals of the

functions a,,, f,, and y,,:

If

Lt

§amld5 = J (X200, 3 — X308, 2)dA,
4

Uy = ~J X200, dA, o, = ~J X300, dA,
4 4

with similar notation for §,, and y,,.
In view of the orthogonality of the trigonometric functions, the equations give:

7 N L

mnJ . mn
Oy -+ I Bmi Ym1 GL TCOS—L—xldxl
Q 0

mnl mnl " 2 [t . omn

Upn2 Bmz + L3 Ym2 + L23 Iljz". =| - ML M3sm~L-x1dx1

3m

mnl mnl 2 (* . omn

O3 Bm3 + L23 Ym3 + L2 | i mj‘o M?_SlnT)HdXI |

(21)

For a given loading in the form T(x), M,(x,;), M;(x,), these equations determine the
constants (Q,,, Vam, Vam) to any order of m, and back-substitution into Eqns (14) and (6)
gives the displacements and stresses.

This, then, is the general solution for the flexural/torsional response to arbitrary loading
of any simply supported uniform elastic member, provided its displacements are small.
Other support conditions can be handled similarly, using the series set out in the previous

paper [9].

THE SHEAR CENTRE

Suppose that the loading g(x,) consists entirely of lateral forces in the x;-direction, and
that it is arbitrarily distributed along the member with a uniform eccentricity to the centroid
of e,. Suppose further that the only point loads are the end support reactions, which also
have an eccentricity of e,. Then the existence of a shear centre would imply that a value of ¢,
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can be found which will result in zero twisting anywhere in the member if one cross-section
(say at one end) is held against torsional rotation.

From equilibrium considerations we have 7" = — ge, and M3 = — g, and with simple-
support end conditions we can integrate by parts to find:

L Le, X | mnx
J Tcos mle dx, = =2 g sin 1d)cl,

o mn o L

LM . ommx, d L* (* . mnx, d
,8in X, = —5—5 | ¢sin Xy,
L m2n? L

O 0

Putting qusin (mnx,/L)dx, = Q,, we can write Eqn (21) as:

2 2L
[B] {Qma V2m> V3m} = { = Q 0 L Qm}

mnG =™ 7 mPnE
and if [B] is the inverse of [B], the condition for zero twist (€, = 0) becomes:
L* GB,, )
6= — 53w
g m*n? E B,
This, then, is one of the coordinates of the “shear centre”, and for the shear centre to exist as
a fixed point for all loading, e, must be independent of m. The matrix [ B] of Eqn (21) appears
to be a complex function of m (so independence seems unlikely), and the example which

follows displays a steady drift of this e, position with varying m.

Example

Figure 1 shows a mono-symmetric cross-section which may incontrovertibly be classified
as “thin-walled”. The symmetry compels 1,3 = 0 and also o2 = B = Bz = Ymz = 0, and
the displacement v, is uncoupled from w and v;, being provoked only by loading in the
x,-direction.

The computer program of our previous paper [9] was adapted to evaluate the field
functions a,, and y,, at the points of a reasonably fine mesh (17 nodes spaced unequally
across the thickness of the flange, for example, and 71 along its length). There were
convergence problems, arising it secemed from the “floating” nature of the boundary
condition, which specifies not the magnitude of the field function but the values of its
normal derivative. The difficulty was handled by the technique described in the Appendix.

For distributed loading restricted to the x;-direction, Eqn (21) now reduces to:

mnJ . 2e,

L1 + “'[:— VYm1 Q —n;ta Qm
mnl, [Vm] | ar? 23)
O3 Ym3 + L m31z3E Qm
and Eqn (22) becomes:
Lz G yml
- - . 2
2= P2 E mnl, (24)
ym3 + L

Traditional theory places a shear centre at a distance a = 0.3033d outside the cross-
section, as shown in Fig. 1. With L/d = 20, the corresponding quantities a,, derived from
Eqn (24) for different values of m are listed in Table A1, together with the integrals a,,,, etc,,
and the outcome is illustrated in Fig. 2. There is a clear drift of the “shear centre” with
increasing m, which implies that for a sinusoidally distributed load q = Qsinmmnx /L to cause
no torsional rotation, it must be applied at a position which depends upon the value of m.

