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Cable design for continuous
prestressed concrete bridges

C. J. BURGOYNE, MA, PhD, DIC, MICE*

The Paper discusses the criteria which govern the cable design in continuous prestressed
concrete beams. A rigorous analysis is used to show that Low’s condition regarding the
shortening of the extreme fibres is a particular case of a more general condition on the
existence of a line of thrust within the allowable zone permitted by the stress conditions. An
example of how these conditions can be applied in a continuous beam with three different
spans 1s given.

Notation

Position measured positive downwards from the centroid
Tensile stresses are positive
Sagging moments are positive
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area
highest position of cable allowing for cover

lowest position of cable allowing for cover

permissible range of position of cable (allowing for cover)
eccentricity

eccentricity of line of thrust at mid-span

lower limit on eccentricity

upper limit on eccentricity

eccentricity of line of thrust

eccentricity of line of thrust at left pier

eccentricity of line of thrust at right pier

eccentricity of cable profile

Young’s modulus

permissible stress in compression at transfer

permissible stress in compression at working load
permissible stress in tension at transfer

permissible stress in tension at working load

second moment of area about centroid

lever arm in hogging bending

lever arm in sagging bending

span

minimum working load moment

M, at left pier

M atright pier

maximum working load moment

M, at mid-span

moment range in one span (mid-span sagging - pier hogging)
mean live load moment in one span

moment range at one section (sagging - hogging)

Written discussion closes 18 May 1988; for further details see p. 1.
* Imperial College of Science and Technology, London.
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M, moment at transfer

maximum possible prestress at one section

minimum possible prestress at one section

prestressing force at transfer

minimum prestress to satisfy moment range

minimum prestress to satisfy lever arm

minimum prestress for existence of line of thrust
minimum prestress for existence of line of thrust and maximum cable range
secondary moment at internal support j

(working load prestress)/(transfer prestress) (=1 — losses)
linear transformation at left pier
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Lo linear transformation at mid-span

L, linear transformation at right pier

x position in span

y position in beam

Vi position of top fibre (always — ve)

Va2 position of bottom fibre (always + ve)

Z, = I/y, (always — ve)
Z, = 1I/y, (always +ve)
B; distribution coefficient for Q,

Introduction

The design of continuous prestressed concrete bridges gives the engineer consider-
able freedom when compared with the design of statically determinate structures.
By varying the secondary (or parasitic) moments, the relative magnitudes of the
bending moments at mid-span and pier positions can be varied, thus allowing
structures to be designed in which the line of thrust of the cable is outside the
section, while the cable itself lies safely within the section.

2. The penalty to be paid for this freedom is greater complexity in design. It is
necessary to determine the line of thrust of the actual cable that is used, or to
choose a cable profile that is concordant. Either way, a knowledge and thorough
understanding of the secondary moments in the structure are required.

3. Virtually all the standard texts on prestressed concrete design' > dwell on
the problems associated with the calculation of the line of thrust and secondary
moments associated with a given cable profile, but do not consider in detail the
wider implications for the designer. However, one Author has considered other
aspects of the problem. Low*® determined limits on the cable forces for the
internal spans of a multi-span structure, based on considerations of potential
crack patterns.

4. This Paper generalizes these ideas to include both the internal and end
spans of a wider class of structures; those with unequal spans and those in which
compressive stress limits govern.

Low’s work

5. Low considered a typical internal span of a multi-span viaduct and distin-
guished four governing conditions which he expressed as limits on the minimum
prestressing force within that span. These conditions were derived on the assump-
tion that the beams were limited by tensile stresses, which can be visualized by
potential crack patterns if the limits are exceeded (Fig. 1). The four cases car be
summarized as follows.
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Fig. 1. Low'’s limits on cable forces (after reference 4): (a) limited by moment range
(Py); (b) limited by range of eccentricity (P,); (c) limited by extension of extreme
fibres (P4); (d) as (¢), but limited by cover over pier (P )
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Case 1: governed by moment range

6. The beam cracks at the bottom under the maximum sagging load and at the
top under the minimum sagging load, at the same section. The minimum prestress-
ing force is shown to be a function of the live load moment range M_, and is
independent of the parasitic moment.

M, A

CA N "

Case 2: governed by lever arms

7. The beam cracks at the bottom at mid-span under the maximum moment
and at the top over the piers under minimum moment. The limiting value of the
minimum prestressing force is shown to be a function of the full moment range of
the span M; and the maximum lever arms within the section.

P, = M;
U+ L)

It is implicit in this result that the parasitic moment has a specified value, in order
to make maximum use of the section depth.

)

Case 3: governed by shortening of the extreme fibre

8. The span is assumed to be a typical internal span, so there must be no net
rotation along the span caused by the prestressing force. The prestressing force is
assumed to be sufficient just to eliminate the tensile stresses at all points in the
bottom fibre owing to the average maximum live load moment M, . This leads to
a limiting minimum prestressing force

Py=— 3
= 3

One corollary of this result is that the cable is placed near the top of its allowable
zone everywhere. Low demonstrates that this is often the governing condition for
design.

