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Abstract—Lincar and nonlinear uniform torsion of prismatic members has been much studied, but
even in the linear case nonuniform torques have been comparatively neglected. Thin-walled
cross-sections have received useful approximate treatments by Goodier and others, but a general
theory seems still to be lacking.

The linear theory given here corresponds to standard theories for varying elastic flexure. The
torque may vary continuously or discontinuouslv along the member but, as with flexure, we
deliberately avoid specifying in detail how it is applied.

The present analysis is for cross-sections with two axes of symmetry. The examples given include
an important one illustrating the possible sensitivity of beams to eccentricity of loading.

NOTATION

cross-sectional area
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Ao Qo
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M.

elastic constants

polar second moment of area
Saint-Venant’s torsion constant
length of member

internal couple

. internal force

T torque {= M)

e eccentricity of load

i =123

g linear intensity of distributed load
;. displacement

w  warping displacement (= u;)

; global Cartesian coordinates

¢ local coordinates (see Fig. 2)

P
u
X
Xy, L,
Greek letters
g; strain

stress

v Poisson’s ratio
w torsional rotation

INTRODUCTION

Saint-Venant’s theory for uniform linear elastic torsion asserts that a prismatic bar under
constant torque will undergo linearly varying axial rotation, with warping displacements
which will vary over the cross-section but will be constant along the length of the bar. There
will be no direct stresses. The solution 1s exact if the displacement gradients are small, the
end torques are applied in a prescribed way and the end cross-sections are free to warp.

Larger rotations have been studied by Weber [1], Cullimore [2], Ashwell [3], and
Gregory [4]; small-rotation small-torque behaviour in the presence of large axial forces or
bending moments has been considered by Buckley [5], Wagner [6], Biot [7] and Goodier
[8]. All these authors treat only thin-walled sections, and their work is brought together
and compared in a more general treatment by Gregory [9].

If the ends of the bar are not free to warp, or the loading is not confined to the ends, we
have a problem of nonuniform torsion (see for example Fig. I; with linear elasticity the
torsion and bending effects are uncoupled and can be superimposed). Even for small
rotations, nonzero direct stresses now result. Approximate theory for thin-walled sections
has been given by Timoshenko [10], Goodier [ 117, Bleich [12], Viasov [13] and others, but
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24 C. J. BURGOYNE and E. H. BRowN

FIG. 1. A cantilever subject to nonuniform torque.

attempts at a more general analysis have been few. Reissner [ 14] suggested some simplifying
approximations, but gave no applications. Sokolnikoff, in the second edition of his
well-known book [15], solved the particular problem of a cantilever under linearly varying
torque. McMinn [16], in a remarkable paper, attempted a complete solution using three-
dimensional elasticity, but unfortunately there appear to be difficulties in expressing any but
trivial boundary conditions in the form required, and the numerical computations involved
are formidable.

The linear solution given here is in the spirit of other technical beam theories. It considers
an elastic isotropic prismatic bar of doubly symmetric, but otherwise arbitrary, solid
cross-section,* twisted through small angles by externally applied axial couples which may
vary, continuously or discontinuously, along the length of the bar. The end cross-sections
may be constrained against axial warping, and we deliberately avoid specifying in detail
how the loading is applied to the member, in keeping with all generally useful theories for
elastic bars, both torsional and flexural: only the stress resultants are prescribed completely,
and we seek an approximate analysis of widely applicable generality.

BASIC EQUATIONS

We retain the Saint-Venant concept of individual cross-sections rotating undeformed
through a small angle w about the centroidal axis, which we take as the x-coordinate axis,
postulating that the member is supported appropriately. In the plane of an end section we
take the two axes of symmetry to complete a right-handed Cartesian set, defining
coordinates x;(i = 1, 2, 3). The corresponding stress components will be labelled oy

With j,, . .. d4 denoting integration over the whole cross-section, the six stress resultants
are specified as follows:

Plzfo‘lld/izo, (1)

A

PZE O’lsz:O, P3EJ\(}.13dA:0, (2)
JA A
~

M2E X30'11dA:0, M3E“JX20‘11dA:0, (3)
J A4 A

My = (xy0,3— x30;)d4 = T(x,), 4
JA

where T(x,) is the variable torque.

