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Automated determination of
concordant profiles

C.J. BURGOYNE, MA, PhD, DIC, MICE*

The Paper presents a method by which a designer can automatically determine a concordant
cable profile that fits within eccentricity bounds governed by the applied moment envelopes.
The method works by determining loadings which cause peak bending moments at a partic-
ular point; these moment diagrams are scaled concordant profiles. By using an iterative
method, these loadings can be combined to give a composite notional loading; the corres-
ponding bending moment, when scaled by an arbitrary factor, is the final concordant cable
profile. The method also allows the shape of the concordant profile to be varied over internal
supports, so that a smoothly curved cable can be fitted through an allowable zone which has
sharp angular changes in the limits. The engineer is thus freed from the necessity of estimat-
ing secondary moments at the beginning of the design process. Instead, a concordant line of
thrust can be determined and linear transformations applied to obtain the actual cable
profile.

Notation

Tensile stresses are positive.

Sagging bending moments are positive.

Positions are measured positive downwards from centroid.

A cross-sectional area

matrix relating variables to constraints
line of thrust of cable

range of permissible eccentricities
actual cable profile

flexural stiffness

permissible stress in compression (— ve)
permissible stress in tension ( + ve)
total length of beam

lower constraint

applied bending moment

secondary moment

prestressing force

independent variables (notional loads)
notional support loads

radius of curvature of cable profile
length of each notional load

upper constraint

notional loads

elastic section modulus

slope of bounds on cable profile
accelerating factor
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Introduction

The design of continuous prestressed concrete beams is complex and, if not
approached in a logical sequence, can lead to the designer carrying out abortive
calculations which waste time and effort. As a simplification, the design process
can be reduced to the following sequence of operations

(a) determination of moment envelopes
(b) choice of cross-section

(c) choice of prestressing force

(d) choice of cable profile.

2. The first stage is essential, although tedious to perform by hand. It can be
automated,! but is purely mechanical, and will not be discussed further.

3. The second stage is much more complicated, relying on the engineer’s judge-
ment and experience, as well as calculations of strength and stiffness at critical
sections. It is at this stage that ultimate strength and shear strength considerations
are taken into account. Once again, this process will not be looked at in detail,
although it is worthy of further study as an exercise in the rationalization of the
design process.

4. Once the cross-section has been chosen, the two interrelated stages of the
choice of prestressing force, and the cable position within the beam, need to be
considered. In an earlier paper,?> which was a generalization of Low’s work,? a
method was presented for the determination of the limits on the prestressing force
in a continuous beam. It was shown that the designer must consider limits on the
magnitude of the prestressing force governed by stress limits at every cross-section,
by the need for the range of eccentricities to be less than the depth of the beam
(taking account of cover), and by the need to ensure that a valid line of thrust
exists. Reference 2 covers the basic theory of prestressing in continuous beams; it is
assumed in the present Paper that readers are familiar with this work.

5. The final problem that remains is the choice of the cable profile, which is the
subject of this Paper. However, it is firstly necessary to be precise about the
distinction between ‘line of thrust design’, and *cable profile design’, which differ
in the way they deal with secondary moments. The beam will be subjected to a set
of external bending moments M, and if indeterminate, to a set of secondary
moments M, . The prestressing cable, placed at an eccentricity e, tries to induce in
the beam a curvature of Pe /EI. If these curvatures are not compatible with zero
displacement at the supports, a set of self-equilibrating reactions will be caused,
which will induce secondary (or parasitic) moments in the beam. The total
moment induced in the beam by the prestressing cable is thus Pe, — M, , so that
the cable appears to act at a different position e,, where

Pe, = Pe, — M,

The designer can choose between two alternative strategies, both of which are
perfectly valid.

