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Synopsis
The paper presents a method of determining the variation of bending
moment within a prestressed concrete beam as it lifts off falsework; the
Jalsework reactions can also be calculated.

The falsework is assumed to provide an elastic resiraint if the beam
deflects downwards, bul no resiraint if the beam lifts off.

The problem is non-linear, since it is not known ab initio which parts
of the beamn go up and which down. The paper presents a method of
analysing a beam for these support conditions, under a generalised
loading.,

Results are presented for a three-span beam as it progressivel ly lifts off
is falsework as more cables are stressed; the effects of varying the
Jalsework stiffness are considered.

The case of a beam being presiressed in such a way that excessive
Sfalsework loads can be caused is also presented.

Motation

{Some minor notation is used once only and is defined when used in the
text)

v is the displacement

€3is the slope

M is the bending moment

(J is the shear force

x is the distance along beam

El'is the flexural stiffness of beam
k is the support stiffness

A4 = y/4Er

q is the general applied load

£ is Hetenvi’s functions (eqn. {(4))

Ry . . ) .
I ; is the bearing reaction R at position x = g
5
i

'} isthe point load W at position x = 4

&
M,

e

W
§
‘ } is the applied couple M at position x = ¢

W
a -

fromx = g tox = b
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Notation used only in Appendix A

v; is thie vector of primary unkowns, deflection, slope, bending moment,
and shar force (egn. (A1)

@} relate general v vector o v
b;§ atsart of beam (eqn. (A.2))

#; ism the notional vector of two current unknowns
£ } relate vy vecior at start of region

ki tou vector

A “ s . .
i ; isthe uniformly distributed load w
i

Hes

These quantities when barred refer 1o general v, vector,

Entrod wction
The problems associated with a beam resting on an elastic medium have
been studied for many years, although the primary aim has been to study
the bekagviour of a beam resting on 50il. The basic Winkler £ srrnulation! )
in which the soil is assumed to provide a reaction in proportion to the
deformuation imposed on it, has been applied to many problems (see, for
examp Re, Hetenyi” s classic book?) and is known 1o give good agreement
with meore exact formulations for the sub-grade reactiond.

Paviovic & Tsikkost used the terminelogy quasi-Winkler to classify
foundactions which provide a reaction only when the deflection is
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ssed beams lifting off
supports

downwards; that definition will be retained in this paper. When the
deflection is upwards, the beam is assumed to lift off the foundation, and
there is no force between the two elements. Pavlovic concluded that, for
a downwards point load on the beam, lift-off occurs some way from the
load itself and the maximum bending moment in the beam differs Iittle
from the exact Winkler model. There were significant differences between
the two models when the beam was loaded by a couple, since the beam
lifts off the ground on one side of the applied load. This would be a
relatively rare case in practice for soil-structure interaction problems,
since structural elements that apply moments to a foundation, such as
columns, normally also apply a point load that would be sufficient to
force the beam back on to the soil, at least in the vicinity of the column.

However, there is a class of problem for which these effects should be
studied more closely. Post-tensioned prestressed concrete beams are built,
unstressed, on falsework. They may be either cast in situ or precast in
segments and assembled on site. The cables are then progressively
tensioned until the beam lifts off the falsework; when the beam i
completely free, the temporary supports can be removed. In theory, the
falsework can be removed at a slightly earlier stage, when the beam has
sufficient prestress to support its own weight, but in practice the stressing
is continued until separation occurs.

It is important to be able to calculate the forces in both the beam and
the falsework throughout the stressing procedure. Any stress changes in
the beam after a cable has been anchored will cause a change in the
prestress (usually a loss), so we need to be abie to determine the stress at
the time of transfer for every cable. In practice, this means that the
bending moments in the beam at all stages of the stressing process must
be determined.

A large beam may have many cables, with varying profiles. Normally,
the total effect of these cables is to raise the whole bearn, but individual
cables may cause downward deflections over certain areas of the beam.
These can give rise to very high local reactions from the falsework, which
may cause problems for the beam itself, for the falsework, or for the
falsework foundations.

We thus need to be able to determine the variations in the beam
bending moment, the loads carried by the temporary supports, and the
reactions transmitted to the permanent supports.