It is now possible, for this particular beam, to examine the inaccuracy involved in
adopting the shear centre as an approximation. Suppose this same simply supported beam
to carry a uniformly distributed load g, both the load and the support reactions passing



46 E. H. BRowN and C. J. BURGOYNE
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F1G. 1. A thin-walled cross-section.
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FiG. 2. Position of a distributed load g = Q sin(mnx,/L) to give no torsional rotation.

through the traditional shear centre. We shall compute the maximum torsional rotation
which results.

The accurate traditional value of e, is — 0.575416024, and for this loading:
Qn=2qL/mn (m=1,35...),
=0 (m=2,4,6,...).

If B, denotes the determinant of the first matrix of Eqn (23), the values ,, are:

4qL L\e; ymlL?
Qe =)= - =1,375...)
" m?n’B, [(Vms +mn L> G m*n*E (m=1,3, )

=0 (m=2,4,6,...).

The maximum bending stress will be gL?d/161,, and we shall limit g to such a value as
will make this one half of the ultimate tensile stress of the material (listed in the following
table as o). Then for a given material the mid-span rotation w is found from Eqn (14), in
which all values are now known numerically. The authors are indebted to Mr P. C. Gasson,
of the Department of Aeronautical Engineering, Imperial College, for guidance on typical
material values, which lead to the results shown in Table 1. Other loading cases and other
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TABLE 1. RESULTS FOR TYPICAL MATERIAL VALUES

Material values used Wpmax
Material E(Nmm™?) o(Nmm~?) (degrees)

Mild steel 207 200 0.12
Aluminium alloy 72 250 04
Titanium alloy 115 550 0.6
H.S. steel 207 1100 0.6
Carbon fibre/epoxy composite 101 710 0.9
Glass fibre composite 69 1000 1.7

cross-sections may of course give higher figures, but these results do suggest that significant
unexpected torsional rotations are most likely to occur in the use of modern high-strength
materials.

CONCLUSIONS

For beams of asymmetric cross-section it is apparent that a varying torque will cause
bending as well as twisting, so there is no worthwhile simplification in considering torsional
loading alone. The analysis here has treated a general loading of applied bending moments
and torque varying continuously or discontinuously along the member. The equations to be
solved are Eqns (7), (8), (10), (11) and (12), and a solution by trigonometric series involves
computing three warping functions for the cross-section (o, B,7), the derivations of which
fortunately all take the same basic form as was encountered in the previous paper [9]. They
are independent of the loading.

For a given cross-section, the three functions and certain integrals of them can be found
numerically, and the integrals represent the essential geometric properties of the beam,
analogous to second moments of area and torsion constants in ordinary beam theory. Thus,
by a systematic if slightly cumbersome process, the response of a beam of arbitrary
cross-section to arbitrary loading can at last be given an engineering analysis.

A nontrivial example of such a solution for a symmetric cross-section was given in the
previous paper, and instead of demonstrating this practical feasibility again here the
authors have used the general theory to elucidate the status of the traditional “shear centre”.
The conclusions are as follows:

(1) In a general, useful, sense the shear centre does not formally exist. There is no single
point in a general cross-section through which lateral loads anywhere along the beam can
be applied without causing twisting.

(2) A shear centre found by and used in a traditional analysis of thin-walled cross-
sections may result in a fair approximation if the load is uniformly distributed, but the error
involved will be more pronounced with modern high-strength materials.
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APPENDIX

The coeflicients &, ., v, of Eqn (17) are field functions of the cross-section, governed by the system:
Vif-Cf=X,
J.» given on the boundary,

where C is a known constant and X a known field function linear in x, or x5. The computer program solved the
corresponding finite difference formulation for a rectangular mesh of variable spacing, where the ratio of adjacent
mesh-lengths never exceeded 2: 1. This reduced the total number of nodes by concentrating them in areas where the
function might undergo rapid variation. Nonetheless, half the cross-section of Fig. 1 was represented by 1687
nodes.