Case 4

9. Case 4 is a special case derived on the same principles as case 3, but limited
by the condition that the cable cannot be placed at the top of its allowable zone
over the piers as this would fail to satisfy cover requirements. A more complicated
limiting value for the prestressing force results, which need not concern us here.

10.  Cases 1 and 2 are well established in practice and in texts, but case 3 was,
as far as the Author can establish, novel. It was the desire to put case 3 on a more
rigorous theoretical foundation which led to the work presented in this Paper. In
order to establish common ground between the various cases, and ‘conventional’
views of prestressing, it is necessary to review, briefly, the main principles of
section and cable design.

Magnel diagram and equations
11. The design of prestressed concrete beams at the working load is governed
by stress criteria (see Appendix 1). These can be rearranged into eight inequalities
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of the general form

ez —— —— 4 — 4)

These relationships form straight bound lines on a plot of e against (1/P), a
construction known as the Magnel diagram.® Each line passes through one of the
Kern points (e = —Z,/A or —Z,/A) when 1/P = 0 (P = o). Therefore, four (and
only four) of the inequalities define a feasible region which gives all valid com-
binations of force and eccentricity. Which four of the possible eight equations
govern depends on the circumstances, but two will relate to the top fibre and two
to the bottom fibre. Of each pair, one will be a tension limit and the other a
compression limit.

12. The condition that the feasible region exists, which is an overriding condi-
tion in all cases (although not necessarily the governing one), is that the range of
stresses in a particular fibre is less than the permissible stress range. These condi-
tions can be expressed as limits on the elastic section moduli (Z, and Z,). These
inequalities are detailed in Appendix 1. It will be assumed henceforth that a section
has been chosen already such that all these conditions are satisfied at all points
along the length of the beam.

13. A typical Magnel diagram is shown in Fig. 2. The minimum and maximum
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Fig. 2. Typical Magnel diagram
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prestressing forces P, and P_, can be identified. If the chosen prestressing force
is close to P, .., then compressive stresses will govern, while if P is close to Pin»
then tensile stress conditions will govern. Because minimizing the prestressing
force usually results in greater economy, it will normally be found that a design is
limited by tensile stresses.

14. However, if a section is chosen that only just satisfies the limiting condi-
tions on the elastic modulus, a different result may be obtained. Suppose a road
bridge is being considered, which will necessarily have a large top slab to carry the
traffic. Local bending criteria will normally govern, so the section will have a top
fibre modulus that is larger than required by the global flexural conditions. There
is no reason why the bottom slab need be any larger than required to satisfy
flexural criteria, so it is found that the Magnel diagram can look like that shown in
Fig. 3.

15. The feasible region is long, but thin, and for most allowable prestressing
forces is bounded by one tension limit and one compressive limit, even when P is
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Fig. 3. Magnel diagram for a road bridge
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close to P, . A similar result obtains for trough beam railway bridges, in which
the rails are mounted on the bottom slab, which therefore is large, and it is the top
flange which can be kept small.

16. The applied moments vary along the length of the beam. We can thus
calculate P, and P, at all positions along the length of the beam, and plot these
as functions of position. P, will be largest at mid-span and over the piers, which
are the positions where the moment range is largest, so the feasible region of the
Magnel diagram is smallest. Similarly, P . will be smallest at these positions. If
the tensile stress limits are put to zero, then P, is identical to Low’s value P,.

Line of thrust design

7. The parasitic moments and their implication for design now need to be
considered. Generally, any prestressing cable profile will induce flexural deflexions
in the beam: if the beam is statically determinate, these cause no additional
moments, as they are not resisted by the supports; if the beam is indeterminate, the
tendency to deflect is resisted by the supports, whose reactions cause additional
moments in the beam, known as secondary or parasitic moments M, . However,
because these moments are neither necessarily small (as implied by secondary) nor
necessarily deleterious (as implied by parasitic), both terms are confusing.

18. If the actual position of the cable is given by e_, it can be stated that the
cable appears to act at its line of thrust e, , where

Pe, = Pe, — M, (5)
so that
e, — e, = —M,/P (6)

19. The calculation of M,, and hence e, for a particular cable profile is
straightforward. The forces that the cable exerts on the concrete can be calculated,
and the response of the structure to these loads determined by a continuous beam
program. This equivalent load method is well described in many texts (see, for
example, reference 3).

20.  Alternatively, and for our purposes, more conveniently, the secondary
moments can be determined by considering the cable profile directly, using the
principle of virtual work. The relevant equations are given in Appendix 2. The
benefit for our purposes is that the method combines the structural analysis with
the determination of the secondary moments, so we end up with a direct relation-
ship between the cable profile and the secondary moments.

