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SUMMARY

The paper compares the overall performance of a wide range of numerical procedures that can be used to

" integrate through the thickness of plates and shells. Results are presented for the accuracy of the calculations
when there are discontinuities in the stress through the depth of the plate, and the available methods are
ranked according to their accuracy.

INTRODUCTION

The present work developed from an earlier study,! which indicated that in certain circumstances
it might be preferable to use a simpler integration strategy (such as the trapezium rule) rather than
a more complex one (such as higher order Gauss quadrature). It is based on the assumption that
the stress distribution is non-linear through the thickness of the plate. This non-linearity can be
caused by cracking, in the case of concrete slabs, or yielding, in the case of steel plates. In both
cases there will be discontinuities in the function to be integrated, and/or its derivative through the
thickness. In each case, the form of the stress variation is known from the constitutive relations for
the material, but the positions of the discontinuities are not; they vary both over the area of the
plate and as the loading progresses.

All the integration strategies available consist, in essence, of taking the algebraic sum of the
value of the function to be integrated (y;) at a number of specified abscissae (x;), multiplied by
weighting factors (a;). The differences between the techniques lie in the sophistication of the
assumptions made in deriving the weighting factor, and/or the positions of the integration points.

In plate and shell problems, the stresses to be integrated are themselves found as the result of
complex calculations, part of which depends on the stress history at any particular point. Thus, it
would be difficult to vary the positions of the integration points (x,) through the course of the
calculation, since this would mean that the historical information would no longer be directly
available. The requirement is thus for an integration method that is as accurate as possible,
consistent with the need to fix these integration points before the calculation starts.

Some workers®? have attempted to trace the elasto-plastic? or crack? interface, but most
analysts have used fixed integration stations which fall into the category of schemes covered in this
paper. The simplest of these schemes involves dividing the depth into even layers and lumping the
properties at their centroids. This procedure (henceforth called the ‘centroidal rule) was used in
carly work by Popov et al.* and Backlund and Wennestrom® and continues to find favour ¢ 8
Between seven” and sixteen® layers appear to be used.
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Some early workers”!? investigated more sophisticated integration procedures. Marcal and
Pilgrim® used eleven trapezoidal integration stations while Stricklin et al.*® found that Simpson’s
rule was more accurate. The latter authors rejected Gaussian integration because it did not
directly account for yielding on the surface as soon as it occurred. Crisfield! argued that “this
restriction is unlikely to be of major importance from the point of view of predicting collapse
loads” and adopted Gaussian integration with five stations through the depth.

Cormeau’? also advocated Gaussian integration (using six stations) and clearly demonstrated
its advantages in comparison with the centroidal rule. Irons!? noted that the Gaussian rules ‘are
quite competitive even when there are discontinuities” and showed that, for such a problem, ‘an §-
point Gaussian rule completely outperforms a 16-point Newton-Cotes rule’. Crisficld!* has used
Gaussian integration for the analysis of masonry arches involving a no-tension material. In order
to reproduce ‘mechanism solutions’ with hinges effectively on the surface, at least eight Gaussian
stations were required. Many more points would have been needed if the centroidal rule had been
adopted.

With a view to the immediate incorporation of yielding on the surface, Cormeau!? investigated
the Lobatto rule.!® Using the inelastic deflections for a biquadratic shell as a basis for comparison,
Cormeau observed that, in comparison with the standard Gaussian procedure, ‘the numerical
results show that this feature does not improve the accuracy’. In relation to the analysis of
concrete, Bergan' ¢ advocates the Lobatto rule because of the sampling points on the surface. He
notes that, under pure bending, the outer fibre will exceed the cracking strain by 17 per cent by
the time the outer integration point of a 7-point centroidal rule has registered cracking, and by
5+4 per cent for the equivalent Gauss rule.

The present authors would contend that the latter error is relatively unimportant. It is of more
significance that the rigidities to be used in subsequent analyses, which are determined from
integrals of the stresses through the thickness, must be as accurate as possible. This will enable the
post-cracking (or post-yield) response to be followed more accurately, even if the precise load at
which the first crack formed is missed. The field in which the accurate detection of first yielding is
most likely to be important is that of the buckling behaviour of thin shells. Even here, it is the
accurate representation of the reduced stiffness in the early post-yielding period, rather than the
actual detection of surface yielding, that will matter. It is certainly possible that a reasonably high
order Gaussian rule will out-perform the Lobatto rule even though the latter has points on the
surface. A further advantage of Gaussian integration is that it gives exact solutions with only two
points when the response is completely elastic, for both the moment resultant and the force
resultant.

