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Synopsis

A method is presented for dividing an open cross-section into
components. Computer analyses have been undertaken to
determine the effects of the junctions between components,
which are significant in many sections. The results of these
analyses are presented in the form of charts, which can be
used in design offices to find equivalent sections whose inertia
can be calculated by simple formulae. No computer analysis is
needed by users of the charts.

The validity of the method is demonstrated by calculating
the torsional stiffness of a Y-beam and its flange. The result is
compared with accurate analyses, which have been used to
calculate the torsional stiffness of the complete range of
Y-beam sections.

Introduction

The calculation of St Venant’s torsional stiffness for a complex open cross-
section is not straightforward. Unlike the flexural stiffnesses, which are
functions of simple integrals over the area of the section, the torsional
stiffness depends on the solution of a differential equation which is valid
over the whole cross-section. It is thus not normally possible to divide the
section into a number of regions, for each of which the stiffness is known,
and then to combine the results to accurately determine the properties of
the overall section.

1f it is required to calculate the torsional stiffness at present, the engineer
must either solve the governing differential equation (which usually involves
a complex numerical calculation) or make a number of simplifying
assumptions which introduce errors of an unknown magnitude.

The commonest approximations make use of the well-known analytical
solution for a rectangular section'. This shows that the stiffness is a linear
function of the shear modulus of the material (G), the largest dimension
of the section (b), and the cube of the smallest dimension (). The multiplying
factor is a function of the aspect ratio, varying from 0.14 when b = 1 to
Y5 when b > 1.

Estimates of the stiffness of more complex sections can be obtained by
assuming that they are built up from a number of rectangles; the stiffness
of each rectangle is determined taking account of its aspect ratio, and these
stiffnesses are summed to give that of the whole section. A recent review
paper by Johnson? studied most of the available methods. There are two
disadvantages of this method that apply most significantly to concrete
sections. It is not always obvious how best to divide the section into
rectangles since sections may not have parallel sides and, with low aspect
ratios, the choice of which is the ‘long’ side and which the ‘short’ side can
cause significant changes in the results, Secondly, the torsional stiffness
contributed by the junction areas can be much larger than that from the
rectangular regions; Johnson? concluded that this was the most significant
cause of error when estimating the torsional stiffness of concrete elements.
The junction effect is particularly important when sections have chamfers
and can cause serious underestimates of the torsional stiffness.

If individual rectangles have high aspect ratios, the error in the total
stiffness is small; this is frequently the case with steel sections in which
the breadth/thicknesses ratio for flanges and depth/thicknesses ratio of
webs are usually of the order of 10:1 and 100:1, respectively. The thickening
at junctions is not usually significant, so both errors mentioned above tend
to be negligible. In addition, most steel members belong to standard ranges,
so that an accurate ‘once and for all’ numerical calculation is carried out;
the results are published along with other section properties.

Concrete sections, on the other hand, cause more problems. The aspect
ratios of the components of the members are frequently less than 5:1, so
that approximations which rely solely on dividing the section into a number
of rectangles are not satisfactory. It is also much less likely that they are
standard sections.

This paper presents a method by which the torsional stiffness of a complex
section can be calculated without recourse to solving a complicated
differential equation. All the numerical coefficients required will be provided
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in the form of design charts for which all the complicated calculations have
already been performed.

St Venant’s theory
The derivation of the differential governing equation is well known and
will not be repeated here. A stress function ¥ must satisfy
2 2,
A A
axt 9yt

vy = =2 (D

over the cross-section, with ¥ set to zero on the perimeter. The torsional
inertia J is given by

J=2[ydA @)

and the maximum shear stress occurs where the slope of the stress function
is a maximum. Hence

T ax. = (g-ﬁ) . (3)

Analytical solutions for this problem are not usually available for sections
of practical interest; most solutions must be found numerically. Fig 1 shows
contours of ¥ for a precast Y-beam section with an in situ flange, calculated
by an accurate finite difference method which is described below. The
contours are at equal intervals in the value of ¥; the particular values are
of no concern here, but the complexity of the shape of the function is
immediately apparent. The actual properties of these particular sections
will be used as an example later in the paper.