21. A few definitions will be required, but they are well known and are derived
elsewhere.” If M, = 0, e, and e, coincide, and the profile is concordant. All e, are
themselves concordant profiles. Since M, is the result of a set of self-equilibrating
support reactions, it varies linearly between supports; the difference e, — e, will
also vary linearly if the prestressing force is constant, must be zero at end supports,
and is known as a linear transformation. Once e, 1s known, any linear transform-
ation will give a cable profile with the same line of thrust.

22. Two design philosophies can be identified, but they are equivalent.

(a) If the secondary moments are considered as prestressing effects, the stress
conditions which lead to the Magnel diagram give limits on e,. For any
chosen prestressing force, these can be plotted along the length of the
beam; the designer has to find a concordant profile that satisfies these
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limits. A suitable linear transformation can be determined to find a
practical cable profile that satisfies cover requirements.

(b) If the designer has some estimate of the secondary moments, they can be
regarded as loads, and included in the moments from which the Magnel
diagram is calculated. The eccentricity limits are thus limits on e_, and
the problem becomes one of finding an actual cable profile which
satisfies these conditions and causes the assumed secondary moments.

In practice, the choice between these methods is one of personal preference; the
present Author finds the first easier, but knows many engineers who claim that
they do not ‘bother about concordant profiles’, yet still correctly deal with second-
ary moments and indeed use them to considerable advantage.

23.  For present purposes the first method will be used, as it requires no a priori
knowledge of the secondary moments. The eccentricity inequalities (equations
(25)+32)) will be used to produce envelopes of the permissible line of thrust. The
upper limit on the cable position will be termed e,;, and the lower limit e_,, .
These limits may be governed by different conditions at different positions along
the beam, and will be functions of the chosen prestressing force.

Design for limiting eccentricity

24. For any particular structure, with specified spans and loading, limits on
the line of thrust e, can be determined. A typical allowable zone will look like that
shown in Fig. 4. The line of thrust will be high over the piers, and low at mid-span,
as would be expected.

25. The effect of applying a linear transformation to the limiting values of e,
can now be considered. If a sagging secondary moment is chosen, the effect will be
to produce a cable profile ¢, which is lower than e,. This can be an advantage:
cover requirements for e have to be satisfied, but not for e, . Therefore, it does not
matter if the line of thrust lies outside the section over the piers, provided that the
corresponding cable is within the section.

26. What range of secondary moments is permissible? In the case of the e,

il Upperbound
T+rrrr— Lower bound

- //\\

N A

Fig. 4. Typical limits on line of thrust
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limits shown in Fig. 4, the secondary moments must be large enough to bring the
cable into the section (and allow for cover) over the piers, but not so large that the
cable loses cover at the bottom at mid-span. Bearing in mind that the form of the
secondary moment variation is known along the beam, in that it is zero at pinned
ends and varies linearly between supports, there is either an infinity of possible
solutions, a unique solution or no solution. The condition that there is a unique
solution needs to be determined, as this represents the dividing line between a
feasible and an unfeasible design.

27. Consider the single internal span shown in Fig. 5(a). The existence of
symmetry will not be assumed for the moment. A positive linear transformation is
required at both pier positions, to bring the cable within the allowed zone, but a
larger value is required at the left-hand pier. However, the linear transformation
must not be too large near mid-span. The two limits are shown in Fig. 5(b) as
functions of position within the span. The difference e, — e, varies linearly along
the span, and, as drawn, many possible lines can be fitted between the bounds. The
condition that one line can just be fitted between the bounds on the transform-
ation is being sought. This will occur when a point on the upper bound is just
tangential to the line joining the two values over the piers, as shown in Fig. 5(c).

28.  Let the position within the span where the transformation is tangential be
at a distance of x from the left-hand end. Then

lm>%tr+(L-—x)t, (7
and
I, =c, — €pr
Lh=cy — ey (8)
by =Cy — €,
which can be rearranged to give
d>ep— ey —e, LY 9)
L L

29. In any particular design, the stress conditions which govern at each section
will be known; as there are four possibilities for each of e, , e, and e, there are 64
different combinations, so it is not sensible to detail all of them here. However, we
can consider one case as an illustrative example.

30. Ifitis assumed that the working load conditions govern at each point, this
gives
Zl o Zlftw + (Ma)pl

x

pl =

A RP, RP,
Zyfow (M)
1 1Jtw a/pr
- 21 + 10
=774 " Rp, " RP, (10)
ZZ ZZ ftw (Mb)m
b= —— — +
A RP, RP,
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Substituting into equation (9) and rearranging, gives

X (L — x)
[((Mb)m - z (Ma)pr - -T (Ma)pl> _.ftw(ZZ - Zl):l

(11)
(Z,— 7))
(a+ B2)

If the effects of losses are ignored, f,,, = 0, and the beam is symmetrical, so that
(M,),, = (M,),; and x = 0-5, equation (11) reduces to Low’s much simpler expres-
sion for P, .