Further studies are in progress to investigate the relative importance of the detection of first
yield (or cracking) and the accuracy of the subsequent calculations of stiffness; these will be
reported in due course. In the present paper, a measure of the overall accuracy of an integration
strategy will be determined, which permits comparisons between methods on a rational basis. A
variety of integration techniques will be built up from standard formulae, and applied to a range of
idealized problems. The accuracy of the various techniques will be compared, and recommenda-
tions made regarding the best technique to use in different circumstances.

The results obtained in this paper are more generally applicable to the numerical integration of
discontinuous functions. In plate and shell problems, the range of integration is normally fixed (to
the thickness of the plate), whereas in the general problem, the range of integration may vary. This
is not insignificant; for some of the integration techniques an interpolating function can be
identified which can itself be integrated analytically over any range. It is then possible to find
revised quadrature formulae for any integration range using invariant integration points, which
will be of considerable benefit when the function is known only at certain points, or is difficult to
calculate.
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Detailed results are not presented here for these problems, but integration techniques which
give accurate results, and which are based on interpolation methods, will be identified.

METHODS AVAILABLE FOR NUMERICAL INTEGRATION

A variety of techniques can be used for numerical integration. At their simplest, most rely on fitting
an approximate function through a number of points at which the integrand is calculated, and
then integrating analytically the approximating function. A rigorous mathematical derivation of
each method will not be given here, but the principles of each method will be described, and
references given to more detailed explanations. Where available, references will be provided to
accurately tabled values of numerical constants. A good summary of many of the available
methods is given in Reference 17, while more mathematical treatments are given in References 15
and 18.

All the methods presented assume that the function to be integrated varies smoothly within the
integration range, an assumption that is not valid in our case. However, it is not usually feasible to
take full account of the presence of the discontinuities, and it was the need to determine the
accuracy of the methods, when faced with problems in which the discontinuities cannot be
avoided, that led to the work described in this paper.

Gauss method

Gaussian quadrature is one of the oldest and best known integration techniques, but can be
used effectively only when the range of integration is constant. In essence the method works by
assuming that the function can be evaluated at n points, whose positions are not yet fixed. There
will thus be 2n unknowns to be evaluated (n positions x; and n weighting functions a;). These
unknowns will be determined on the assumption that the function y is a polynomial of degree
2n—1 and that the integral over a specified region is to be exactly given by the summation
3 a;y;. Gaussian integration is thus the most general of the methods that will be considered, since
none of the parameters are fixed.

The evaluation of these unknown coeflicients involves the solution of non-linear simultaneous
equations, which are dependent on the range of integration required. For this reason, results are
usually quoted for integration in the fixed range — 1 to + 1. Values of the constants for all values of
n between 2 and 16, quoted to 15 significant figures, are given in Reference 19, while some other
solutions for values of n between 16 and 96 are given in Reference 20, quoted to 20 significant
figures.

Lobatto’s method

It may, arguably, be desirable to ensure that there are integration points at the limits of the
integration. Gaussian integration does not provide such points, but this problem can be overcome,
and most of the accuracy retained, by the use of Lobatto’s method?® (which should, more
accurately, be attributed to Radau®'). The parameters are derived in a similar way to those of
Gauss, with the difference that the first and last abscissae are fixed at —1 and +1 respectively.
Two degrees of freedom are thus removed from the calculation, so it is now only possible to find an
exact solution for polynomials of degree 2n— 3. Values of the weights and abscissae are given in
Reference 20 for Lobatto methods with up to 10 points, although most of the results are quoted
only to seven significant figures; Reference 18 gives, additionally, the 11-point form.

Equal weight methods

There are some occasions when it is desirable to have equal weights associated with each
abscissa. In particular, if the calculation (or measurement) of the integrands is subject to significant
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error, it is preferable that errors in one term do not have undue influence on the overall
calculation. Chebyshev derived expressions for such forms of numerical integration, in which the
unknowns are the positions of the n abscissae. Unlike the Gaussian form, there are n unkowns,
rather than 2n, so it is possible only to find exact solutions for polynomials up to degree n— 1.