Fig 1. Contours of the stress-function ¥ over a Y-5 beam with a 200 mm
flange
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Fig 2. Rectangular section: reduction in length due to end effect

Rectangular section

One section for which an analytical solution does exist is the simple
rectanguiar section shown in the inset in Fig 2. Timoshenko! gives the
stress function, from which he obtains the torsional inertia

o
J=tpe - B2 L w (—Is—tanhﬂr—é)] @
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The first term represents the inertia of a rectangle with b >> ¢, while the
second term is a measure of the ‘end effect’, which is present for all
rectangles, but is negligible at high aspect ratios.

It is postulated here that the end effect will be constant for aspect ratios
larger than a certain (but as yet undetermined) value. It would be convenient
if we could represent the real rectangular section by an equivalent member
in which the end effects could be ignored. It will be assumed that the smaller
dimension is unchanged, but that the larger dimension is reduced by 271,
where A, is a function of the aspect ratio which we wish to determine.

Thus, the inertias of the equivalent sections will be given by

J=31-(b~2)\ct).13 c(8)

which gives

G s s
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The series converges rapidly; Fig 2 shows values of A, against the aspect
ratio b/¢. It can be seen that A, approaches an asymptote (.315124) as b/t
gets larger, as expected. It should be noted how rapidly the asymptote is
reached. When b/t > 1.7, A, is within 1 % of the asymptote, and even at
b = t the difference is less than 9 %.

The implication of this result is clear. It is possible to calculate the St
Venant’s constan. of a rectangular section with great accuracy by assuming
that the cross-section is reduced in length by 0.315¢ at each end, and then
calculating the torsional inertia by ignoring the end effect completely. There
is 1o need to solve a complex equation or to remember complex formulae.

When the aspect ratio b/¢ is 3, the value of X, is only trivially different
from the result for an infinitely long section. Thus, if a section 1.5¢ long
were analysed so that it satisfied eqn. (1), with the boundary condition at
one end that ¥ is prismatic, the correct distribution of ¥ would resuit. This
effect will be made use of later in the paper to decide what sections need
to be analysed numerically.

The determination of X, by itself is relatively trivial; the answer is easily
obtained by rearranging a well-known equation. But it points the way to
a procedure for obtaining similar results for other components of a cross-
section, which take account of the stiffening effects of the interaction
between the various components by determining an ‘equivalent section’
whose stiffness can be determined by simple formulae.

For most sections it will not be possible to find suitable analytical
solutions, analogous to that used for the rectangle. Thus, a numerical
procedure will be needed to analyse the torsion eqn. (1) over a range of
standard sections.
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Computer program

A computer program was already available to solve the equations. The
program was written for the work described in ref.3, where a full description
is given.

The program uses finite differences and successive over-relaxation (SOR)
to solve eqn. (1) subject to the appropriate boundary conditions. A
rectangular grid of nodes is set up which covers the area of interest, and
at every node within the section, a finite difference expression is set up
which relates the value of the function at that node to the values at the
four neighbouring points. At points on the boundary, the value of the
function can be specified, which allows the boundary condition ¢ = 0 to
be specified; alternatively, the value of the slope of the function in either
the x or the y direction can be fixed. This allows axes of symmetry (o be
specified (across which the slope must necessarily be zero) and also
boundaries across which the function is presumed to be prismatic (when
it will be specified that the slope is zero).

The equations that result from this finite difference representation would,
if expressed in matrix form, have many elements that were zero. There would
be only five non-zero elements on each row, three on or adjacent to the
leading diagonal, and two outliers. The use of an iterative technique, such
as SOR, to solve the equations allows only the non-zero elements (o be
stored, making the solution technique extremely efficient in computer
memory. A penalty is paid in terms of execution time, but this is not
significant. No problems have been found with non-convergence, which
is potentially a problem with iterative techniques.