Definition of problem

For any given cable profile, or set of profiles, we can calculate the forces
that the tendon exerts on the concrete. These forces will in general
comprise distributed loads where the cable is following a curved profile,
together with point loads and moments at the anc rorage positions. The
determination of these loads can be regarded as a separate preliminary
exercise whose details are already well established$; they will therefore
not be considered here.

The falsework supporting the prestressed beam will normally have a
much lower stiffness than the beam’s permanent supports, and if the
structure tends to deflect downwards they will provide a positive reaction.
However, if the beam deflects upwards, as it will eventually do over the
majority of its length as sufficient cables are stressed, there will be no
contact between the beam and falsework, and hence no reaction between
them. The falsework can thus be considered fo be a quasi-Winkler
foundation.

Our problem can thus be regarded as one in which we wish to analyse
a beam, continuous over a number of supports {the permanent bearings),
supporied elsewhere on 2 quasi-Winkler foundation and subjected to a
combination of point loads, distributed foads, and moments.

29



Paper: Burgoyne/Aul

We shall define some nomenclature to avoid confusion later on:

Permanent supports, which are deemed to be rigid when subjected to
vertical loads but provide no restraint against rotation, will be termed
bearings, to distinguish them from the reactions from the falsework,
which will be termed supports.

A Winkler support will be one which provides an elastic restraint
against both positive and negative displacement, while a guasi-Winkler
support will restrain only positive (downward) deflections.

Possible solution strategies

Various solution strategies can be considered.

(1} The analytical technique of Pavlovic & Tsikkos?. The form of the
displaced shape must be known, so that the positions of the loads and
bearings relative to the interface between the supported and unsupported
regions are known, at least to the extent of being able to specify whether
they are to the left or right. It is not necessary to specify the position of
the interface precisely.

The displaced shape is divided into regions, each being either supported
or unsupported. The form of the governing equation in each region is
known, and the displaced shape in that region can be specified in terms
of four parameters. The positions of all of the interfaces between the
regions are also variable parameters of the problem.

By specifying conditions of compatibility and equilibrium between
adjacent regions, and also that the displacement is zero at the interfaces,
it is possible to set up sufficient non-linear simultaneous equations to be
able to determine all the unknown parameters. It should be noted that the
non-linearity relates only to the position of the interfaces. If the interfaces
are fixed, the equations become linear, a fact which we shall make use of
later.

The drawback of the method as presented is the difficulty of

determining @ priori the form of the displaced shape, which means that
cach problem has to be set up afresh; we are trying to produce a
generalised solution technique.
(2) The beam can be analysed as an ordinary beam, supported only on
its permanent bearings, under the action of the applied loads. In areas
where the displacement is positive, we can determine the corresponding
load that the support would provide, and reanalyse the structure under
the combined effects of the applied and support loads. This will result in
a new displaced shape, for which we can reassess the support loads and
repeat the process.

In theory, the process should converge to a displaced shape which
causes support loads that are in equilibrium with the applied loads, but
in practice there are a number of problems.

The displaced shape will, in general, be varying continuously, so the
support loads will also vary in the same way. Since we cannot analyse a
beam under a completely general loading, we must idealise the support
loads as a series of discrete loads, either by a large number of point loads
or, if we wish to be more sophisticated, as a series of uniformly or
trapezoidally distributed loads. Whichever method we use, we are
introducing an error and a considerable degree of complexity.

There is a more serious problem, however. Unless the support stiffness
is very low, the load applied by the support after the first iteration will
be sufficient to lift the beam off the support for the second iteration. The
beam will thus oscillate, alternating between positive displacements that
cause suppert loads and negative displacements that do not. Convergence
occurs only if a proportion of the change in the support load is applied
to the member; the determination of the proporiion to be used is critical,
since if it is chosen too small, convergence is very slow and, if too large,
oscillation occurs.

This method is not suitable for use in a generalised program.

(3) A better alternative, which can be regarded as the opposite of the
previous method, is to treat the beam as wholly supported on a Winkler
foundation, but to apply ‘fictitious’ loads where the beam is off the
foundation, to counteract the negative reaction produced by the assumed
elastic support.