31. Inanend span(say at the left-hand end of the beam), ; must be zero.

RP, >

tm = (x/L)t, (12)
so that

X X
em><c2—zcl>+zem (13)

X X
[((Mb)m - Z (Ma)pr> ‘fm(zz - Z Z1>}
[(Cz _ % cl> + (Z, — (::/L)Zl)}

A similar result can be derived for right-hand end spans.

32. In general in internal spans, and in all cases in end spans, the value of x is
unknown. However, it is easy to determine which stress condition governs the
position of the line of thrust at the piers, and also at intermediate positions, and to
produce similar equations in all cases.

33. It should be appreciated that these results are a relaxation of the condi-
tions that apply for statically determinate beams, in which secondary moments
cannot occur; the limits on cover must be applied at every section to the line of
thrust of the cable, which now coincides with the actual position.

which leads to

(14)

Conditions on existence of line of thrust

34. Consideration has not yet been given to the question of whether it is
actually possible to find a line of thrust e, which satisfies the stress limits. In the
general case, the line of thrust will be constrained to lie between bounds e, and
€., defined by the various forms of equation (25). Typically, the bounds will rise
over piers but will lie below the centroid in regions where the bending moments
are sagging. Provided that the prestressing force has been chosen so that it lies
within the feasible region of the Magnel diagram for all positions along the beam,
it follows thate,,, > e, for all positions.

35. A cable placed at the lowest position e, will cause the maximum possible
sagging secondary moments M, .. . (Imagine that the beam is made statically
determinate by the removal of the internal supports. The effect of the cable’s acting
alone will be to induce the maximum hogging curvature in the beam and hence the
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largest uplift at the intermediate support positions. It will then require the largest
downward forces at the intermediate positions to restore the beam to its unde-
flected position at the supports, thus maximizing M, .)

36. For normal beams, subjected to gravity loads applied within the length of
the beam, the resulting bending moment diagram will normally have larger
sagging regions than hogging regions, so the corresponding secondary moments
are normally sagging.

37. By a similar argument, a cable placed at e, will cause the maximum
hogging (or minimum sagging) secondary moment (M, i) If the maximum and
minimum secondary moments are both sagging, it follows that it will be impos-
sible to find an intermediate cable profile that causes zero secondary moments; no
line of thrust can thus exist.

38. This is the essence of Low’s third condition on the prestressing force P, . If
the prestressing force is too low, no concordant line of thrust will be found to exist;
a search for it would be fruitless. Low’s condition is based on the assumption that
there must be sufficient prestress to ensure that the bottom fibre does not
decompress, and that the total shortening of the bottom fibre due to the prestress
is the same as the shortening of the centroid. There will thus be no net rotation
along the span which is necessary to allow multiple spans all to have the same
structural form and cable layout. More simply, this is a compatibility condition to
ensure that individual spans in the viaduct fit together.

39. The condition for concordancy of the line of thrust is a similar compat-
ibility condition, although usually expressed in terms of displacement rather than
slope, at the supports. Despite that difference, they are the same condition in
practice. The present condition is more general. It applies to the whole structure,
including end spans, and can take account of the fact that different stress condi-
tions apply at different positions along the beam.

40. There are expressions for e,,;, and e, at all positions along the length of
the beam, from equations (25)+32) and for any chosen prestressing force, the
secondary moments at each pier position can be determined, using equations (47).
It is thus straightforward in the design process to try various prestressing forces
until the maximum and minimum secondary moments at each pier position are of
opposite signs, indicating that a concordant line of thrust exists and can be sought.

41. However, it would be beneficial to be able to find conditions which must be
satisfied to enable us to find the minimum prestressing force directly. M, . will
normally be sagging in all cases, but M, .. can be sagging or hogging. Therefore,
the dividing line between these two cases, which will occur when emin itself defines
a concordant profile, has to be found. Can any condition which must be satisfied
for e, to exist be determined?

42.  Consider equation (47) which defined the secondary moments Q; at each
internal support. If the cable profile is concordant, then all Q; are zero. It is both a
necessary and a sufficient condition for this result that the right-hand sides are all,
separately, zero. Thus it can be shown that a cable profile is concordant if it can be
shown that

B; Pe dx

T 0 foralli (15)

This result is perfectly general, although not particularly useful in its present form.
43. Ifitis assumed that both EI and P are constant everywhere, then it is only
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necessary to show that

J/}ie dx=0 foralli (16)

Although these integrals are formally for the complete structure, in practice, for
any i, the f; values are only non-zero in the spans adjacent to the ith support. A
sufficient (but not necessary) condition to ensure concordancy of e is that f p;e dx
is zero for each span separately.

44. Consider a beam whose internal spans are of roughly equal size and whose
end spans are so proportioned that the maximum hogging moments over all
supports are approximately the same. This is a common layout for multi-span
structures, although there are many exceptions.