The format for the data input has been kept very flexible. This allows
a wide range of sections to be considered without modifying the program.
All of the results presented below have been obtained with the use of this
program.

Tapering section

A partial analytical solution is available for a tapering section, but this
will be seen not to be a complete solution due to the boundary conditions
at the open end of the taper. For a long thin rectangular section, of thickness
¢ (Fig 3(a)), the value of the stress function ¢ varies parabolically, with
a peak value of /4 on the centreline. For a section with a taper half-angle
of e (Fig 3(b)), which localiy has a thickness ¢, the stress function can be
shown to be increased by the factor u = 1/(i-tan’ o) over that of the
rectangular section.

If the section tapers to a point, this function satisfies the boundary
conditions identically along the edges, but clearly does not take into account
the open end of the taper. This factor becomes dominant for large values
of «; indeed, at « = 45°, the factor becomes infinite, which indicates that
the boundary conditions at the outer end become a dominant factor for
large o and cannot be ignored. However, for low values of «, this function
can be expected to be useful.
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Fig 4. Tapering section analysed
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To study these effects in more detail, consider a section which tapers
from a thickness {, to zero over a length / (Fig 4). Integrating the
analytical stress function discussed above, over the taper area, gives

t’l 4
7= O b D
12(1 - tan'er) 24 tane(l - tan’e)

A number of sections of this type have been analysed using the computer
program. The section extends for a length of 1.5¢, beyond the end of the
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taper; at this end of the section, ¥ is defined as being prismatic, as though
the section continued indefinitely beyond this point. Extending the section
in this way means that the results used here can be applied when the taper
section forms part of a more complex shape.

Curve A in Fig 5 shows the value of ¢ along the centreline of a taper
section with e = 20°. Also shown on the figure are the value /4 (the
peak value to be expected in a rectangular section of thickness {) and pf/4
(the peak value expected in a taper section); for this section, pu = 1.153.
Near the point of the taper, the calculated value of ¥ is close to this higher
value, but soon becomes affected by the boundary conditions at the outer
end. The value of ¥ at the outer end, however, is very close to that expected
in a prismatic section (even though only its normal slope was specified there),
indicating that extending the section by 1.5¢, achieves the desired purpose.

An equivalent section is sought for which the torsional stiffness can be
calculated by simple formulae and which has the same torsional stiffness
as the real section when calculated by the program. Two alternatives seem
logical, and are shown inset in Fig 6. In the first case, the taper is replaced
by an equivalent length (A ,¢,) of prismatic rectangular section, for which

- U+ 2 113
3

J ..(8)

Ay Will be negative for large values of «, but positive for small values.
This will be satisfactory for most values of « but, for very low «, values
of X, will be quite large.

An alternative for small « is to calculate J for the taper using eqn. (7),
but to take account of the junction effect between the taper and the prismatic
section by changing the length of the prismatic section by A,. Thus,

J = ’14 + (11 = Aoty f13
24 tano (1 — tan’e) 3

.9

These two expressions can be used with the results of the computer analysis
of typical sections to calculate values of A, and A,- These are shown in
Fig 6, which can now be used as a design chart. Care should be taken with
the signs of these two correction factors. A, can correspond to either an
increase or decrease in length of the prismatic section, depending on «;
a positive value corresponds to an increase in length. X\, always
corresponds to decreases in length, which are indicated by positive values
in the chart.

Reducing section
These ideas can be extended to a reducing section of length l., where the
width of the section tapers from ¢, to ,, with a taper angle o as before.
As before, computer analyses have been carried out with the prismatic
sections extending 1.5¢, and 1.5¢, away from the tapering section. Curve
B in Fig 5 shows peak values of ¢ for a section with o = 20° and
/./t; = 0.7. The length of the reducing section is too short for the end
effects at the start and finish of the reducing section to be considered
separately; values of ¥ never follow the us/4 curve predicted by the
partial analytical soluticrn  However, for smaller a, when /[ exceeds
1) + 1,, the end effects would become independent.