* The more complex case of asymmetric cross-sections will be treated in a companion paper, together with the
problem of the existence of a shear centre.
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The displacements will be:
uyp = wix;, X, x3), (“warping displacement”)
U = — X3w(xyq), (5)
Uz = Xom(X,),
and from these we can derive components of strain from the relation:
;=% (U + uj ),

where the comma abbreviation denotes derivatives: u; ; = 0u;/0x; etc.
Isotropic elasticity, with Young’s modulus E, shear modulus G and Poisson’s ratio
v [G = E/2(1 + v)], implies stresses given by:

T (1 —-wE , ]
mr:—z‘ﬁ W G(WZ - X3 ) G(W‘:; + X,w )
, vE
g = G(Wz —X3(,l)) mw,, 0 s
vE
G(Wv:; +X2(l)l) 0 mwvl

where ' stands for dw/dx,. If Poisson’s ratio is zero we have ¢,;, = 033 = 0, and the
stresses then become:

Ew Gw,; —x30") Gw i+ x;0)
(T“j = G(W,Z t x»;w’) 0 0 . (6)
Gw 3 + x0') 0 0

We shall still accept these expressions where v s 0, as our essential approximation. Similar
disregard of small values 0,, and g3 is familiar in the technical theory of the flexure of
beams.

We cannot now expect to satisfy differential equations of equilibrium in the transverse
directions, and indeed we do not wish to do so, for we mean to avoid specifying in detail
how the varying torque T(x,) is applied; standard bending theory considers a bending
moment M(x,) in the same way.

In the more important axial direction (more important because of our concern with
variable axial warping), equilibrium requires:

Glj,j =0
{(with summation implied over repeated suffixes), or [by Eqn (6)]:

V2w+£w“=0, 7
c"

where V? = 0%/0x} + 0%/6x3. The corresponding axial-direction boundary condition
asserts zero axial surface shear stress over the whole length of the member. Figure 2 shows
a cross-section with local coordinates X; parallel and normal to a particular boundary
clement; the x,-axis coincides with the x,-axis. Then we have &5, = 0, where 6;; are the
stress components in the X; directions. If ¢;; represents the direction cosine cos(x;, X;) we
have, since ¢;; = ¢;; (Kronecker delta):

G31 = Ci3 Cjy 0 = 307 =0

on the boundary.
Furthermore, ¢;3 = 0x;/0x; = {0, sin ¢, cos ¢ }, so that the stress values from Eqn (6) give:

1 0x, 0x;
= Ci3 Oy =W oo + W3
0)(3 (7X3

e — ' (x3 8N ¢ — x5 cos p) = 0.

With (X, ;) for each boundary element written as (¢, n), the boundary condition thus takes
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X3 _
X3, 0
/
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'p\/
/
X2
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~ %,,t

F1G. 2. The X, axis takes the direction of the exterior normal at P.

tg =-t,

F1G. 3. Anti-symmetry of the coordinate ¢.

the final form:

0
Y 8)
on

THE STRESS RESULTANTS

The stress expressions in Eqn (6) are now inserted in conditions (1)—(4). Equation (1)
becomes:

f w,dA4 = 0. (9)
A

Symmetry about the x;-axis gives sign reversal of ¢ (Fig. 3), and compels anti-symmetry of
w in view of Eqns (7) and (8), except for a term ¢, + ¢; x;, where ¢y and ¢, are constants.
Equation (9) therefore only requires ¢; = 0, and to avoid rigid-body movement we take
¢o = 0 also.

With the polar second moment of area [4(x3 + x3)dA denoted by J, Eqn (4) leads to:

T(x,)= GJw + GJ {(wx3) 3 — (wx3) .} d4

A
= GJw + G § wt ds, (10

by Gauss’s theorem, where § ... ds denotes integration around the boundary of the
cross-section. This form for variable T contrasts with Saint-Venant’s form, but must of
course become identical with 1t if 7 is a constant.
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The second of Eqns (2) gives, by Eqn (7):

P3 = GJ (W'3 4 XzCl)’)dA
A
= GJ {ealw s + x07) ) 3dA4 + Gf {x3(w,; — x30)} ,dA4 + EJ‘ x3w 1, dA4
A A A
= G§X3(W.n + [Uf)ds -+ J’ X30-11y1 dA,
A
or:
PS = /23
by Eqns (3) and (8), where M’ = dM/dx,. Similarly:
Py, = — M4,