Line of thrust design
6. The designer can treat the secondary moments as prestressing effects. There
will then be a series of stress conditions of the form

P Pe M
SRt <

g_
J. A Z V4
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which can be rearranged to give limits on the line of thrust of the cable e, of the
form

(The direction of the inequalities and the signs of the various terms will depend on
whether the top or bottom fibres are being considered, and whether hogging or
sagging bending moments are considered positive. However, the generic form
given here is sufficient for illustrative purposes.)

7. The designer will find a concordant profile which satisfies these conditions;
an actual profile can then be chosen which varies from the line of thrust by a linear
transformation. The secondary moments are taken into account automatically,
but the designer is faced with the difficulty of determining a concordant profile
that satisfies the limitson e, .

Cable profile design

8. Alternatively, the designer may choose to treat the secondary moments as
loads, so they appear with the applied moments in the eccentricity equations,
which can now be written in terms of the actual cable profile e,

L Z_LZ MMy Z L2 (Mt M)
A P P A P P

The designer will estimate (guess?) the magnitude of the secondary moments,
determine the limits on the cable position, and then find a cable profile which not
only satisfies these limits, but also gives the chosen values of M, . The successful
use of this method requires a thorough understanding of the way the structure
behaves, and considerable experience in dealing with similar structures.

Cable profile over internal supports

9. Before beginning the formal solution of the problem, there is one further
complication that needs to be taken into account. The bending moment envelopes
at internal supports will, for most structures, show peaks in hogging bending. This
will be reflected in the corresponding line of thrust limits as a discontinuity in the
slope of the limits, as shown in Fig. 1. The actual cable profile, however, will be a
smooth curve, since minimum radii of curvature of the order of several metres are
specified for prestressing cables. This restriction can be relaxed somewhat if cables
are being anchored at the supports, but that is exceptional since the presence of
anchorages causes congestion in what is normally already a complicated area of
the structure.

10. The requirement is that the cable profile e, should be smooth over the
piers, but the line of thrust may itself have a kink at that position, since e, differs
from e, by a linear transformation. However, the designer will probably know the
magnitude of the secondary moments that are required, and since the cable force is
known, this will allow an estimate to be made of the required change in angle of e,
at the support.

Definition of problem
11. In this Paper, the principles of line of thrust design have been adopted for a
number of reasons.
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Fig. 1. Discontinuity in slope of envelopes at internal supports

(a) The eccentricity limits are functions only of the applied external load, and
are independent of the cable profile adopted.

(b) Actual cable profiles can be generated by linear transformations from the
line of thrust, so there is no loss of generality.

(c) Itis possible to generate ‘families” of concordant profiles, by considering
the bending moments that result from the effects of notional external
loads on the structure.

(d) Although it is simpler to seek a cable profile that has no kinks over the
support, it is perfectly feasible to seek a line of thrust that has a specified
kink at those positions.

12.  Therefore, a procedure is sought which allows the automatic calculation of
a concordant profile that satisfies the limits on the line of thrust and has a known
discontinuity of slope at each internal support. It will be assumed that the cross-
section, the maximum and minimum moment envelopes, and the prestressing force
are all specified or have been chosen already.

Solution strategy

13. The solution technique relies on the fact that any bending moment
diagram that can be produced by an external load acting on the beam will itself be
a scaled concordant profile. This follows since both the external loading and the
concordant profile result in identical curvatures of the beam, which are compatible
with zero displacement at each support. Therefore, that notional external loading
is sought which gives a bending moment diagram which, when scaled by an
arbitrary factor, gives an acceptable profile. The condition that the profile has the
required discontinuity of slope at internal supports can be met by specifying that
the reaction to the notional load is of a specified magnitude at that support.
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Fig. 2. Notional loading

14. The notional external load may be considered as a series of short uni-
formly distributed loads of varying magnitude (Fig. 2). The corresponding
bending moment diagram will consist of a series of parabolae, with no discontin-
uities of slope, except at internal supports. To allow some control over this discon-
tinuity, additional external loads are introduced over the area immediately
adjacent to the internal supports, which act to relieve the support of its load, and
hence reduce the slope discontinuity in the bending moment. Throughout this
Paper, these loads will be termed ‘support loads’, to distinguish them from other
notional loads.