45. For internal spans it is common practice to make the cable profiles identi-
cal within each span, and symmetric about the mid-span. f§; is skew-symmetric
about the mid span, where it takes the value 0-5. Thus | ;e dx = 0-5 | e dx, so we
only need to show that the average value of the eccentricity is zero within the span.

46. It is usual, although again not invariable, that the value of e, will be
governed by the tensile stress limit in the bottom fibre under the action of the
maximum moment M, . Therefore, e will satisfy identically the condition that

ZZ o ZZ ﬂw Mb

-2 b 17
=774 " rp, TRp, (17)

Thus,if [ e dx =0

Z, Z 1
L 2 Za)w +— | M, dx=0 (18)
A RP, RP,

where L is the span. ~
47. 1If the average value of M, over the span is M, then the condition can be
rearranged to give

RP, = A_/I_‘i__é_f.‘.‘z (19)
Z,/A
It is relatively easy to show that this is a minimum condition on the prestressing
force. If P, is less than this value, e, will give rise to a sagging secondary moment,
and no concordant profile can exist.

48. This expression is a general form of Low’s limit on P, . Low set f,,, to zero,
and his expression uses the mean value of the maximum live load moment,
whereas the Author’s expression uses the mean value of the maximum total
moment. However, he postulates a beam in which, owing to dead load, no rotation
occurs over the piers; in that case, the mean value of the dead load moment will
also be zero.

49. For end spans, slightly different conditions apply, as the results cannot be
simplified by symmetry. Consider the first span, where we only need to show that
| Bye dx = 0. If we measure distance x from the end of the beam, up to the first
support at x = L, then f, = x/L. If e ;, is governed by the same stress condition as
in the internal spans, then it needs to be shown that

L z, Z M
(ol Zadw) Mol (20)
, LI\ "re, ) " RP,
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or

Z, Z, [ 1 [tx
B R [ Ry R V. 21
<A+RP, RP ), L " @D

Integrating by parts, gives

LZZ+ZZf‘W —M,L L de d (22
A Rp )T T ) )
_ I
Mbas—gj <J Mbds>dx (23)
L 0 4]

this equation can be rearranged to give
RPsz~Mb~22ﬁw
' Z,/A

Defining

(24)

50. These conditions are generalized forms of those given by Low, and
although they only apply precisely in certain circumstances, they are a useful guide
to the minimum prestress required. The average values of M, within each span
and the double integral of M,, in the end spans are easy to carry out numerically,
and it is therefore straightforward to include these conditions in the design
process.

Condition P,

51. The condition that Low calls P, is a combination of the two cases P, and
P5. The limit which governs P is that e_; is a concordant profile, and so may be a
line of thrust. Such a profile will have a larger range than that given if the line of
thrust passes through e_,, over the piers, so it may not be possible to fit a cable
into the section.

52. Therefore, it is necessary to find the condition that a cable with the lowest
permissible range of eccentricities will be a concordant profile. Low got round this
by assuming that the actual cable profile was at its maximum practical negative
eccentricity (i.e. ¢;) over the piers, and remained at that eccentricity until forced
down by the conditions on emin. This is slightly artificial in that the cable will have
to be curved in practice, but the principle is valid, and will not be dealt with in
detail here.

Visualization of conditions
53. The four conditions that have been discussed can be summarized by
visualizing the allowable limits on e,,.

P, The conditions on P, ensure that a feasible zone for e, exists, so that
€max > emin (F]g 6(&))

P, The condition P, ensures that the range of eccentricities within a span are
less than allowable by considerations of cover (Fig. 6(b)).

Py The condition P, ensures that a concordant profile exists between the
limits e_;, and ¢, (Fig. 6(c)).
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Fig. 6. Visualization of limiting force conditions: (a)P; (b) P,; (¢) P3; (d) P,

175




BURGOYNE

P, The condition P, ensures that a cable which satisfies the eccentricity
range condition (as for P,) will also satisfy the condition that a con-
cordant line of thrust can exist (as for P,) (Fig. 6(d)).

Example

54.  Asan illustration of some of the principles discussed previously, the design
of a 3-span bridge, with spans of 40 m, 50 m and 30 m, will be considered. The
structure 1s to carry three traffic lanes, each 3-65 m wide within an overall width of
13 m.

55. The loading is to be standard highway loading HA plus 45 units of HB, to
the Department of Transport draft standard.® The concrete will be assumed to
have permissible stresses in compression of — 15 N/mm? at transfer and of — 16-5
N/mm? at the working load (tensile stresses are considered positive), with no
tension being allowed in the preliminary design. The section will be prismatic. The
live load envelopes are determined using an enveloping program based on Macau-
ley’s method® (Fig. 7).