For integration in the range —1 to + 1, the abscissae can be shown to be the roots of the
Chebyshev quadrature polynomials. For values of n between 1 and 7, and also for n=9, all the
roots are real, but for n=8 and n> 10, complex roots exist, so no formulae can be found for these
problems.?? Nevertheless, if it is desirable to use more points, repeated use can be made of the
simpler formulae.

Cotes’ method

Cotes’ method is a generalization of the two traditional methods of numerical Integration; the
trapezium rule and Simpson’s rule. If the value of a function is known at n points, it is possible to fit
a polynomial of degree n— 1 through those points; that polynomial can then be integrated to give
the required solution. If the function is known at equally spaced points, and the integration is
carried out between the first and the last points, the method is known as Cotes’ method.

Cotes’ method is often expressed by the formula

J yx)-dx=(x,— XO)kZo Ci e

Xao

and the coeflicients C}, are tabulated in the form N - C}, where N is chosen to give integral values.
Coeflicients in this, or similar, form are given in Reference 17 for up to 7 points, and in Reference
23 for up to 11 points; Reference 18 gives results for up to 20 points.

The error terms associated with the Cotes formulae are such that there is usually not much
advantage in using the even order forms,!” so these are rarely used. The higher order formulae
(9-point, 11-point and upwards), involve some negative weighting coefficients.”® This is symp-
tomatic of the fact that attempts to fit a high order polynomial through a limited number of points
often leads to spurious oscillations in the approximating function, which significantly increases the
error of the associated integral.

To avoid problems with higher order formulae, lower order Cotes formulae are often applied
repeatedly over adjacent regions. The end points of each region overlap, so the values of the
function at these points are used twice. Thus, the *S-point Cotes rule applied twice’ will make use of
9 distinct integration points; this rule passes two separate quartic polynomials through each half
of the region. The result is not the same integration rule as the 9-point Cotes formula, which passes
an 8th order polynomial through all 9 points. Figure 1 shows a variety of approximating functions
for 9-point Cotes integration.

Romberg’s method

Romberg’s method is a modification of the Cotes method. If the integrand is assumed to be
differentiable, to whatever degree is needed, then the error in the trapezium rule is expressible as a
power series in the interval size. By combining the result for one interval size with the result for
twice as many intervals, it is possible to eliminate the highest error term. This process can be
repeated as many times as necessary, each time doubling the number of intervals, while
climinating a further error term, and so increasing the accuracy of the calculation. Romberg’s
method is outlined in Reference 17, and explained in detail in References 24 and 25.
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Trapezium rule, 8 times

Simpsons rule, 4 times

5—Point Cotes rule, twice

9—-Point Cotes rule, once

Figure 1. Alternative interpolating functions for 9-point integration

The first stage of this process yields a formula identical to Simpson’s rule, while the second stage
yields a result identical to the 5-point Cotes rule (i.e. 4 intérvals), so no new formulae are obtained
so far. However, repeated applications of the method do yield new formulae. The third stage of the
process yields an 8-interval (9-point method), which will be considered below. This can be
regarded as a modification of the 5-point Cotes rule used twice, and, unlike the 9-point Cotes rule,
does not have negative coefficients. Other formulae, using 16, 32, 64 etc. intervals, can be derived
easily, but they will not be considered further here.

Analytical trapezium method

A modification of the trapezium method can be used for integration to find the moment within a
plate. The force in the plate is found by the trapezium rule in the normal way, which involves an
integration of a series of linear interpolations of the stresses between the integration points. To
calculate the moment, the same interpolated functions are used for the stresses, with the moment
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arm specified exactly. The integration between each pair of integration points is thus applied to a
quadratic, rather than a linear function, so higher accuracy can be expected by this means.

Itis not possible to derive simple expressions of the form M =) a;y;,in which y, is the integrand
x,04, which includes the lever arm component x;. Instead, expressions of the form M =Y a.x0,
=3 b0, can be derived for each particular problem, in which the lever arm component x; is
included in the weighting function b,.

Bates’ method

A method proposed by Bates?® bears some similarity to the analytical technique described
above, but can be applied to almost any function. It is claimed that the method yiclds improved
results for discontinuous functions (when compared with the trapezium rule), and is still accurate
for smooth functions.