It follows that if we can satisfy Eqns (3) for all x; then Eqns (2) will be satisfied automat-
ically.
Equations (3), with the stresses of Eqn (6), become:

Mz:Ef x3w,  dd =0, M;= —EJ x;w ,d4 =0,
A A
and both are satisfied by the anti-symmetry of w for all values of x;.
We are left therefore to solve Eqns (7), (8) and (10), with an anti-symmetric w-distribution
which will give w = 0 on the axes of symmetry. We first distinguish two problems:

The first torsion problem. Given a prismatic member, twisted through an arbitrary but
specified angle w(x,), find the warping function w(x, x,, x3) and the corresponding
variation of torque T'(x;). It is implicit that any variation 7T(x,) can be impressed upon the
member by a suitable distribution of externally applied forces.

The second torsion problem. Given a prismatic member, its support conditions and an
arbitrary but specified torque T(x,;) to which it is subjected, find the warping function
w(xy, X, x3) and the corresponding twist w(x;). The torque may be statically indeter-
minate and so not wholly specified, in which event there will be a compatibility condition
such as:

w(Ll) — w(0) = 0. (1

END CONDITIONS
There are two alternative end conditions commonly specified with respect to warping:
(a) warping unrestrained (o,; = 0)
. . for all x,, x5.
(b) warping wholly restrained (w = 0)

No single end condition on the variable « will ensure the satisfaction of either of these, but
instead we can derive an infinite sequence of conditions on w, each of which independently
is a necessary condition; only the full sequence yields a sufficient condition.

In the following discussion, bracketed superscripts will denote differentiations with
respect to x; [w® = w_,,, etc.], and a subscript zero will indicate the value of the quantity
at an end of the member. Thus wy, for example, will be a function of x, and x5, but not of x; .

End warping unrestrained
This requires:

o110 = EwVg =0 for all x,, x3.
The boundary condition (8), true for all x,, can be differentiated to give:
wll = — rw”,

on the boundary of the cross-section.
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Now, if w!'y is to be zero for all x, and xj, then w(l) must be zero all around the
perimeter, and since  is not everywhere zero (except for circular sections, which do not warp
at all) it follows that ", = 0. This is a necessary (but not sufficient) condition for w't’, to
vanish.

We can extend this result by differentiating the governing differential equation (7) as
many times as we wish:

G
wd = o VZph,

2
W) = gvzwm - (_— g) Ve

M

wih = <_ E) Vo lw (for r odd and = 3).

These equations apply throughout the member, but if we now apply the end condition
wly = 0 for all x,, x5, it follows that:

wy =w®, =why = . =0, forall (x,, x3)
and:
wib=wih =wih =... =0,
on the perimeter.
We can differentiate Eqn (8) with respect to x, as often as we wish to get:
wi = — ol b, (12)
on the perimeter, and the final end conditions become:

(l)(z)o = w(4)() = (U(6)0 =...=0. (13)

End warping wholly restrained

Again we can make use of the weaker condition that w ,, =0 on the perimeter.
Substitution of this result into the boundary condition (8) gives '’y = 0 directly.

We can also differentiate Eqn (7) with respect to x,, as before:

G rf2
wh = <__ f) V'w, for reven and = 2.

M

If wy = 0 for all x, and x;, it follows that;
W(Z)O = W(4)0 = W(6)0 =L...= 0, for all X», X3,
2 4 6
wlhi=wl =wl =...=0

on the perimeter, and this can be substituted into the differentiated boundary condition (12)
to give:

wMy =P =¥ =... =0 (14)

The anomaly of the torque

We have just seen that at an end where warping is restrained (w = 0 or all x,, x3) the
derivative ' vanishes, and in this event Eqn (10) clearly cannot locally be satisfied. The
anomaly results directly from the original concept of cross-sections rotating undeformed.
Unless a singularity occurs where the surface of the member cuts its end plane, the
boundary condition 63, = 0 [Eqn (8)] will compel wy = 0 for all noncircular sections, and
the stress expressions (6) will give o,, = 7,3 = 0. Equation (4) cannot then be satisfied.