56. The largest moment ranges occur at the centre of left-hand side span
(chainage 20 m—moment range 37040 kNm), and over the left-hand pier
(chainage 40 m—moment range 28 193 kNm). These will thus be regarded as the
critical positions for the section design.

37. The section design is based on the moment range at the critical sections,
which leads to minimum section moduli of —2:24 m? for Z, and 264 m> for Z, .
The chosen section is shown in Fig. 8; the overall depth is chosen from
span : depth ratio considerations, while the top flange is fixed by the road width
and is considerably larger than that required for purely flexural considerations.
The bottom flange is only marginally above the minimum size.

58.  Figure 9 shows the Magnel diagrams at the two critical positions (20 m

~60y-
- 40

20}

\W&

40+ . Ll Minimum moment, M,
— Momentattransfer, M,
e Maximum moment, M,

Bending moment: MNm
(&)

20+

60 1 i i 1 L L 1 d
0 15 30 45 60 75 90 105 120

Position: m

Fig. 7. Moment envelopes used in design example
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13m

e
.

L 6m

3168 m’

e
N

Fig. 8. Cross-section chosen for design example

and 40 m). The minimum prestressing forces at the two sections are 40449 kN and
33538 kN respectively. The feasible region lies outside the section at the top at
chainage 40 m, but the feasible region lies well within the section at 20 m, so it is
probable that the cable can be brought within the section when linear transform-
ations and the associated secondary moments are considered.

59. The requisite prestress force can now be considered. The first criterion is
that a feasible region must exist on the Magnel diagram at each cross-section (P,).

150k

125} Feasible zone
atchainage 40m

T

-1-00

Topfibre (y = —~0-784)

~0-75F

—ZlA
(~0-479)

-0-25

1
50 40 35 30
1/P, P:MN

Eccentricity, e

0-25+

0-501 Feasible zone

atchainage 20 m
—Zi/A
(0-742)

Bottom fibre (y = 1-216)

125+

Fig. 9. Magnel diagrams at 20 m and 40 m from left-hand end
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Fig. 10. Limits on prestressing force

The minimum and maximum prestressing forces (calculated by the standard
elastic design inequalities (25)-(44) given in Appendix 1) are shown in Fig. 10. The
maximum force is unlikely to be a governing criterion, but the minimum prestres-
sing force must be at least 40449 kN. However, the other two criteria must also be
checked.

60. The values for P, calculated on the basis of the eccentricity range are

15 e Upperbound
Chosenline of thrust
e -ower bound
—1.0

~05

<§«
=
=
(«

0-5
1-0+
A\ A
1-5% 1 1 i 1 { 1 1 ! }
0 15 30 45 60 75 90 105 120
Position: m

Fig. 11. Limits on line of thrust of cable e,
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Table 1. Values for P, and P,

Span P, :kN P, kN

Left 41172 51438
Centre 46 137 51822
Right 28520 27731

shown in Table 1, as are those calculated for P, on the assumption that a concord-
ant profile exists within the line of thrust zone. Clearly, a prestressing force of at
least 51822 kN is required. If a prestressing force of 52000 kN is chosen, inequal-
ities (25)«32) can be used to determine limits on the line of thrust e, which are
shown in Fig. 11.

61. As a check on the existence of a concordant profile, the secondary
moments, that result if a cable at the highest position e,;, and the lowest position
e... is chosen, can be calculated (see Table 2). Clearly, it is possible to find a
concordant cable profile which fits within these limits, but we would expect it to lie
close to the upper limit on e, especially in the left and centre spans.

62. A line of thrust can be sought which satisfies the limits on e, . Use will be
made of the principle that any bending moment diagram which corresponds to a
real load on the structure will be a scaled line of thrust. A notional cable force of
1000 kN will be assumed, so that a bending moment of 1000 kNm corresponds to
an eccentricity of 1 m; and a continuous beam program will be used to calculate
the results.

63. The process is iterative, and takes several steps; a load is assumed, the
bending moments calculated, and they are compared with the eccentricity limits. If
the calculated eccentricity lies outside the limits, a modification to the applied
loads is made, and the process repeated. The loads are also chosen to minimize the
reaction at the internal supports, to eliminate kinks in the cables at these points.
An automated version of this process will be presented separately.'®

64. The first estimate was to take a uniformly distributed load over the whole
structure, of intensity 7 kN/m. After a number of iterations, the loading was modi-
fied to have 8 components (see Table 3). The corresponding line of thrust is shown
in Fig. 11. As expected, the cable profile is close to the upper limit over the main
span, and for a fair proportion of the left-hand span.