The basic assumption is that the integrand () can be factorized into 2 functions fand g.

b b
1=J P(x)-dx= ff(X)'.f/(X)'dx

where f(x) is a piecewise or continuous function of order one, and g(x) is a continuous function.
The integral is now evaluated using Simpsons’s rule, with 2n intervals (2n+ 1 points). Alternate
values for both f and ¢ are then eliminated by taking the average values of the adjacent points
(implicitly assuming that both f and g are piecewise linear), which yields, after some manipulation

b— . .
1Z("'*n"@'{%f(O)[g(O)ﬂLAgJ+f(1)g(1)+ - S n=1gln =1+ f(n)[g(n)— Ag,]}

where Ag;=[g(i)—g(i —1)]/3.

It is intended by Bates that the function g(x) should be the moment arm when calculating
integrals for moments, but in fact the method is more generally useful. The expression for the
integral can be expanded, and f and g recombined where possible, to give

1= 03 g1+ gt 1)+ gl P2 09— fgn 1)
from which it can be seen that the method is similar to the trapezium rule, with two additional
terms and modified weighting for the end points. Note that the method is not symmetrical with
respect to fand g; the functions cannot be interchanged.

If it is assumed that g(x)= x, then the result is identical to the analytical technique. However, an
interesting result is obtained if f(x) is set to unity. The additional terms can then be rewritten in
terms of the unfactored integrand (¢), to give

b—a
I :(7611) 200+70,+60,+603+ ... +6¢, ,+ TPy +2¢0,}

This can be visualized as an end correction to the trapezium rule. Detailed results will be presented
below for this version of Bates’ method.

Centroidal method

A technique that is widely used in integration through the thickness of a plate or slab is the
centroidal rule. In this method, the plate is divided into a number of layers, of equal thickness. The
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integrand is assumed to be constant over each region, so an equal weight, equal interval method is
obtained which is extremely easy to program. The method is alternatively known as the mid-point
or rectangular rule.

Spline curve

Spline curves are widely used in computer graphics applications?” to pass a smooth curve
through a number of points. A number of different versions of these techniques are available,
including tensioned splines,*® to improve the ‘fairness’ of the curves, and parabolic blending,
which is used to localize the effect of a variation at one node. Since these methods are, in essence,
attempts to find a good approximation to a function, it seems only logical to extend the process
and integrate the approximating function thus obtained. A thorough review of the use of spline
curves in this way is given in Reference 29.

Only the basic, untensioned spline will be considered here, and for simplicity it will be assumed
that the integration points are equally spaced over the whole region to be integrated. Between each
pair of abscissae, the integrand is assumed to be a cubic polynomial, and can thus be expressed in
terms of 4 parameters. These parameters can be determined by specifying the value of the function
at cach node (these are the independent variables of the problem), and ensuring continuity of slope
and curvature of the function between adjacent regions. Taken together, these conditions yield
sufficient equations to specify all but two of the parameters, whatever the number of regions.

The last two conditions can be found by specifying the slope or curvature at the ends of of the
integration region. In this paper, two methods will be used; the first assuming that the curvature at
the ends can be found by extrapolating the curvature at the two adjacent internal abscissae
[Spline], while the second assumes that the curvature at the ends is zero [Spline-0].

The determination of the interpolating function involves a matrix inversion, after which the
weighting functions can be determined easily. For regular node spacings with integration over the
full range, it is possible to produce tables of abscissae and weights as for the other methods. The
primary benefit of the method, however, is the ease with which it can be extended to irregular node
spacings and integrations over other ranges.

COMPARISON OF METHODS

Figure 2 shows diagrammatically the distribution of the abscissae and the associated weighting
functions for fourteen different methods of integration using 9 integration points. In cach case the
vertical line represents the range of integration, while the horizontal lines represent the weights
associated with each point; the longer the lines, the greater the weight. The vertical position of the
lines represents the relative positions of the abscissae within the integration range. All the charts
arc shown to the same scale, with the average value of the weights shown for clarity.

The weights for the two spline methods (Figure 2) differ significantly only at the ends; in the
centre of the integration region, the weights of the various abscissae are nearly equal. This is not
particularly surprising, since changing the value of the function at one of the internal nodes will
only affect the spline curve locally, and similar changes will result whichever node is altered. Thus,
the weights of all nodes will, in the absence of end effects, be equal. Thus, apart from the end
variations, the spline curve expressions are closest to those of the trapezium rule.

The 9-point version of Simpson’s rule, the 5-point Cotes formula used twice and the Romberg
method are seen to differ little from one another. However, the strange behaviour of the 9-point
Cotes formula is obvious, and it is clear that big discrepancies in solutions can be expected as
discontinuities pass across the abscissae.
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Figure 2. Weights and abscissae for 9-point integration

The uneven distribution of the abscissae in the 9-point equal weight method is clear, and
compares with the even distribution of the 3-point equal weight method used 3 times, which is
almost indistinguishable from the centroidal rule at this scale.