15. Ifitis assumed that the beam has a notional prestressing force of 1000 kN
(an entirely arbitrary scaling factor), then a bending moment of 1000 kNm corres-
ponds to an eccentricity of the concordant profile of 1 m. As a consequence of the
loading chosen, the bending moment at the ends will be zero, which corresponds
to a line of thrust (and also a cable profile) with zero eccentricity. This is perfectly
reasonable, because, if the end of the beam is pinned, there will be no bending
moment resulting from the real load at that position, so it makes sense to have a
prestressing cable which acts at the centroid at these positions. However, if it is
considered desirable to have a cable with an eccentricity at the end, this can be
achieved by adding a couple to the notional loading with an appropriate magni-
tude.

16. The definition of the notional loading forms the set of independent vari-
ables for the present problem. There will be L/s values for the loads w;, n — 2
values for the distributed support loads r;, and 2 values for the end couples M.
The constraints of the problem, which the independent variables are chosen to
satisfy, are the required eccentricity of the line of thrust, and the discontinuity of
slope of the cable at the internal supports. These are equivalent to the required
bending moment and internal support reactions of our notional loading.

17. The limits on the eccentricity are continuous functions, which are thus
definable by an infinity of conditions. However, the limits on the cable position
can be satisfied at a number of discrete points, thus reducing the number of
conditions to a manageable level. The positions at which the constraints along the
beam are satisfied need not be regularly spaced; indeed, it is preferable to check
the position of the cable more frequently in regions where the profile is changing
rapidly, such as near a support, and less frequently in regions where the cable
profile is smooth (Fig. 3).

18.  For each of the independent variables (g;, the notional loads), the effect
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that a change in that variable has on the position of the cable can be determined
by carrying out a structural analysis under the action of that load.
19. The end result will thus be a series of conditions of the form

< Aijqj <y

The matrix A;; is not necessarily square, and it should be noted that the conditions
are inequalities.

20. Before proceeding further, it is necessary to consider the solution technique
that will be adopted, as a number of alternatives can be considered. The problem
concerns a set of linear inequalities, for which a feasible solution which satisfies
these inequalities is being sought. Superficially, the problem is similar to the
standard linear programming (LP) problem, with the important difference that it is
not the intention to minimize or maximize a function.

21.  The Simplex algorithm, which is the most commonly used technique for
the solution of LP problems, works in two stages. Phase 1 finds a feasible solution
to the problem, and is then followed by Phase 2 which optimizes that solution.
Therefore, to solve the problem, a technique which went through phase 1 of the LP
solution but not phase 2 could be used. However, Phase 1 is itself a complicated
procedure, requiring one iteration for every constraint. In this case, that would
mean a large number of iterations; if, for example, a beam were 100 m long, then
to check that the cable profile was satisfactory every 5 m along the beam, would
require 20 upper bound constraints and 20 lower bound constraints, giving a total
of 40 iterations. Additionally, the Simplex algorithm makes heavy demands on
computer memory, so the technique is not particularly attractive in the present
example.

22, Alternatively, a technique such as Gauss—Seidel or Successive Over Relax-
ation (SOR) can be modified to cope with the present problem. If a set of linear
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Fig. 3. Constraints on bending moment attributable to notional loads
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equations had to be solved (and certain convergence criteria, which will be dis-
cussed later, were satisfied), an iterative technique to find the unique solution
could be used. In essence, these methods work by determining the error in the
present estimate of the solution, and calculating the change in the independent
variable necessary to eliminate that error. In this case, the error can be regarded as
the amount (if any) by which the inequality is not satisfied. Iteration continues
until all the inequalities are satisfied. It is not possible to estimate the number of
iterations required a priori, or indeed whether convergence will occur at all.