65. The profile lies above the beam at the left-hand pier, but is well above the
soffit at mid-span. A linear transformation can now be used to choose a cable
profile that fits within the section. The cable profile needs to be lower than the line
of thrust by 0-334 m at the left pier, and 0-079 m at the right pier, to give 0-15m
from the top surface to the centre of the cable. With a cable force of 52000 kN, this

Table 2. Secondary moments at internal

supports
Q, :kNm 0, :kNm
Left pier Right pier
emin (hOZEING) -315 —3384
€a (5222INE) 16029 15941
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Table 3. Notational loading to give e,

Load Start End Intensity:

kNm
1 0-0 30-0 6-8
2 30-0 350 50
3 350 450 —-256
4 45-0 550 52
5 55-0 82-5 7-0
6 82-5 95-0 — 188
7 95-0 105-0 10-0
8 105-0 120-0 5-0

corresponds to secondary moments of 17368 kNm and 4108 kNm (before losses),

at these positions.

66. To demonstrate that the limits on the actual cable zone e, are also satisfied,
these secondary moments can be treated as loads, and the limits determmed These
are shown in Fig. 12, together with the actual cable profile, and it can be seen that
the conditions are satisfied. (It must be stated that this check is academic—if the
limits on e, are satisfied, then those on e, will automatically be satisfied.)

Conclusion

67. It has been shown that a constraint on the existence of a feasible line of
thrust, within the zone permitted by the stress criteria, must be considered when
choosing the prestressing force in a statically indeterminate beam.

4irrirrer Upperbound

Actual profile

e Lower bound
10k
705 -
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15 i 1 !
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Fig. 12. Limits on actual cable profile e,
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68. This condition has been shown to be a generalization of Low’s condition
on the extension of the extreme fibre.

69. An example has been given demonstrating the use of this condition in
practice, and illustrating the steps needed to design cable profile rationally and
quickly.

Appendix 1. Stress limit criteria

70. At any cross-section, the beam will be loaded by a minimum working load moment
M, and maximum moment M, , which are applied after all prestressing losses. Before time
dependent losses have occurred, it will be assumed that there is a fixed transfer moment M,.
If the stresses are limited to f, in tension and f,, in compression at transfer, and f,,, in tension
and f,,, in compresssion at the working load, 12 distinct stress criteria can be identified, based
on limiting tension and compression in both extreme fibres under the three load conditions.
However, if it is insisted that M, > M, this number can be reduced to eight, as four will
automatically be satisfied. : )

71. These conditions can be rearranged to give inequalities on the permissible eccentric-
ities, as functions of the applied moments, the section properties and the reciprocal of the
prestressing force.

zZ, Z M
e>—j~ ‘Pf°‘+?‘ (25)
ex L _Zitw My (26)
A RP_ RP,
z, Z M
e>——j-—~ ;)f“+7)—i 27
ex 22 _ZoJw My (28)
A RP_ ' RP,
e< ~%——Z;}f" A—;—' (29)
t t
e D Zide M a0
A RP, RP,
z, Z M
eg——j——ﬁl—)—f—“br?f 31)
ZZ Zchw Ma
e 2 Eesw 2 32
A RP, RP 42

t t

72. By considering the change in stress in a particular fibre, and comparing it with the
permissible stress range, three limiting conditions for the elastic section modulus of each
extreme fibre can be derived.

(M, - RM)
2, < - (33)
(Rfct "jtw)
., _(M,—RM)
AT Bl (34)
(fcw - Rf;z)
Z, < (M, — M,) (35)

(fcw - flw)
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] (M, — RM))
(Rfcl *—jlw)
(M, — RM))
Zyz—2— ¢ (37)
(fcw - Rfu)
M' —
- W, - My
(~/CW ~f1w)
73. Once a section has been chosen, a Magnel diagram can be drawn at the cross-section,
and the maximum and minimum prestressing forces can be determined. Alternatively, by

considering all combinations of top and bottom fibre stress limits, the following limits on the
prestressing force can be derived.

Z,>

(38)

po _Mw A (39
‘/MR+R(ZZ-ZI)( v~ M) )
P> =7 R Z) = Za) + (M, — RMy)] (40)
P2 rz 7y Wz~ RZ) + (RM, — M,)] (41)
and
S Rz M M) 42)
PoS iz =7 (R 2y =S 2~ (RM, = M) (43)
A ‘
P < m [(fewZ — Rf,Z,) — (M, — RM,)] (44)

These inequalities have been used in the Paper to provide upper and lower limits on the
prestressing force P, and P___ .

Appendix 2. Calculation of secondary moments by virtual work

74. Itis possible to determine the secondary moments on a beam directly from the cable
profile, using the principle of virtual work. It is still necessary to solve a set of simultaneous
equations (one for each internal support), but it is not necessary to convert the cable profile
into the equivalent forces and then perform a structural analysis.

75. An equilibrium system consisting of a fictitious moment system and associated reac-
tions, as shown in Fig. 13(a), is identified. The reactions R}, are unknown but will not need to
be determined. There will be one such equilibrium system for every internal support.

76.  The compatibility system will be chosen to be the actual displacement of the beam.
There will be a curvature (+ ve sagging) due to the horizontal component of the prestressing
force (P) at an eccentricity (e) of — Pe/El. The — ve sign arises because a cable with + ve
eccentricity causes a hogging curvature.