The Gaussian integration techniques have a much smoother distribution of weights and
abscissae than the other methods. The abscissae are closer together at the edge of the integration
range, but with low weights, whereas at the centre, there are fewer points but the weights are
increased. The low weight associated with the extreme points in the Lobatto’s method can also be
seen.
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ORDERS OF INTEGRATION USED

For the present study, all reasonable integration methods using 13 integration points or less have
been studied. The choice of thirteen points as the upper limit was made since this allows the
repeated use of several lower order Cotes formulae (3-point 6 times, 4-point 4 times, etc.), and
repeated use can be made of several Gaussian integration techniques with twelve points (2-point 6
times, 3-point 4 times, etc.). A total of 130 different integration strategies have been studied. The
data for each one were produced as a DATA statement; a BASIC program used each one in turn to
produce results for each of the integration problems studied.

TEST CASES CONSIDERED

Four separate integration problems have been studied. These were chosen to represent the worst
cases likely to be encountered in a study of plate and shell problems, but the results are likely to be
applicable to other problems which involve discontinuities. Concrete, at failure, is often assumed
to have a constant stress in the compression zone, but to be cracked in tension, so that no stress is
carried. Thus, the stress block is as shown in Figure 3(a). In a structural analysis program, it is
necessary to integrate the stress itself, to get the force (Case 1), and also the stress multiplied by a
lever arm, to get a moment {Case I1). This latter problem results in an integrand as shown in
Figure 3(b). Both integrands have discontinuities in the value of the function itself, though in the
second case the magnitude of the discontinuity varies as the position of the discontinuity varies.

The other two cases are derived from studies of steel plates, in which the outer layers of a plate
may be plastic, and so at virtually constant stress, while the centre is elastic. This leads to a stress
block without a discontinuity in value, but with a discontinuity in slope. The same two problems
are considered to get force (Case I1I) and moment (Case [V), as shown in Figure 3(c) and 3(d).

Consideration was also given to integrals involving the stress multiplied by the square of a lever
arm, since such integrals are used in the calculation of the stiffness of an element, but as will be seen
later, the results for Cases I and I are broadly similar, as are the results for Cases IIT and 1V. It was
thus decided not to study the additional cases further.

The four cases considered in Figure 3 are only building blocks from which practical situations
can be derived. For example, an accurate representation of the behaviour of concrete, which
involves compressive yielding and tensile cracking, would incorporate a combination of (a) and (¢)
(and hence also (b) and (d)). Thus, when considering the results of these studies, it is important not
to associate them too closely to concrete or steel. In a real problem a more complicated situation
may arise. There may be more than one discontinuity, and the stresses may vary in a more
complicated manner away from the discontinuity. Nevertheless, these four problems may be
regarded as the basic blocks.

METHOD OF COMPARISON

In each of the problems studied, the position of the discontinuity has been left as a variable (z).
The difference between the numerical integration and the exact solution will be the error of the
analysis (g). ¢ will be a function of z, and to avoid making decisions based on a single value of z,
which may be the worst case for one integration method, but the best for another, a method is
sought in which the overall accuracy for all values of z 1s assessed. While such overall accuracy is
desirable, it may, in reality, not be the overriding criterion. For example, with plate or shell
buckling, the dominant issue may be initial loss of stiffness following first yielding (z—0 in
Figure 3(¢)). In contrast, for reproducing plastic mechanism analyses, the dominant situation will
involve full ‘stress-block’ plasticity for the complete section. Yet again, for the rigid plastic
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mechanism analysis of a masonry arch bridge,'* the most important case would involve a very
thin compressive block at the edge. The present work ignores these possible different weightings
for the different “z-positions” and assumes an equal weighting to devise a single measure of overall
accuracy.

The method adopted is to take the root mean square error over the whole range of feasible z
values. This overall error is itself determined by numerical integration, using Gaussian integration.
The error ¢ will be a discontinuous function of z, but unlike the general problem that is being
studied, it is known that these discontinuities will occur at the integration points (Figure 4). 1t is

Main integration points

NIANEEAN N N
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discontinuity
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Gauss points used to determine
mean square error between each

pair of integration points

Figure 4. Determination of error for each method
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thus possible to use a relatively low order Gaussian integration (3 points) over each region
between the main integration points, and still achieve a sufliciently accurate calculation.