We must conclude that undeformed rotating cross-sections near a restrained end are
impossible, and the true displacement field is complex. Solutions based on the boundary
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conditions (14) appear to give sensible results for the member as a whole, however, and of
course @), = 0 has been successfully used as a boundary condition in many analyses which
treat warping restraint of thin-walled sections.

METHODS OF SOLUTION

The nonuniform torsion problem has now been reduced to the solution of the following
equations:

E
V2w 4 = w o, =0,

w + G W' 11 (7)

ow .
o= tew’ on the boundary of the cross-section, for all x,, (8)

on

T(x,)=GJ (1)'+G§wt ds, (10)
w,=0orw” =0 atan unrestrained end of a member, where r = 2,4,6,.... (13)
w=0or w” =0 ata restrained end of a member, where r = 1,3,5,.... (14)

w is required to take a zero value on the axes of symmetry.

Two approaches to the solution of these equations have been explored. The first was
prompted by analogy with earlier thin-wall approximate analyses which, in place of Eqn
(10, have proposed an equation 7= GKw' — EI'w", where K and I' were cross-sectional
properties. With this in mind a solution was sought in the form:

o0

wlxy, Xz, X3) = Z g,(xz,x3)a)(”(x1). (15)
r=0

The twist w(x,) here will obviously be related to the varying torque 7(x,), but the
coefficients g,, independent of x,, will be the same for all values of the torque.

The first torsion problem
Substituting the form (15) into the earlier equations we readily find, on equating the
coefficients of w'® to zero:

0
V2ge =0, with %990 _ 0 on the boundary,

on

giving g, to be a constant, which must be zero since Eqn (9) leads to:
Jg,dA::O (r=0,1,2,.. (16)
A
if the coefficient of each derivative o * ! is to vanish.
A similar argument, for successive even values of r, gives:

g, =0 (r even or zero).

To find the values of g, for r odd requires the solution of a sequence of Laplace or Poisson
equations with Neumann-type boundary conditions:

V2g, = 0 with g, ,= —r on the boundary,
E _ (17)
Vig, = — Y2 with g, , =0 on the boundary (r > 3).

This system can be solved (numerically if necessary) to give as many of the g, functions as
are needed for convergence, and the required warping function is then given by Eqn (15). We
turn finally to Eqn (10) to find the torque:

T(x,) = G{K 0 + K30 + Kso® + ..}, (18)
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where:

Kl :‘]+§gl [dS,

K, = § g.tds (rodd, = 3).

The stiffnesses GK ; and GK ;5 can be shown to coincide with GK and — ET of the earlier
theories in the restricted cases where the latter are applicable (Burgoyne[17]). Thus, K, is
the Saint-Venant torsion constant.

The second torsion problem

The solutions of the first problem give the torque T(x,) and the warping function
w(x;, X3, x3) for arbitrary continuous rotation functions w(x, ). Solutions for the rotation in
the second problem are members of this class, so Eqn (18) is still valid, now relating an
unknown twist @ to a specified torque T(x,) in terms of the known, constant, cross-
sectional properties K,.

The procedure must be to truncate the series of Eqn (18), and solve the resulting linear
differential equation under an appropriate number of the end conditions (13) or (14). The
method succeeds or fails according to whether the result does or does not converge with an
increasing number of terms retained in Eqn (18). The authors are indebted to Professor
F. G. Leppington,* whose investigation of some of the convergence problems involved leads
us to expect success in some but not all cases.

SOLUTION BY TRIGONOMETRIC SERIES

Our second approach appears more reliable, but it lacks the advantages of simple
stiffness expressions to be compared with existing thin-wall theory and of the reduction of
the second torsion problem to an ordinary differential equation with end conditions which
can be inserted at a late stage in the analysis. Our choice of trigonometric series will depend
upon the particular end conditions to be satisfied, and we shall treat three separate cases:

Case A—warping unrestrained at x; = 0 and x, = L;
Case B—warping prevented at x, = 0, unrestrained at x, = L; and
Case C—warping prevented at x, = 0 and x, = L.