This method does not suffer from the oscillation problem of method
(2), in that the beam does not alternate between positive and negative
displacements. It does, however, tend to oscillate about the final solution,
and convergence is slow; this is compounded by the fact that the
individual beam analysis calculations are considerably more complex than
for a normal beam.

The other problem identified above, associated with the idealisation of
the support reactions, still remains and adds to the difficulty of providing
a reliable generalised package.
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A program has been written to analyse beams by this method, but
convergence was found to be extremely slow and the number of fictitious
loads needed to correctly model the regions where the beam lifted off was
unacceptably hight,

(4) The final method presented, which is the one described in more detail
below, can be regarded as a generalisation of Pavlovic’s method, but
avoids the difficulties associated with non-linear equations.

The beam is assumed to be divided into regions. Every alternate region
is deemed to be supported on Winkler foundations (not quasi-Winkler),
but the ones in between are not. Such a beam can be analysed relatively
casily by a combination of the classical Macauley’s method for the
unsupported beam and Hetenyi’s method for the Winkler supported
regions. Permanent bearings can be incorporated without difficulty. The
equations to be solved are all linear.

The results of this analysis will be a deflected shape with regions of
both positive and negative deflection. These regions can be identified and
used to define the support conditions for a repeated anlaysis. Regions
where the beam is deflecting downwards will be assumed to be on a
Winkler support for the next analysis; where it is deflecting upwards, it
will be assumed to be unsupported.

After a few iterations (typically, 5 or 6 in the cases studied by the
authors), there are no changes in the displaced shape, so the support
conditions assumed correspond to a quasi-Winkler foundation. The
solution will be exact, since no approximations are being introduced by
assuming the existence of fictitious discrete forces.

Details of method
The technique adopted for the solution of our problem will be the ‘method
of initial parameters’ identified by Hetenyi?, extended to include
generalised loading and adapted to cover normal beams as well. For
completeness the method will be summarised here, together with the
equivalent terms for the normal beam regions.

Consider the Winkler region shown in Fig 1. The displacement y is
governed by the differential equation
EXd%/dx?y = ~ky + ¢ oD
where k is the stiffness of the elastic support and ¢ is the applied load.
The general solution of eqn. (1) for an unloaded beam is of the form

y o= e AHCicos Ax + Cosin Ax) 4 ,\x(@jws Ax 4+ Cin Ay, ()

where A+ = k/4ET and C,;, C,, Cy and C, are determined from the
boundary conditions at the ends of the beam; the extension of this process
for a generalised loading is complicated.

it is possible, however, to relate the constants C; to physical quantities
at the beginning of the region, from which it can be shown that the shape
of a bearn in an unloaded region is given by

yom pF (NS (1 N6 o Fy( A

(1/ N2EDMF (A0
(1 XBEDQGF L A5 -

(3
where

FUAX)Y = cosh{ Ax).cos{ X x)

Fy Ny = 0.5%cosh{ Ax).sinl A x) + sinhé A\ xby.cos{ Axj) i
Fyhxy = 0.5%Gsinh{ Ax).sin( A x)
FiAx) = 0.25%cosh{ Xx). sin { Ax) — sinh{ A\ x).cos( Ax)h

These functions are shown graphically in Fig 2 and obey the following
relationships

~ 4N F,
AF
(dF;/dx)y = NF,
(dF/dx)y = AF, )

Fig 1. Winkler foundution
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Note, also, that F; (0} = 1-0, while F,(0), F3(0) and F,0) are all zero.

These principles have been applied to point loads, distributed loads, and
Ean. (3) is valid only in unloaded regions, but we can generalise the result moments, and could be extended to other load types (such as triangularly
to a loaded beam. distributed loads) if required.
The effect of a point load applied at an intermediate position within the The complete set of these terms is shown in Fig 3, together with the
region can be regarded as having a modifying effect on the beam to the corresponding expressions for a normal beam.
right of the point of application of the load similar to a change in the initial We shall also need expressions for the slope, bending moment, and shear
parameters, force, within each region. These are also given in Fig 3 and in Fig 4, in
Thus, by analogy with egn. (3), we can see that the effect of a concentrated the same format as the expressions for the displacement.
load W applied at a point x = d, will be to modify eqn. (3) by an additional
term

We can now consider the complete analysis of our beam, which is, of

course, made up of a number of regions, alternately on Winkler supports
and unsupported.