The large number of simultancous equations was solved by the method of Successive Over-Relaxation, but
convergence was never fast and a solution accurate to six significant figures could involve 10,000 iterations.
Symmetry of this cross-section compelled «,, = y,, = 0 on the centre-line [ #,, was not required for this loading; on
the centre-line (x3 = 0) it would have f§,, ; = 0], and convergence was much improved if the function was held to an
arbitrary fixed value f = f, (nonzero) at one other node well away from the centre-line. For this to be possible, the
boundary constraint on f,, had to be relaxed at one node. If the arbitrary fixed value were then changed to = f,,
giving a second “solution”, the two “solutions” could finally be superimposed so as to satisfy the neglected
constraint on f,. This device did significantly improve performance, even at the cost of solving the equations twice.

TABLE Al. PROPERTIES OF THE CROSS-SECTION SHOWN IN FIG. |

m g/ O3 /d* VYmi /d? VYm3/d® an/d
1 — 0.00388265 — 0.00163060 — 0.000104550 - 0.000134707 0.3004
3 - 0.01044054 —0.00353431 ~ 0.002039460 — 0.002660149 0.2902
5 — 0.01532661 - 0.00374746 — 0.006006551 ~ 0.008014925 0.2719
7 — 0.01928706 —0.00334229 — 0.010499336 - 0.014441164 0.2485
9 — 0.02271863 - 0.00284914 —0.014794151 ~ 0.021065678 0.2232

11 — 0.02577303 — 0.00241409 — 0.018723932 —0.027642348 0.1983

13 —0.02853513 — 0.00205950 - 0.022308648 — 0.034125576 0.1750

15 — 0.03107203 —0.00177627 — 0.025614426 - 0.040520996 0.1541

17 — 0.03343978 — 0.00155006 - 0.028708476 — 0.046843880 0.1357

19 — 0.03568320 — 0.00136798 ~0.031646398 — 0.053108746 0.1195

21 — 0.03783636 ~ 0.00121982 ~ 0.034470446 - 0.059327344 0.1053

23 — 0.03992419 —0.00109782 - 0.037211308 - 0.065508798 0.092%

25 — 0.04196444 — 0.00099615 - 0.039890660 — 0.071660130 0.0820

27 — 0.04396946 - 0.00091044 — 0.042523514 ~ 0.077786766 0.0723

29 — 0.04594771 ~ 0.00083742 —0.045120104 — 0.083892946 0.0636

31 -~ 0.04790491 — 0.00077458 — 0.047687292 — 0.089982016 0.0558

33 — 0.04984486 ~ 0.00072000 — 0.050229602 ~ 0.096056646 0.0487

35 — 0.05177004 — 0.00067221 -~ 0.052749932 —0.102118986 0.0421

37 - 0.05368201 — 0.00063003 - 0.055250072 — 0.108170790 0.0360

39 — 0.05558171 — 0.00059256 —0.057731044 —0.114213498 0.0304

41 — 0.05746967 — 0.00055904 ~0.060193358 — 0.120248304 0.0250

43 — 0.05934613 ~ 0.00052890 — 0.062637170 - 0.126276202 0.0200

45 —0.06121114 — 0.00050164 — 0065062402 — 0.132298034 0.0152

47 — 0.06306462 — 0.00047688 — 0.067468822 — 0.138314506 0.0106

49 — 0.06490642 ~ 0.00045429 — 0.069856096 — 0.144326228 0.0063

51 — 0.06673632 — 0.00043359 ~0.072223830 ~ 0.150333716 0.0020