COMPARATIVE RESULTS

Tables I (a) and (b) show a summary of the results of the various trials, ranked from the best
method to the worst. The first column gives the rank, followed by the type of integration technique
used. The third and fourth columns give the number of times that the method is applied and the
total number of integration points used. The next four columns (Table I(a)) give the root mean
square error in the calculation of the four integrals described above, expressed as a proportion of
the error of the best method for that problem. Thus, the most accurate technique will have a value
of unity, and all other methods will have higher values. Finally, the last column gives the average
of the previous four columns, and it is this value which is used to determine the rank of the method.
The first row of the table gives the absolute value of the error for the best method in each of the
four cases. Detailed results are given for the first 40 methods (Table I(a)), while for the remaining 90
methods (Table I(b})), only the mean results and the ranks are quoted.

Figure 5 shows the mean error, as shown in the last column of the table, against the number of
integration points. For five of the principal methods, lines have been added to make clear the
variation of error with number of integration points. (The analytical trapezium results have been
omitted from the figure, since they lie almost on top of the trapezium rule results at this scale.)

The table and the figure contain a lot of detail, but some observations can be made.

1. The best method for the problems with discontinuities in the value of the function (Cases 1
and 11) is the centroidal rule applied 13 times. At first sight, this may be surprising, since the
centroidal rule approximates the function by a constant over each layer, and so is itself
discontinuous over the whole integration range. However, in these problems the integrand
is varying linearly over each layer, except for the layer that contains the discontinuity; the
contribution to the total integral from all but one of the integration points will thus be
exact. For the other methods, the effect of the discontinuity is to propagate errors into the
function well away from the discontinuity, with consequential effects on the accuracy.

The accuracy of the centroidal rule for Cases I and IT is due not to the inherent accuracy
of the interpolating function, which is very poor, but rather to the cancellation of the errors
that arise in these particular problems. However, the centroidal method using 13 points is
poor in Cases T and IV, resulting in a final rank of 14th.

. The 13-point Gauss method is the most accurate technique for Cases II1 and 1V, and has
relatively small errors in the other two cases. This results in the best average error, to leave
this method with rank 1.

3. The first eight places in the table all go to versions of the Gauss method. The 10-point Gauss
method is better than any non-Gauss method considered. For any given number of points,
Gaussian integration gives the best overall solution.

4. Lobatto’s method and the equal weight methods give similarly good results that are second
only to the Gauss methods. Lobatto’s method with »n points gives results which have similar
accuracy to those produced by the Gauss method with n-2 points; it has the additional
benefit of having abscissac on the surface, and if stresses have to be determined on the
surface anyway, very little additional work is required.

5. The best methods using interpolation formulae (Cotes or Spline) are the 13-point spline, 5-
point Cotes (3 times) and Simpson’s rule (6 times), all of which use 13 points and all of which
have very similar errors.

[29)
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Relative root mean square errors

No Case | Case 2 Case 3 Case 4
Repeat of conc. conc. steel steel
Rank Rule pts force moment force moment Mean
Absolute errors of
best methods 0-02965 001708 0-001367 0001052