77. At each internal support there will be an actual secondary moment Q;, as shown in
Fig. 13(b). Each of these secondary moments will give rise to a curvature of B, Q,/EI, which
varies along the length of the beam.

78.  The virtual work equation will thus be

L
f Mk dx =) WA (45)
0
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LG

I ¥ t ¥ ¥

Reactions A",

(a)
Total secondary moment = 23,Q),
Qe
/3101 ] /))303
Q, @ Q%
< A 7aN -
[ L l L | L I Ly
(b)

Fig. 13. Virtual work systems: (a) equilibrium system; (b) compatibility system

79. The only point forces on the beam in the equilibrium system are the reactions R}, ,
but as these are applied at the supports, where A is zero, then the right-hand side of the
virtual work equation must be zero and we do not need to know the values of R}, .

80. There will thus be one virtual work equation for each of the internal supports.

inQ;<Z 8,0, — Pe)/EI dx =0 i=1,2..n (46)

81. For any particular equation, Q; is a constant, so it can be cancelled from the equation
without loss of generality, which can be rearranged to give

BiB;dx [ B Pedx
gQ" El ) EI

i=1,2...n 47)

The equations form a set of linear equations in the unknown secondary moments Q;; the
cable profile appears only on the right-hand side of the equations, and the coefficients of the
Q, terms are integrals of products of the f functions, many of which are zero. Of the non-zero
terms, although they are formally integrals over the whole length of the beam, only the spans
(at most two) over which both §; and j; are non-zero need to be considered.

82. Equations (47) are perfectly general, allowing the prestress force, eccentricity and
stiffness to vary, but if EI is constant, the integrals on the left-hand side can be performed
analytically. Simple algebra then yields

AL, + Ly) L,
1 L AL, + L L
c o (F2 + L) ’ Qj:JBiPe dx = J, (48)

L, ALy + L, L,
L, etc.

The right-hand side terms (J,) can be found by numerical integration. Because the f, terms
are zero, other than in the spans adjacent to the support in question, the integrals for each J,
need only consider two spans.
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DISCUSSION ON PAPER 9292 STRUCTURAL ENGINEERING GROUP

Cable design for continuous
prestressed concrete bridges

C. J. Burgoyne

Mr A. McC. Low, Ove Arup and Partners, London

This extension to the published theory on this topic is to be welcomed, and I have
one comment. Fig. 10 shows the limits on prestressing force along the 3-span
bridge example. The maximum force shown is calculated from the extremity of the
Magnel diagram. This could be called P,,,,. What is missing is the maximum
force limits imposed by case 3, P5,,,, - Following arguments similar to those in § 8
of the Paper and in §§ 15-20 of reference 4, it can be shown that for an internal
span

MLHA o Zchw - M
Zy  Z,/A

P3max :fcw A - (49)

84. From Fig. 7, it may be judged that for the centre span M, = 0-5 x M.
Hence P, == 6616 x 16:5 — 0-5 x 51-82 = 83-3 MN. This is much less than the
values of P, plotted in Fig. 10. A similar derivation is possible for the end spans.

85. Introducing the concept of maximum cable force in continuous spans
raises some interesting questions. Are cases ! and 3 the only cases to impose
maximum limits? Cases 2 and 4 are both governed by the limit on the cable profile
amplitude. When there is an excess of force this will not govern. Hence cases 2 and
4 govern P_;, but not P, . Are there complementary cases 5 and 6 which govern
P, .. butnot P ;. ?

Dr Burgoyne

It is quite correct to state that other criteria could be derived. In the Paper,
equation (19) was derived on the assumption that e, is the limiting position of
the line of thrust, and that this condition i1s governed by tensile stresses in the
bottom fibre under the action of the maximum applied moment M,. Mr Low’s
condition (49) is derived on the assumption that e_,, is the limiting position, and
that this is governed by compressive stresses in the bottom fibre under the action
of the minimum applied moment M, .

87. Clearly, there are many other similar relationships that could be derived,
but this should not be allowed to detract from the main point of the argument: the
prestressing force must be chosen such that a cable placed at e;, would give rise to
hogging secondary moments, while one placed at e, would give rise to sagging
secondary moments. Under those circumstances, a concordant line of thrust
between e, and e, can exist.

max

Paper published: Proc. Instn Civ. Engrs, Part 2, 1988, 85, Mar., 161-184.
737




DISCUSSION

88. Mr Low raises the possibility that upper limits might exist on the cable
force that correspond to the lower limits imposed by P, and P,. This is not
the case, however, since P, and P, are limited by the maximum eccentricity
determined by the section dimensions. Increasing the cable force decreases the
eccentricity, and there are no corresponding lower limits on eccentricity that need
to be introduced. There is no need to worry about possible limits on Psand Pg.
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