For most sections, the reducing section (Fig 7(a)) is replaced with an
equivalent length of the wider section A, as shown in Fig 7(b). The
.orsional stiffness can then be calculated from

IUER YA
3 3

J . (10)

Values of A, derived from eqn. (10) and the computer analyses, are shown
in Fig 8, which can be used for design purposes.

For small values of «, this is not entirely satisfactory. Instead, use can
be made of the values of N, derived earlier. Consider two sections; one
narrows from a prismatic section of width r with angle e, the other widens
from the prismatic section with the same angle. For small o the effect of
the junction between the straight and tapered sections will be the same,
but of opposite sign; for the narrowing section there will be a reduction
in length by X ,¢, while for the widening section there will be an increase
in length by the same amount.

Thus, for the section reducing from t, to t, as in Fig 7(c), the St
Venant’s torsion constant can be found from

_ ([x - )‘xztx) ’xl + (txd B tzd)
B 3 24 tana (1 ~ tan® )
(7, + X 008 D
3
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where A, is found from Fig 6. The middle term of eqn. (11) relates to the
tapering part of Fig 7(c), while the first and last term relate to the two paralle]
sections. There will be occasions when it is convenient to include these terms
with adjacent regions.

The accuracy of the method can be seen by considering the section with
a =8 ¢ =10 and / = 1.0 (j.e. t, = 0.7189). From Fig 6,
Ay = —0.065. Eqn. (11) gives J = 0.83934, while an accurate finite
difference analysis gives J = 0.83928; the error is negligible.

Web-flange junction

The junction between a flange and a web is a region which contributes
significantly to the torsional stiffness of I- and T-sections, particularly if
there are chamfers or radii at the resultant corners.

The finite difference program has been used to determine the torsional
inertia of a section which includes the junction, the 45° chamfer (if it is
present), and a length of the flange and web (1.5 times the appropriate
thickness).

An equivalent section is sought which, if its inertia were calculated by
the simple (V5)bf expression, would give the value that has been computed
for the real section.

The equivalent sections chosen are shown inset in Figs 9 and 10. The
length of the thicker component of the cross-section will be modified; thus,
if 7; 2 ¢,, the length of the flange will be increased by Nt (Fig 9).
Similarly, if the web is thicker than the flange, the web length will be
increased by A 1, (Fig 10). This has the effect of keeping the modification
factors N and N, reasonably small. It is important to note that no chamfer
is included in the equivalent cross-section; if it exists, its effects will be
included in the values of the A factors.

Figs 9 and 10 show values of A, and A, respectively, plotted against the
ratios of the flange and web thicknesses. Lines are plotted corresponding
to different chamfer sizes (values of £,/1,). Two of the figures show more
accurately the smaller values of \; and A,. The figures give results for
sections with chamfer dimensions (¢) less than the smallest of #; and r,,.
For larger chamfers, the triangular region defined by the chamfer becomes
the dominant element in the torsional stiffness, and it is unreasonable to
idealise the section as a simple rectangle.