In addition to these warping conditions we shall consider the rotation w to be zero at one
end, and either the torque or the rotation to take a specified value at the other. Case
A requires a further restriction to control axial rigid-body movement; in Eqn (23) below we
shall put the mean warping displacement equal to zero [f4wdA4 = 0, which will hold for all
x; in view of Eqn (9)].

We first expand w,  [needed for Eqn (7)] as an appropriate series and integrate twice to
obtain series for w ; and w, with constants of integration; the series is “appropriate” if these
latter vanish in satisfying the end conditions. The resulting series can thus be legitimately
differentiated twice term by term:

o0 n
we=Wot+ Y Wpoos ! (case A)
m=1
o0 1 >
=Y W,sin <m - ~> T (case B) (19)
o 2) L
= 3 W,sin s (case C)
m=1 L

The coefficients W,, W, here are functions of x,, x;.

* Department of Mathematics, Imperial College, London.
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The first derivative of w(x,) is expanded similarly:

mimx,

W = Qy + Z Q,, cos

(A)
m=1
i 1
=¥ Q,sin (m—§> ”;“ (B) (20)
m=1 -~
= Y Q,sin ——~m7lem (@]
m=1

The coefficients Q,, Q,, are of course constants.
When these expansions are inserted into Eqns (7), (8) and (9) the outcome, in view of the
orthogonality of the trigonometrical functions, is:

ViW,=0, (A

m?n*E
VW, — W, =0
= e Wa =0, (A or O) @1
1\* n*E
2 - o e —
viw, <m 2) T Wa=0, (@)
0Wy/0n = — 1Q, on the boundary (A) } 22
oW, /on = — tQ,, on the boundary (A,B or Q), )
j WodA =0, (A)
! (23)

ijdAz() m=1,2..). (AB or Q)
A

We notice that if Qq or any Q,, should be zero then W, or the corresponding W,, is also zero
for all x,, x5. For nonzero Qg or ,, we can introduce functions fo(x2, x3), (X2, x3) defined
by fo = Wo/Qo, fu = Wi/, whose value will be independent of the torque and given by:

2.2
E
Ve S =0, (A or C)
o (m—3?n*E

Vit =0 (B
o ) (24)
5'5 = —t on the boundary, (A,B or Q)

n .
J JudA4 =0, (A,B or C))

A

where m = 1,2, ... and, in Case A, m = 0 also. The solution of Eqns (24) will usually

require recourse to numerical methods.

The first torsion problem

With w(x,) given, the constants €, Q, can be found from Eqns (20) by standard
orthogonality methods, and the nonzero W,, W, functions are given by Wy = Qqfo,
W, = Q,,f.. The torque involved then follows from Eqn (10).

Let
H, = 3§ﬁ,,x ds, 25)
1,,(06,) = cos mrle , m=0.1.2 ... (A
. 1 TEx1
- B N N B
sm<m 2) . m=1,2, , (B) (26)
— sin ZEX1 m=1,2,. (©)
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Equation (10) becomes:
Tx) =G (J+ H,)Q, 1,(x,). (A, Bor Q) (27)

We notice that if H,, < J for all m, then Eqn (27) approaches T(x,) = GJ'; and that for
Saint-Venant torsion (Case A with ' = constant = Qo). T = G(J + Hy)w',since 14 = 1, 50
that J + Hq corresponds to the Saint-Venant torsion constant.

The second torsion problem
With T'(x,) given, the constants Q,, Q,, are found from Eqn (27):

L
2 f T, dx,

0
Q =2 B
" GL(J+H,)’ (A, B or €)

L
J Tdx,
0

Qo = GL(J + Hy)' (A)

The rotation w(x,) is obtained by integrating Eqgn (20), and the solution is complete, since
the warping functions are again given by W, = Q. fon.

A common case arises when the torque results from a distributed load g(xy) at an
eccentricity e(x, ). For equilibrium we have 7" = ge, but the torque itself may be statically
indeterminate:

X3

() = Ty +f ge dx,,

8]

where Ty is initially unknown. In this event we invoke the compatibility condition (11)
together with the expansions (20):

L L
o(L) — w(0) = J o dx; =) Q, j T, dx, = 0.

0 m 4]

From the definitions (26) of 7,, we thus find:

Q =0, (A
*QJ% =0, (B) (29)
m=1 M7
o
— =0, (C)
B )

from which to derive the statically indeterminate end-torque.