1 13-Gauss 1 13 1-240 1-180 1-000 1-000 1-105
2 12-Gauss 1 12 1-339 1-274 1-165 1-165 1-236
3 11-Gauss | 11 1-456 1-385 1-375 1-375 1-397
4 6-Gauss 2 12 1-286 1-273 1-551 1731 1-460
5 4-Gauss 3 12 1237 1-233 1-790 2-085 1586
6  10-Gauss 1 10 1594 1-516 1-646 1-646 1-601
7 3-Gauss 4 12 1-194 1-192 1-963 2:343 1673
8  2-Gauss 6 12 1124 1124 2:241 2779 1-817
9  3-Equal 4 12 1-100 1-100 2:295 2-880 1-844
10 4-Equal 3 12 1-160 1-160 2-301 2:807 1-857
11 9-Gauss 1 9 1-761 1-676 2-:008 2:010 1-864
12 5-Gauss 2 10 1-519 1-504 2:170 2:425 1-904
13 10-Lobatto 1 10 1-776 1-691 2:221 2-339 2:007
14 Centroidal 13 13 1-000 1-000 2:647 3-467 2:029
15  6-Equal 2 12 1-379 1-373 2734 3-159 2-161
16 8-Gauss 1 8 1-968 1-873 2-:505 2-:509 2:214
17 Centroidal 12 12 1-083 1-083 2:983 3-908 2:264
18  S-Equal 2 10 1-334 1-335 2914 3-595 2:295
19  2-Gauss 5 10 1-348 1-348 2:940 3625 2:315
20 3-Gauss 3 9 1-:591 1-586 3-009 3520 2:426
21 9-Lobatto 1 9 1-988 1-894 2:830 3010 2:430
22 Centroidal 11 11 1-181 1-180 3:396 4452 2:553
23 4-Gauss 2 8 1-855 1-837 3260 3652 2:651
24 7-Gauss 1 7 2:230 2-123 3214 3222 2-697
25  3-Equal 3 9 1-465 1-465 3525 4395 2713
26 Spline 1 13 1-128 1-139 4-106 5244 2:904
27  Centroidal 10 10 1-298 1-297 3915 5-135 2911
28  5-Cotes 3 13 1311 1-312 4-059 5067 2:937
29 Simpson’s 6 13 1-230 1-232 4117 5-208 2-947
30  8-Lobatto 1 8 2:259 2-153 3736 4023 3-043
31 Bates’ 1 13 113 1-122 4-374 5-665 3-069
32 2-Gauss 4 8 1-683 1-683 4-099 5014 3-120
33 4-Cotes 4 13 1-144 1-145 4-521 5787 3149
34  4-Equal 2 8 1-737 1-737 4-206 5029 3177
35  7-Cotes 2 13 1-636 1-627 4-394 5271 3-232
36 Spline-0 1 13 1-099 1-104 4691 6062 3-239
37 Spline 1 12 1-234 1-246 4678 5968 3281
38 9-Equal 1 9 1-938 1-923 4-531 4983 3344
39 Centroidal 9 9 1-441 1-440 4-580 6012 3-368
40  6-Gauss 1 6 2:571 2:449 4278 4298 3-399
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Table I(b)

No. of Mean No. of  Mean

Rank Rule Repeat pts error Rank Rule Repeat  pts error
41  Bates’ 1 12 3-466 86  Spline 1 7 7731
42 Spline-0 I 12 3-664 87  Simpson’s 3 7 7740
43 Spline t It 3752 88  Trapezium 8 9 7-887
44 Simpson’s 5 I 3794 89 2-Gauss 2 4 7944
45 7-Equal I 7 3-849 90  4-Equal 1 4 8013
46 Bates’ 1 11 3960 91  Batey 1 7 8095
47  Centroidal 8 8 3-967 92 7-Cotes 1 7 8189
48 7-Lobatto 1 7 3985 93 4-Cotes 2 7 8-385
49 3-Gauss 2 6 4-104 94 5-Lobatto 1 5 8577
50 Spline-0 1 It 4-194 95  Sphne-0 I 7 §701
51  Trap-Anal 12 13 4-239 96  Trap-Anal 7 8 9079
52 Spline 1 10 4-353 97  Trapezium 7 8 9-581
53 Trapezium 12 13 4-382 98  11-Cotes { 1 9774
54 5-Gauss t 5 4-488 99 6-Cotes 1 6 9-878
55 Bates’ [ 10 4-590 100 3-Gauss 1 3 10-053
56 2-Gauss 3 6 4-592 101 Spline 1 6 10-056
57  3-Equal 2 6 4-697 102 Bates 1 6 10-439
58 4-Cotes 3 10 4720 103 Centroidal 4 4 10-461
59 Centroidal 7 7 4777 104 Trap-Anal 6 7 11-281
60 Trap-Anal 11 12 4794 105 Spline-0 | 6 11-327
61  10-Cotes 1 10 4-870 106  Trapezium 6 7 12:001
62 Spline-0 1 10 4-873 107 3-Equal 1 3 12:151
63  Trapezium 11 12 4969 108 5-Cotes t 5 13-408
64 5-Cotes 2 9 5131 109 Simpson’s 2 5 13-684
65 Spline 1 9 5141 110 Bates’ | 5 14-226
66 Romberg 8 1 9 5142 111 Trap-Anal 5 6 14-576
67 Simpson’s 4 9 5177 112 4-Lobatto 1 4 15-446
68  6-Equal 1 6 5-295 113 Spline-0 1 5 15-565
69 Bates’ 1 9 5413 114 Trapezium 5 6 15675
70 Trap-Anal 10 11 5485 115 Centrowdal 3 3 15677
71 6-Lobatto 1 6 5-569 116  Trap-Anal 4 5 19913
72 Trapezium 10 1 5704 117 2-Gauss 1 2 20488
73 Spline-0 l 9 5764 118  Bates’ 1 4 21-120
74 5-Equal 1 S 5823 119 Trapezium 4 5 21758
75 Centroidal 6 6 5925 120 4-Cotes I 4 22:609
76 8-Cotes 1 8 6-143 121 Spline-0 I 4 24-140
77  Spline 1 8 6213 122 Centroidal 2 2 27713
78 4-Gauss 1 4 6346 123 Trap-Anal 3 4 29-661
79 Trap-Anal 9 10 6366 124 Trapezium 3 4 33-250
80 Bates’ I 8 6526 125 Simpson’s 1 3 36-505
81 Trapezium 9 10 6-646 126 Trap-Anal 2 3 51421
82 Spline-0 1 8 6977 127 Trapezium 2 3 60-558
83  9-Cotes 1 9 7-289 128 Centroidal 1 1 72-744
84 Trap-Anal 8 9 7519 129 Trap-Anal 1 2 123-937
85  Centroidal 5 5 7-648 130 I 2