23. The conditions for convergence of Gauss—Seidel and SOR for the solution
of equations are quite complex,* but a normally sufficient (although not necessary)
condition is that the matrix is diagonally dominant, with the largest element of
each row on the leading diagonal. Thus, if the present problem is to be solved
using SOR, the problem needs to be reformulated in a diagonally dominant way.
To do this, reference can be made to the mechanics of the problem rather than to
the mathematics.

24. The constraints that have to be satisfied are on the bending moment
produced by the notional loads. If any condition is not satisfied, a loading which
will cause a bending moment at the position in question needs to be found. This
can be done by determining an influence line for bending moment at that position,

Influence
line

Loading L

X=15m
Moment

Vi

Fig. 4. Infiuence line at 15 m, with corresponding loading and bending moment

(w0
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and then modifying the notional loads in proportion to the height of the influence
line at the centre of each notional load. The process can best be illustrated by an
example.

25. Consider the case of a 3-span beam, with spans of 40 m, 50 m and 30 m,
for which a loading which generates a bending moment at 15 m from the left-hand
end needs to be found. The arbitrarily chosen loading will consist of a series of
uniformly distributed loads each 5 m long. The influence line for bending moment
at that position is calculated, as shown in Fig. 4(a). A loading is then chosen in
which the intensity of each distributed load is proportional to the ordinate of the
influence line at the centre of the distributed load, as shown in Fig. 4(b), which
results in the bending moment diagram for the whole beam shown in Fig. 4(c). (We
are only concerned with distributions of loading and bending moment, since the
results can be multiplied by an arbitrary scaling factor without loss of generality;
thus all the plots are normalized and no scales are shown.)

26.  The maximum ordinate on the moment diagram is not exactly at 15 m, but
it is very close to it, indicating that the loading that has been chosen nearly satisfies
the requirement for diagonal dominance. This would require that the loading
chosen caused maximum moment at the point in question.

27. This technique does indeed yield loadings which are very close to the
convergence requirement at most positions along the beam. Over the central
portions of the spans and also directly over internal supports, the maximum
moment does indeed occur very close to the point where the influence line is
calculated, as shown in Figs 5 and 6. However, at positions close to internal
supports the situation is not so clear.

Loading

AT AT A

Moment ﬂ =65m /\
AN N\ N AN

Fig. 5. Loading to give moment at mid-span
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28. Figure 7 shows the results for a position 5 m from one of the internal
supports. The maximum moment occurs near the middle of the adjacent span, so
that this loading will not then satisfy the conditions for diagonal dominance.

29. In practice, this does not appear to be a problem, since convergence has
been observed in all cases studied by the Author. It appears that there is sufficient
diagonal dominance in the conditions elsewhere in the beam to overcome any
local tendency to diverge. Alternative loadings, in which the magnitudes were
determined from the square of the ordinate of the influence line (as shown in
Fig. 8), did not make a significant difference; the diagonal dominance was
improved in regions where it already existed, but it made little difference in regions
where it was absent, and no improvement was noted in the convergence rates.

30. The chosen procedure does not guarantee numerical convergence, but it is
rational, in that the loading chosen is the one which is most likely to cause a
maximum effect at the point in question, and it is convenient, in that it makes use
of techniques which are readily available to designers.

31. One further refinement can be made. It is possible to apply a loading
greater than that needed to eliminate the error at a particular position, in the
manner of an over-relaxation technique. If the over-relaxation factor chosen is too
high, convergence may not occur, but worthwhile benefits may accrue by an
intelligent choice. This will be studied in more detail after the example has been
considered.

32. The requirement to provide a line of thrust with a specified discontinuity at
the support position can be met by controlling the reaction at the internal sup-
ports due to the notional loading. This can be done by providing a distributed
load over a short region on either side of the internal support, which will normally
be in an upward direction.