Y=o + W(1/A 351)-5#}( ) } for x > d The principal unknowns of our analysis will be the displacement and

while it has no effect on the equation for x < d. (The load will have an

effect on the bearn everywhere and this will automatically be taken into

. . . . DISPLACEMENT (y) SLOPE (8)
account when the initial parameters are determined by satisfying the
boundary conditions.) Similar changes are made to the expressions for slope, Locd Teem Winkler Normal winkler Norma1
moment, and shear. Initiol  displ
This idea is familiar from analysis of normal beams by Macauley’s 1| v verom R 0 g AAF L (A) oo
method’, and we can simplify the equations for this work by making use pumere
of Macauley’s notation, which specifies that terms contained within curly Initial  siope
. . g e L/
brackets take their normal value if the contents of the bracket are /,,.i_ - 3R F, (00 $0g.% vy F, () « 8,
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Fig 2. Hetenyi’s Fi functions

Fig 4. FExpressions for moment and shear
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slope at the left-hand end of the member and the values of the reactions
at the permanent bearings. Once these variables have been determined, all
other guantities can be calculated.

Note that we do not regard the bending moment and shear force at the
left-hand end as variables; they will be taken as zero in all cases, but suitable
loads can be applied if fixed values are required. The method could easily
be extended to incorporate these quantities if a more general analysis was
needed.

The deflection, slope, moment, and shear throughout the first region
can now be determined as linear functions of these two initial unknown
parameters (displacement and slope). If the region includes a bearing, we
shall need to introduce an additional unknown parameter, being the reaction
at the bearing. However, one of these parameters can be expressed in terms
of the others by making use of the compatibility condition that the
displacement is specified at the bearing; we thus have only two independent
parameters. We shall record the equation used to eliminate one of the
parameters so that its value can be determined subsequently by back
substitution.

At the end of the region, the final values of the displacement, slope,
moment, and shear, become the initial values of those quantities for the
next region, but they can still be expressed as linear functions of two
parameters.

We work along the beam in this way, adding a parameter as we pass
each bearing, but using the compatibility condition to eliminate one of the
other parameters and passing from region to region. Eventually, we reach
the right-hand end of the beam, where we can use the two equilibrivm
conditions that moment and shear are zero to solve for the two parameters
we are using at the time.

The other parameters that were eliminated as we passed the supports
can now be determined, using the equations recorded on the way.

The intitial values in each region can also be determined, so that the
displacements, slopes, moments and shears can be calculated anywhere.

A fuller description of the techniques used in the analysis is given in
Appendix A.

The initial choice of regions for the two alternative support cases was
arbitrary, and the analysis above takes no account of the sign of the
deflection, but we can now make a rational choice of the type of support.
We seek those points where the deflection is zero; bearings will normally
be such points and their positions are fixed, and it is relatively simple to
find those points where the beam just lifts off the support since we have
general expressions for the displacement.

A computer program has been written on these principles, running on
a small micro-computer.

General data input facilities are provided, and the user can specify an
initial support configuration. However, this initial configuration does not
affect the final solution obtained, although of course the process can be
speeded up if a good guess is provided. In practice, assuming one region
throughout causes no difficulty, and since calculations for unsupported
regions are much faster than for Winkler regions, the assumption of a single
unsupported region is a good (and conveniently simple) starting point, unless
it is known that the applied load is predominantly downwards.

Although in practice the beam will normally change from Winkler support
to no support at each of the bearings, the program has been written in
such a way that this is not forced on the analysis, and the initial guess can
be entirely arbitrary.

After carrying out an analysis using the initial configuration, the program
searches for points of zero deflection, determining how many different
support regions there are and of which sort they are. The beam is then
reanalysed using the new support configuration.

This process is repeated until the boundaries of the regions do not change
by more than a specified small amount, so that the support conditions
actually used correspond to the desired quasi-Winkler form.