Trapezium

168698
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Figure 5. Comparison of numerical integration techniques

This result is important, since these methods allow integration over other ranges using
the same interpolated formula. Although these problems are beyond the scope of this paper,
it is reasonable to suppose that methods which give a good result for the present problem
will be good methods for different ranges.

6. The 11-point Cotes method is less accurate than the 7- pomt Cotes method and the 10-point
Cotes method is less accurate than the 4-point Cotes method applied 3 times, which also
uses 10 integration points. The 9-point Cotes method is less accurate than the 8-point Cotes
method, Simpson’s rule using 9 points and spline curves using 9 points. These results accord
with the observations above about the expected accuracy of the higher order Cotes
formulae.

7. The Romberg method is slightly better overall than the 9-point version of Simpson’s rule
and the 9-point spline, but is marginally worse than the S-point Cotes formula applied
twice. These 4 methods, which all use 9 integration points, have very similar errors in most
cases.

8. The spline curve with zero curvature at the ends is never better overall than the spline curve
with the end curvature determined by extrapolation, but in individual cases it may give a
better result.
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9. Equal weight methods do not appear to offer any advantage in the present problem. The 3-
point equal weight method repeated 3 times is more accurate than the 9-point equal weight
method used once, which is probably due to the uneven distribution of the abscissae
(Figure 2). It is also more accurate than the 9-point centroidal rule, despite the apparent
similarity in the abscissae noted in Figure 2.

10. The modified trapezium rule, derived from the Bates method, shows a considerable
improvement over the basic trapezium rule, but it is not as accurate as Simpson’s rule
(where applicable), or the spline curve, using the same number of points.

I'l. The analytical trapezium rule shows a marginal improvement over the basic trapezium rule,
but this does not appear to be sufficient to repay the additional work involved in performing
the calculations.

From the figure, it is also evident, for example, that 11 points are needed with Simpson’s rule to
achieve the same accuracy as the 5-point Gauss rule. It also shows that a ‘law of diminishing
returns’ applies, at least to Gaussian integration, once 9 integration points are used.

CONCLUSIONS

A method has been devised for testing the overall performance of numerical procedures that relate
to the integration of stresses through the thickness of plates and shells when there are
discontinuities in the stresses. From the results of these tests the following can be concluded.

I. Use Gauss’ method if integration is always required over the same range, and use as high an
order formula as possible rather than making repeated use of simpler formulae.

2. Use Lobatto’s method if it is essential to have an integration point at the ends of the
integration range.

3. When the integration points are fixed at regular intervals, or for the more general problem, in
which it is necessary to perform numerical integration over different ranges with the same
integration points, techniques based on interpolation methods must be used.

The spline method gives good results for all cases. Simpson’s rule and the 5-point Cotes
rule can both be used either once or repeatedly. The even order Cotes methods (trapezium,
4-point, 6-point and 8-point) are all worth using once, but there is no benefit in using them
repeatedly. Romberg’s method gives good results for 9 points,

The tests that have been used involve an equal weighting for all positions of the stress-
discontinuity. In order to capture the important features of the responses of particular structures,
it may be that some positions of the discontinuity are of more importance than others. It is
intended to address this issue, and also that of the importance of having integration points on the
surface, in future work.
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