Example
Consider the case where ge is constant, giving a linearly varying torque 7= T, + ge x,.
The constants Q,, Q,, are found from Eqgns (28).

Case A:
T G(J + Hy)’
— 4 gel.
Q,= dd),
"R G+ i,y Medd
= (m even).

Equation (29) shows that 7, = — 4 geL.
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Case B:
2 — 1Y"gel
Qm = 1 ~ TO - L—'l‘]gi -
(m —2)nG(J + Hy) (m—3)n
The compatibility condition (29) now gives:
2 1 gel & (— 1y
T, [ st S SO LA S
On; (n—%*(J+H,) = n; (n—13)° (J + H,)

from which Ty, is to be calculated and substituted in the formula just obtained for Q,,.
Case C:

Tyl

= e (m even).

Again, Eqgn (29) shows that T = — 1 geL (as would be expected from the symmetry of the
problem), and it follows that:

Q,=0 (modd).

NUMERICAL CALCULATIONS

It is seen from Eqns (17) and (24) that, whichever method of solution is adopted, the
two-dimensional problem to be solved can be expressed in the form:

Vif—Cf=X, (30)

where df/dn has given values on the boundary, C is a known constant, X(x,, x;) takes
known values throughout the domain, and the condition f4fdA =0 is satisfied by the
required anti-symmetry of f.

A computer program written to solve this problem, by Successive Over-Relaxation of finite
difference approximations using a variable rectangular mesh, had as its primary output the
integrals K, or J + H,,; it was applied to members having the cross-sections of Fig. 4, with
E/G = 2.6 and L/d = 20. (Note that the values of H,,, but not of K,,, depend upon the ratio
L/d)) The cross-sections were designed so that the first would fall indisputably within the
thin-wall domain for which previous theories were intended, the second would have
proportions typical of many pre-stressed concrete members, for which the thin-wall approx-
imation might be thought questionable, and the third would have dimensions for which the
earlier theories were clearly not appropriate.

18 18 18

-09

I I m

F1G. 4. Cross-sections used for numerical examples.
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TABLE 1. NUMERICAL RESULTS FOR THE CROSS-SECTIONS OF FiG. 4

J+ H,
m K. Case A or C Case B
Thin section
0 *18.34 d*x 107¢
1 18.340 d* x 10" ¢ 32.26 21.82d*x107¢
2 73.67 49.57
3 - 5651 d®x107* 141.60 104.40
— 5665 d®x 107+
(Bleich’s formula)
4 234.50 185.05
5 — 4.584 d®x 1073 350.29 289.68
6 486.55 416.03
7 —~ 3764 d'°x10°¢ 640.47 561.44
8 809.34 72323
9 ~ 3094 d2x1077
11 - 2544 d1* x 1078
Medium section
0 *¥1.2475d*x 1073
1 12475 d* x 107* 1.2917 1.2586 d* x 1073
2 1.4231 1.3466
3 - 1.792 d°x 103 1.6387 1.5206
— 1.906 d®x 1073
(Bleich’s formula)
4 1.9340 1.7768
5 — 1370 d® x 1074 2.3028 2.1096
6 273717 2.5125
7 ~ 1.069 d'°x 10~ 3.2304 29773
8 3.7723 3.4958
9 — 8347 d'?x 1077
11 —6.522d*x10°8
Thick section
0 *1.3827 d*x 1072
1 13.827 d*x 1073 1.3878 1.3840 d* x 102
2 1.4032 1.3943
3 — 2090 d®x 1073 1.4284 1.4146
—3175d°x1073
(Bleich’s formula)
4 1.4630 1.4446
5 — 1450 d® x 1074 1.5064 1.4837
6 1.5576 1.5310
7 - 1.039d'%x 10”3 1.6160 1.5860
8 1.6804 1.6475
9 — 7.489 d'? x 1077
1t ~ 5404 d'* x 10~8

*Case A only.

The results, together with the value of the restrained-warping constant EI'/G as given by
Bleich’s formula [12], are given in Table 1. The agreement between the value K 3 and
Bleich’s constant is very close for the thin-walled section; it is within 6.5% for the second
section; and, as was to be expected, there is no.agreement in the third case.