10, - N
. I Actual section

=z 8
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o
>
2 !
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Fig 9(b). Design chart for t, > t,, for small A
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Certain sections will have L-shaped junctions between rectangular B — »4 R - “ 1400 ')
components. These can be catered for by a method similar to that used g[ ! : 2
for the T-junction. In this case, the distinction between flange and web 3 S ——1300 -4 Y7
is irrelevant; the length of the thickest section (width t;) will be modified (S !
by adding an equivalent length A\ (,. Fig 11 shows values of A, calculated i — (342 - | 1200 -« v
for different sections. 3 [. L |
R B S .
Y-beam sections Sl '1 |
As a separate exercise, the St Venant’s torsional inertia of the new range L ~—2§5~ -— - 1000 ¢ A
of Y-beams, which has been proposed as the new standard bridge beam®, E | ! ‘\
have been analysed using the computer program described eartier. It is from + ‘2'?@ - 300 @
the results of one of these analyses that the contour plot of ¥ shown in 8_ l 227 !
Fig 1 is taken. Eight beams are included in the Y-beam range (Fig 12), and 5 + ST 800 -+ v2
they aredesigned to be used with a 200mm-thick top flange. Table 1 gives =4 J 15;8 !
accurate values of the torsion constant for the eight beams acting alone i TTTTTAa 700 -+ ¥1
and also with a 200mm-thick top flange of width I m that is presumed to ) ’
continue to another beam. The flange clearly makes a significant _ ; *,W.,zxs _
contribution to the total torsional stiffness. &
! 200 :
Use of the method | T ‘
The Y-beams will be used to compare the resuits of an accurate analysis, e .
given in Table 1, with the predictions of the method described in this paper. | !
Consider the Y-5 section with a 200 mm flange. The section will be slightly 2 -5
idealised, as shown in Fig 13, thus ignoring the small corner splays and i
replacing the curved section at the throat with a short parallel section. Thus, «‘
from the top to the bottom, the section can be regarded as made up from: o
(a) two parallel flanges, length 303.2 mm, thickness 200 mim; + .
(b) a T-junction between a flange of thickness 200 mm and a web of &
thickness 393.5 mm; o 750 !
(¢) a section reducing in thickness from 393.5 mm to 216 mm, over a length A «
of 615.5 mm (« = 8.204°); Fig 12. Y-beam sections (from ref .4)
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(d) a parallel section of length 60.7 mm and thickness 216 mm;

(e) a T-junction between a web of thickness 216 mm and a flange of
thickness 373.8 mm;

(f) two flanges of reducing section, from 373.8 mm to 202 mm, over a
length of 262 mm;

(g) end sections at the extremes of each flange, of thickness 202 mm.

The contribution to the torsional stiffness of each of these components
needs to be considered separately; numerical values and subtotals are shown
in Fig 14.

(a) The top flanges are parallel-sided elements, with no end effects, whose
inertia can be calculated by a simple b£/3 calculation. There is no end
effect at the outer ends, since the flange is assumed to continue into an
adjacent beam, and at the inner end, the effect will be taken into account
in (b).

(b) The web coming in 1o the T-junction is thicker than the flange, so the
length of the web is modified by A, taken from Fig 10(b). With
/1, = 0.508, and r/t, = 0, this gives A, = — .18,

(¢) The reducing section has a relatively shallow taper angle (8.2°) and is
best considered by the second method given for reducing sections. Thus
the length of the thicker section will be reduced by 393.5.1,, and the
length of the thinner section is increased by 216.\,, where A, is found
from Fig 6 to be 0.066. The torsional inertia of the tapering part of the
section is found from the middle term of eqn. (11).

(d) The throat is another short parallel-sided section.

(e) The bottom junction is between a wider flange and a thinner web, so
the length of the flange is adjusted by a factor \;, found from Fig 9(b)
with 1/t = 0.577, t/t, = 0, which gives A; = 0.22.

(f) The two bottom flanges are reducing sections with t,/t, = 0.540, and
I/t = 0.7, so that A, from Fig 8 is 0.271. This use of the results for the
symmetrically reducing section, on which Fig 8 is based, when applied to
a section which is reducing on one side only, may be considered doubtful,
but it is reasonable because skewing the section slightly will not significantly
alter the values of ¢ from which J is calculated.

(g) The end effects at the end of each flange are taken into account by
subtracting from the inertia of the section an amount equivalent to A,.r*/3
from the total inertia, where ¢ in this case is taken as 202 mm.