Fig 5. Beam with applied couple af each end (Paviovic, example 2} layout

Comparison with Paviovic

Pavlovic & Tsikkos 4 produced exact analytical solutions to two problems.
The present method can be used to analyse both cases and converges to
solutions identical with theirs.

To illustrate the method, Pavlovic’s second example will be considered
in more detail.

A simply supported beam of span / (/=2 75m) and with Winkler stiffness
factor N\ ( = 1-57/)) is simply supported at its ends and supported
elsewhere on a quasi-Winkler foundation. Point couples of magnitude M
are applied in the same sense at each end, causing part of the beam to deflect
downwards and part to deflect upwards (Fig 5).

For our initial configuration, we shall assume that the left-hand half of
the beam is supported on a Winkler support and that the right-hand half
is unsupported. This is a reasonable assumption anyway, but it is also the
result that would have been produced by considerations of symmetry after
one iteration if the whole beam had been assumed to be either wholly
supported or wholly unsupported.

The position of the lift-off point (measured as a distance from the left-
hand end) after each iteration is as follows:

Initial

value 1-3750

After

iteration
No.

I (-994303
2 0-819241
3 G-774718
4 0773520
5 0-773584
6 0-773585

Fig 6 shows the deflected shape after a number of iterations. After three
iterations the deflected shape is sensibly indistinguishable from the exact
result, and after six the results are identical.

Beam lifting off falsework

We can now consider a practical example. Fig 7 shows a beam of prismatic
cross-section, with three unequal spans of 40, 50, and 45 m, respectively.
The beam is assumed to have a second moment of area of 5 m#4, which
will give a short-term flexural stiffness of 150 kN/m2, and to have a weight
of 150 kN/m. These values have been chosen arbitrarily, but are typical
of those for a single-cell box beam carrying a two-lane road over a 50 m
span.

The beam is to be prestressed with 20 cables which, for the sake of
simplicity in calculation, we shall assume to be all following the profile
shown; each carries a constant force of S062kN at transfer. {The
simplifications inherent in these assumptions will not cause the problem
to differ from reality and will avoid cluttering up the problem with
unnecessary detaily. These cables are 10 be stressed in succession; the cables
are detailed in such a way that the lateral forces from eight cables
approximately balance the beam’s dead load, but the problem has been
deliberately made unsymmetrical so that 1ift off from the falsework oceurs
at different times in the different spans. The equivalent lateral loads
transmitted to the concrete by one tendon are also shown in Fig 7.

Fig 6. Beam with applied couple at each end (Paviovie, example 2)
deflections

o
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{a) Layout
| ]
aY
40 50 45 E
(b3 Cable profile {5 parabolae)
d 1
37-5 I 5 45 i 5 l 42°5
i
(¢ fquivatent load from ! cable { Force = 50625 kN) fin kN/m}
172°5 17075
o e s Al Fata'No'e's oY

DU RR K KR KK IR KT

JRITF IR FRIHR KRR AR GTS
-22 =20

Fig 7. Three-span beam: layout, cable profiles, and equivalent loads

Fig 8. Three-span beam under dead load only: effect of bearing displocement
on deflection
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Fig 9. Three-span heant under dead load only: beam on Winkler support
and non-deflecting bearings

An assumption has (o be made about the stiffness of the supporting
falsew ork. it is reasonable to assume that the falsework deflects 10 mm
under the action of the beam’s dead weight. This corresponds to a falsework
stiffnessof 15 000 kIN/m?. For simplicity, we shall refer to such a support
as a ‘LOmm support’, If the support is more flexible than this, it will be
difficulito maintain the beam’s geometry accurately, but a stiffer ‘1 mm
support’, corresponding to 1 mm deflection under dead load and with a
stiffness of 150 000 kN/m?2, can be imagined if the beam is being cast on

The Structural Engineer/Volume 65B/No. 2/June 1987
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stiff falsework resting on a firm foundation. Results will be presented for
both the 10 mm and 1 mm support conditions.