Loading

1T

x =40m
Moment
AN N

Fig. 6. Loading to give moment at support
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Fig. 7. Loading to give moment close to support

33.  Figure 9 shows the effect of an upward load distributed over 5 m on either
side of an internal support for the example considered above. The resulting
bending moment has a sharp peak, and hence discontinuity, at the support in
question, with relatively little effect elsewhere. Indeed, 99% of the distributed load
is taken out at the adjacent support. Thus, by varying the magnitude of this
distributed load, the support reaction can be altered to any desired value. The
effect of the length of this distributed support load is also significant, and will be
discussed in some detail later.

34. The number of the notional loads to be applied to the structure needs to be
considered. In general, if equations were being solved, there would need to be as
many equations as unknowns. However, in this case inequalities are being applied,
with a range of possible solutions, so the conditions on the number of loads can be
relaxed. It will be sufficient to ensure that approximately the same number of
notional loads are provided as constraints that have to be satisfied (counting a pair
of upper and lower bounds as one constraint, since we cannot fail to satisfy both
simultaneously). If there are too few variables, a solution, if it exists, may not be
found. There is no upper limit on the number of variables, but there is unlikely to
be much benefit from taking too many.

Computer program
35. A computer program has been written to apply these principles to a partic-
ular beam. The program has the following stages.

{a) Read in the moment envelopes.
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Fig. 8. Loading to give moment at 15 m, based on influence line squared

Loading

Moment
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Fig. 9. Loading near support to give moment discontinuity

(b) Read in section property data, chosen prestressing force, etc.

(c) Ask user to specify the length of the notional loads, and set the load
magnitudes to zero.

(d) Calculate upper and lower bounds on the bending moment induced by
the notional loads.

(e) Analyse the structure under the influence of the notional loads.

(f) Find the position where the maximum error occurs in the bending
moment owing to the notional loads. If there are no errors, go to step
0)-
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(g) Calculate the influence line for moment at that point.

(h) Determine the magnitude and distribution of the change in the notional
loadings needed to correct the error in moment at the worst position,
multiplied by an accelerating factor. Add to the existing loads. Modify
the support loads by the error in the support reaction.

(i) Repeat steps (e) to (h) until convergence.

(j) Print and plot results.

Example

36. The procedure can be demonstrated more clearly by following a worked
example. Consider the beam shown in Fig. 10, which is the same example used in
reference 2. It has three spans of 40 m, 50 m and 30 m, and is subject to highway
loading according to BS 5400: Part 2,° as modified by the Department of Trans-
port.® The cross-section adopted is as shown in Fig. 11, and it was shown in the
earlier paper that the prestressing force needs to be at least 51 822 kN to ensure
that a line of thrust exists.

37. With a prestressing force of 52000 kN, the upper and lower bounds on the
line of thrust are as shown in Fig. 12, which are equivalent to limits on the bending
moment caused by the notional load as discussed above. The notional
loading will be chosen as a series of 24 uniformly distributed loads, each 5 m long,
plus two uniformly distributed support loads, each 8 m long, giving a totai of 26
variables. The constraints to be satisfied consist of the bending moment at 5 m
intervals along the beam, with additional constraints 2-5 m on either side of the
internal support positions, plus the values of the internal support reactions, giving
a total of 29 constraints. In theory, there are more constraints than variables, so
even if a feasible solution exists it may not be possible to find it. In practice, this
does not appear to cause any problems.

38. In this example, the aim is to achieve zero reaction at the two internal
supports, and an accelerating factor of 1-4 will be adopted. The initial notional
loading is zero, so the equivalent cable profile is along the centroidal axis; the
maximum discrepancy between this line and the required zone is at the left-hand
internal support (chainage 40 m), with a value of —0:691 m. Therefore, for the first
iteration, notional loads based on the influence line for bending moment at 40 m
are added, as discussed earlier.