AN ECCENTRICALLY LOADED BEAM

As an example of the importance of torsion in beams, and of the application of the present
results, we consider the thin-walled member treated above to be mounted over two equal
spans and to carry a uniformly distributed load g as shown in Fig. 5. The problem is two
degrees statically indeterminate, and we shall make our goal the values of the vertical



Nonuniform elastic torsion 35

A7 B d ¢
z L AN
: L L
g 2
s 2 f 1
Ra Re Re

F1G. 5. A two-span beam example.

FiG. 6. The two-span beam eccentrically loaded and supported.

A
A

A qge

—»—»——»—».—-»-»-—»—»

- [T

F1G. 7. The variable torsion loading.
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support reactions. If the member is both loaded and supported concentrically, we have
a purely flexural problem, and elementary methods show that the support forces are:

R, = 02321 gL, Ry=05715gL, Rc=0.1964¢L. 31)

If, however, the load and support forces at B and C are all applied with an eccentricity e of
one quarter of the flange width (so that e = 9/64 d), as shown in Fig. 6, then we have
a problem of combined flexure and nonuniform torsion, in which the vertical displacements
of the centroids will be given by:

Vg = — ewy, Uc=ewe (V= —Uz).

The problem is best treated by the superposition of the torsion problem of Fig. 7 and the
flexure problem of Fig. 5, whose elementary solution is now:

Ry 0.5715 oL 10971 — 3429 || — ewy FI 32)
R¢ 0.1964 | — 34.29 13.71 ewe | L?
where I is the relevant second moment of area of the cross-section (= 0.010184*). The
torsion problem will be solved by both methods.
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Trigonometric series solution
The torque can be found from equilibrium as:
T = ge(L — x,) — Rge + Rce

{x; < L/2) 13
=ge(L — x;)} + Rce } 59

(x, > L/2)

and when these expressions, together with the values of (J + H,)from Table 1, are inserted
in Eqn (28) for a Case B problem we find:

Q.= Y Q. X, (34)

qeL Rge Rce
Xj d4 ’ d4 ’ Gd4
and Q,,; is listed in Table 2.

The rotation w, which is zero at x, = 0, can be expressed as 50 @' dx; and it follows from

Eqn (20) that:
L & Q, IN\=m
= B o))

)
we=_ %

If we denote the sum of the first M terms of these series by w™’ and use the values found in
Eqn (34) to give:

where:

3
M M M
- > w‘BI)XL oM =
j=1

Z (I)(CAJ“X L,

j=1

(35)

then we can inspect the convergence in Table 3. Three- -figure accuracy—enough for most
engineering purposes—is achieved in about six terms, 1% accuracy in three.

TABLE 2. NUMERICAL VALUES FOR EQN (34)

m Q1 Q.. (97N
1 2.1200 x 10* — 1.7088 x 10% 5.8341 x 10*
2 1.0379 x 10* — 1.4616 x 10* 8.5619 x 10°
3 2.1285x 103 — 4.1638 x 103 24391 x 103
4 1.0723 x 10° — 2.8790 x 10? 9.8295 x 102
5 4.5383 x 102 — 1.4304 x 10? 4.8837 x 10°
6 2.9432 x 107 — 4.7496 x 10? 2.7822 x 107
7 1.6590 x 10? — 2.9780 x 102 1.7445 x 102
8 1.2235 x 102 ~ 34376 x 10 1.1737 x 10?
TABLE 3. CONVERGENCE OF THE COMPONENTS OF EoQN (35)
M @ g}” 0] g";’ @ %) o) (CAf) » (Cn; ) o] Qz)
1 3.953 — 3.186 10.878 13.496 —~ 10.878 37.141
2 7.713 — 8.481 13.980 15.699 — 13.980 38.958
3 8.176 - 9.386 14.510 15970 — 14,510 39.269
4 8.204 —9.394 14.536 16.067 ~ 14.536 39.358
5 8.213 — 9.397 14.546 16.099 — 14.546 39.393
6 8.243 —9.444 14.574 16.116 - 14.574 39.409
7 8.256 — 9.469 14.589 16.125 ~ 14.589 39417
8 8.258 ~ 9.469 14.590 16.130 — 14.590 39.422

All these values must be multiplied by 1000.
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The wg, we values from Eqn (35) transform Eqn (32) into a pair of equations for Ry and
R which, together with overall vertical equilibrium, give:

R, = 00203 gL, Ry=09112gL, Rc=0.0685qL. (36)

Comparison with the figures of Eqn (31) demonstrates the sensitivity of beams of low
torsional rigidity to eccentricities in the loading.