The total inertia (obtained by summing the subtotals in Fig 14) is
.0188 m*, which should be compared with the accurate result of .01812 m*
given in Table 1. The error 15 less than 4 %, which would be acceptable
for all practical purposes and is much better than could be achieved by
simply replacing the section by a series of equivalent rectangles that do
not take account of the junction effects.

It must be emphasised that this is a very severe test for this method. The
method would give exact results for sections with parailel-sided elements
between junctions, which are the ones most commonly used in construction
as they are easy to form. The Y-beam section is exceptional in that respect
because it is designed for production in factory conditions with moulds
that are frequently reused, thus spreading the cost of the formwork over
many beams.

Comparison with Johnson’s results
Johnson’ analysed a number of sections by a variety of methods which
involve idealising the cross-section by a series of rectangles, with various
methods of allowing for the junctions. As a reference, he used a finite
element formulation to solve the governing differential equation. Table
2 shows the results of this finite element analysis and those of the present
analysis. The nomenclature of the sections, and the units used, are the same
as in ref.2. Johnson’s section 2 has not been analysed, as there is clearly
an error in Johnson's result; the section is an L-section, and the value he
quotes is less than the inertia of the largest component of the L by itself,
whereas it must be larger. His section 4 is also not included, as it includes
‘+’ elements which are not analysed here.

The results can be seen to give very good agreement; the worst section
is Jackson’s (sic) exact I-section (quoted by Johnson®), which has large
chamfers, with no parallel-sided elements in the flanges.

Limitations of the method

The method described here applies only to the calculation of the torsional
inertia of open sections. Closed sections, which have a much higher torsional
stiffness, have to have their inertias calculated by methods that take account
of the hole(s) in the section. Shear flows have to be calculated around each
hole, and additional equilibrium equations must be satisfied'.
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TABLE 1 — Torsional inertia of Y-beams

Accurate torsional inertia (m")
Beam
Beam alone Beam and flange

Y-1 .00860 01235
Y-2 00930 .01334
Y-3 .01019 .01460
Y-4 01133 01618
Y-S 01277 01812
Y-6 01454 .02046
Y-7 01670 .02328
Y-8 01931 02663
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TABLE 2 — Comparison with Johnson’s* analysis

Johnson’s Jf)hnson s Present Error )
. fin. elem. R Notes
section analysis %o
result
1 (L-beam) 13.7 13.71 0
30T 9.50 9.46 | -04 | @Ls & 3Ts)
Jackson 1 2°Ts” with no
(idealised) 3920 3974 14 chamfers
Jackson 1 4705 4976 5.7 2°Ts’ with
(exact)
chamfers
Hambly 1 74 745 29 2°Ts’ with
(exact) chamfers

The present analysis also applies only to uncracked sections. Thus it is
probably relevant for prestressed concrete beams at the working load
condition, but this covers the majority of cases when the transverse
distribution of load is normally required. It is in this type of analysis that
an accurate knowledge of the torsional stiffness is required. Cracking will
clearly reduce the torsional stiffness. Regan® estimated that the torsional
stiffness of a Y-beam cracked in shear was about half the uncracked value,
and more detailed results for prestressed I-beams were obtained by Luccioni
ef al® while testing beams in combined torsion, flexure and shear.

For many concrete sections, the torsional warping stiffness also plays
a significant part in resisting torsional loads, and this needs to be calculated
by other means’.

Conclusion

A method has been presented which allows the St Venant’s torsional inertia
of a section to be determined by breaking the section up into a number
of equivalent rectangles and tapering sections. The effects of junctions
between elements of the cross-section, which significantly affect the torsional
stiffness, are accounted for by adjusting the zngths of the parallel-sided
elements by an amount that has been determined by an accurate computer
analysis.

These length adjustments have been presented in the form of non-
dimensional charts, which can then be used in design offices to find the
inertia of most open sections, including thick-walled concrete sections,
without the necessity of solving the stress function differential equation
over the whole section.

It has been shown that the method gives good results, even for a section
as complicated as a Y-beam, and it performed well when used on the
examples given by Johnson.
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