39. The results of this, and of the subsequent three iterations, are shown in
Fig. 13, together with the limits on the line of thrust and the final concordant
profile. After the fourth iteration, the changes being made at each stage are small,
and the intermediate iterations have been omitted for clarity. Table 1 gives the
position where the maximum discrepancy occurs after each iteration, and the
maximum reaction. It can be seen that the maximum error in the cable profile
reduces after most iterations, as does the maximum support reaction. The final
iteration only involves elimination of the residual support reaction, since the cable
profile is already satisfactory.

/( A AN N

[ —

| aom | 50m 30m
r r

Fig. 10. Beam layout used in example
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Fig. 11. Cross-section used in example

40. Figure 14 shows the notional loading chosen by the program. There are
positive (i.e. downwards) loads applied over the mid-span regions in each span,
together with large negative loads applied in the vicinity of the internal supports to
eliminate any reactions.

41. The variation in stresses along the beam is shown in Figure 15; some of the
stresses are close to zero (the specified tensile limit) at most points along the beam,
indicating that a fairly efficient design has been obtained.

42. These results are typical; similar rapid convergence has been observed in a
number of other test cases. It should be noted that the example given here is a
fairly severe test case; the prestressing force is only just large enough to ensure that
a feasible e exists.

Effect of variation of accelerating factor

43. The results in the above example have been obtained by the use of an
accelerating factor @ of 1-4. In other words, at each stage, a correction to the
notional loads is made that is 40% larger than that required just to bring the line
of thrust within the allowable zone at the point in question.

_15 -
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o 05 f—
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Fig. 12. Limits one, for P = 52000 kN
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Fig. I3 (above and facing). Results of successive iterations for e,: (a) Ist and 2nd
iterations; (b) 2nd and 3rd iterations; (c) 3rd, 4th and final iterations
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Fig. 13—continued

Table 1. Maximum errors after each iteration

Iteration Maximum Position Maximum Support
error: reaction:
m kN
0 —0-69100 40-0 0-000 -
1 0-42694 105-0 202-117 2
2 0-53190 650 —38:326 2
3 0-37371 20-0 84-592 3
4 0-06141 70-0 32-101 2
5 0-09966 105-0 10-806 3
6 0-08743 70-0 —9-116 2
7 0-02775 105-0 15-820 3
8 0-00632 42-5 —2-541 2
9 0-00656 55-0 —2-105 2
10 0-0 - 0-990 3
11 0-0 - 0-0 -
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Fig. I14. Final notional loading
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Fig. 15. Resulting stresses
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44. The same problem has been studied with various accelerating factors
between 1-0 and 2-2. Fig. 16 shows the number of iterations required to achieve
convergence in each case. Superficially, it would appear that any factor between
1-3 and 2-0 will achieve satisfactory results, but some further observations are
relevant.

45. With w = 1-0 or 1-1, the iterations were converging towards a valid solu-
tion, but were always outside the acceptable limits. Therefore, the results shown in
the figure are for results where the line of thrust was within 1 mm of the acceptable
bounds. For all practical problems, this would be acceptable.

46. At the other extreme, with w = 2-2, the results were diverging, and with
w = 2-1, they were converging only very slowly. The solution for @ = 2-0 was
obtained after 12 iterations, but these iterations nearly all involved successive
corrections based on errors in the line of thrust at one position. The corrections
being made were so large that if, for example, the maximum error in the line of
thrust lay above the upper bound for one iteration, it would lie below the lower
bound at the same position at the next iteration; this results in successive correc-
tions being made using notional loads derived from the same influence line, which
is clearly wasteful. Similar waste was observed for all values of w = 1-6.

47. Therefore, the optimum accelerating factor to use appears to lie in the
range 1-3 < w < 1-5, where the corrections made are large enough to ensure that
the new solution lies within the bounds, but small enough to preclude the necessity
of wasteful corrections. It should be noted that the final line of thrust produced by
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Fig. 16. Effect of altering accelerating factor
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each of the successful iterations with different values of  differed only by a few
millimetres.