Solution by differential equation
If only two terms are retained on its right-hand side, Eqn (18) can readily be solved
analytically. With K,/|K;| = p*, the equation becomes:

w" = pre’ = = T(x,)/G|K;], (37

where T(x,) takes the values of Eqn (33), discontinuous at x; = L/2. It can be shown that
the solution of Eqn (37) in which w, @’ and " are all continuous at x, = L/2 is:

el X4 x? 1
= L—Ry+ R —qL| =L + —5—
w GKI {(CI B+ C)L q <2L2+ﬂ2L2>

4} smnnf -4}

+ A cosh pux; + Bsinh ux; + C, (38)

where A, B and C are single-valued constants and the quantity {x, — L/2} is to be treated as
zero if x; < L/2.
The three constants are used to satisfy the Case B end conditions:

w=0 and o =0 at x;, =0, o' =0 at x,=1L

[Eqns (13) and (14)], and when the values of K, and K are inserted from Table { we find:

0.8247 — 09453 14580 aeL?/Gd"

wg ) - 0. ) . .

- RyeL/Gd* | x 10% 39

[a)c} [1.6124 — 14580 3.9415] pel/Gd™ > 10 (39)
RceL/Gd*

These figures compare directly with those of Eqn (35) and Table 3.

With further terms on the right-hand side of Eqn (18) an analytical solution is cumber-
some, and Fig. 8 results from a finite difference numerical integration of the equation, using
96 intervals. Results derived from an odd number of terms show a spurious oscillation

o)
o
o KEY
E Torque
P T 2 terms
3 1T e 3 terms
S 4 terms
R S 5 terms
E - 6 terms 3 terms
o O
(o)
B /, /
= Rate of twist
B e =
L~ o L s o]

W O - Z

A B ¢
-t
&
~L o WARPING e, 10
& '] RESTRAINED WARP
z
o
o
g

Fi1G. 8. Results for the problem of Fig. 6.



38 C. J. BURGOYNE and E. H. BRowN

which will not occur from an even number. In the present case the five-term oscillation is
very small, so the two-, four-, five- and six-term results are almost indistinguishable.

Clearly for this thin-walled cross-section two terms are enough; we are unable to assert
that this will generally be the case.

CONCLUSIONS

The paper has addressed the following classical problem for straight elastic members with
constant doubly symmetric but otherwise arbitrary cross-section:

What are the displacements and stresses provoked by any loading which involves
a torque, where the torque may vary (continuously or discontinuously) along the
member?

The purely flexural part of the response may be separated and incorporated by superposi-
tion, so only the torsional response requires study.

Sokolnikoff [15] discussed the problem, but only for the particular case of a linearly
varying torque on a cantilever. The other successful analyses have all been approximations
limited to thin-walled members.

The governing equations have been established here [Eqns (7), (8), (10), (13) and (14)]and
two quite different methods of solving them have been demonstrated. In their convenience
they have different virtues, but they give the same answer to the statically indeterminate
example of Fig. 6, and should do so in all cases. This example is a practical engineering one,
and with its discontinuous torque it cannot be solved by Sokolnikoff’s method. The
solution 1s illustrated in Fig. 8, and a comparison of the support reactions of Eqgns (31) and
(36) reveals the little-appreciated sensitivity of torsionally weak beams to eccentricity of
loading and/or support—an important immediate result from the new analysis.

The differential equation method of solution involves calculating a constant K . Existing
thin-wall approximations depend essentially on a constant I', for which Bleich [12] gives
a formula. For very thin walls, I' = — (G/E)K, so a direct comparison can be made with
the present theory. It transpires, as expected, that for very thin walls (height/thickness = 32)
agreement is close, but at lower values (e.g. height/thickness = 8) Bleich’s values lose their
accuracy (see Table 1). In the absence of a complete analysis it has been impossible until
now to assess the accuracy of the widely used approximate theory.
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