48. Itis of interest to make some comparison with the accelerating factor used
in the successive over-relaxation of sets of equations. The choice of the optimum
factor is difficult, even when equalities are concerned, but it can be shown?* that the
accelerating factor must be less than 2-0; for large sets of equations, the optimum
value is often greater than 1-9. However, in the present case, we are dealing with
inequalities, and we are not correcting every condition at each iteration, only the
one with the largest error.

Effect of support load length

49. The example has been calculated on the assumption that the internal
support reactions are distributed over a length of 8§ m by the support loads. This
figure was arbitrarily chosen, and other values are feasible. Fig. 17 shows the
profile of the line of thrust in the vicinity of the left-hand internal support when the
support reaction is distributed over various lengths.

50.  The line of thrust will be close to the top of the allowable zone away from
the supports, since the requirement that e, 1s concordant forces the profile to be
fairly high. Therefore, the cable has to change direction by a fixed angular amount
over the pier. If the reaction is taken over a short length, such as 5 m, the radius of
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curvature will be relatively small, and the cable will be quite high over the pier. On
the other hand, if the support reaction is spread over a longer length, such as 15 m,
the radius of curvature of the cable is quite large, and the line of thrust is lower at
the pier position. To compensate for the lower value of e, at the pier, the line of
thrust must be higher elsewhere, in order that the profile may remain concordant.
In the example, it can be seen from Fig. 16 that the line of thrust is against the
upper limit of the zone away from the support when the support load length is
specified as 15 m. Indeed, no valid solution could be obtained for longer lengths of
the support load. In certain circumstances, this could be a constraining factor on
the design, since the cable profile must have a certain minimum radius of curvature
to avoid damage to the tendon or duct during installation and stressing.

51. The minimum radius of curvature of the cable can affect the design in
another way. If the width of the allowable zone is quite narrow, it is conceivable
that it will be impossible to fit a suitable profile with an acceptable radius of
curvature through the zone in the vicinity of the support.

52.  Consider the case shown in Fig. 18. The allowable zone is narrow and, for
the sake of this example, will be assumed to have constant depth. It will also be
assumed to be straight on either side of the support, with angles to the horizontal
of + 6. The maximum radius of curvature R that can be fitted through the support
zone occurs when the cable is at the top of the zone on the approaches to the
support, but is at its lowest position over the pier. Under these conditions, and if it
is assumed that the cable profile is circular and that 6 is small enough to make this
also a reasonable approximation to a parabola, then it is possible to show that

e, = (R/2) tan? 0

53. The above forms another constraint for the cable designer, but this time it
primarily affects the bounds on the line of thrust, which is a function of the
prestressing force, rather than the line of thrust itself.

Possible extensions

54. The method, as presented, assumes a constant prestressing force. It would
not be too difficult to include a variable prestressing force, resulting from varia-
tions in the number of cables, by including suitable forces and moments at the
positions where the cables were to be anchored. It would be necessary to choose
criteria which the program would use to alter the applied moment and force at

>

these positions, but they need not be very complex.

Fig. 18. Narrow cable zone at support

351




BURGOYNE

55. It would also be possible to include within the method, variations in
prestressing force due to friction losses, which would cause the bounds on ¢, to
vary along the length of the beam. Care would be needed to ensure that correct
allowance was being made for the fact that the program was determining the
concordant line of thrust e, of a cable profile, and that subsequent transformations
to obtain the actual cable profile e, would no longer be linear, since P was not
constant.

Conclusion

56. A method has been presented which allows the automatic generation of
concordant cable profiles. This allows the designer to specify limits on the line of
thrust of his cables, which can be done in terms of the real loads on the structure,
which are known a priori. Once the line of thrust is determined, it is then a simple
matter to use linear transformations to generate acceptable profiles for the cables
themselves. Secondary moments will thus be taken into account automatically;
the designer does not have to calculate them directly, nor even choose their
magnitudes, although it will still be of benefit if their existence is appreciated and
understood.
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