A further complexity should be considered before a detailed analysis can
be carried out. This concerns the exact position of the permanent bearings
relative to the displaced position of the beam under the action of the dead
load alone. If the beam is analysed for this condition (i.e. with no prestress},
it will not have zero bending moment along its length if the permanent
bearings are assumed to have zero displacement. Away from the bearings,
the beam deflects towards the more flexible falsework: at the bearings, it
cannot deflect. It thus takes up a curved shape, and this will be associated
with bending moments. But the beam was cast in this configuration, and
no moment can be resisted by the fresh concrete, so we must look for a
more rational arrangement.

Consider our three-span beam, resting on 10 mm falsework. The
falsework will deflect along its whole length by 10 mm under the weight
of the fresh concrete. The beam will be straight, with no induced bending
moments. At this stage, the permanent bearings do not play a part, since
there is no way the wet concrete of the beam can exert a concentrated load
on them. The concrete then hardens in this straight, deflected, shape. The
effect is that the beam has deflected 10 mm relative to its bearings before
any load is applied.

Figs & and 9 illustrate the importance of this point. If our three-span
beam is analysed under the action of dead load only, and on the assumption
that the bearings do not deflect, we obtain the deflected shape shown by
the solid line in Fig 8 and the bending moment given in Fig 9. The moments
induced are quite large, but are entively fictitious. Alternatively, we can
analyse the beam on the assumption that the bearings are displaced by 10
mum. The uniformly distributed dead load causes a uniform falsework
deflection of 10 mm. No load is transmitted to the permanent bearings,
since the beam deflection is exactly compatible with the fixed bearing
deflection.

(There is one case when the bearings should be assumed to have zero
displacement. If the beam is cast without bearings, it will deflect on the
falsework as before. If it is then jacked up to place the bearings at the
nominal height after the concrete has hardened, either before or after the
prestress is applied, the bearings should be assumed to have zero
displacement.)

We now proceed to analyse our three-span beam under three different
assumptions about its support conditions, using our quasi-Winkler analysis
model. Results for the deflected shape and bending moment will be given
for each case as the prestressing proceeds.

{1} Beam on 10 mm support, with bearings displaced by 10 mm (Figs 10
and 11).

The unstressed beam starts straight and remains in contact with the
falsework until eight cables are stressed (when the right-hand span starts
to 1ift off). By the time 10 cables are stressed, all the spans have started
to lift off, but there are still large areas of the beam in contact with the
falsework when all 20 cables are stressed.



Paper: Burgoyne/Aul

— — — 20 Cables
wee —— —— - 18 Cables
B — — — — 16 Cables
‘r»‘i, e — 14 Cables
——— 12 Cables
————— 10 Cables —~
~~~~~~ 8 Cables / \
— 6 Cables \
& S 4 Cables P
g N ————— 2cavles / AV
~— / \ - —— - No Cables// \
g B /// ™~ PN N
o
2
fry
[
]
o

T T
0 15 30, 45, 80. 75. 30. 105, 120. 135.
Position (m)

Fig 10. Three-span beam on 10 mm support, displaced bearings: deflected shape
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Fig 11. Three-span beam on 10 mm support, displaced bearings: bending moment
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The bending moment in the beam starts to increase as scon as the first
cables are stressed, and by the time the beam starts to lift off, there are
already significant moments in the beam.

(2} Beam on I mm support, with bearings displaced by I mm (Figs 12 and
13).

The unstressed beam is straight, as in the previous case, and lift off occurs
only when 10 cables are stressed. However, because the support is now
10 times as stiff, the deflections prior to lift off are much smaller than
in the last case, with correspondingly lower curvatures and moments.

By the time all 20 cables are stressed, hardly any of the beam is in contact
with the falsework, and the moments are virtually identical with those to
be found in a beam supported only on its bearings.

(3} Beam on 10 mm support, with undisplaced bearings (Figs 14 and 15).

This is the case that corresponds to the hardened beam being jacked up
to its final position so that the bearings can be placed in position before
the cables are stressed. The unprestressed beam is flexed, and so has some
bending moment, which of course has stress implications for the beam.
The beam lifts off the shutter in all three spans when eight cables are stressed,
and the beam is virtually completely free of the supports when 20 cables
are st d.

It 1s not easy to see the implications of this from these six plots, but by
considering two specific points, we can study the phenomena in more detail.
Fig 16 shows the variation in bending moment at the centre of the mainspan
and over the right-hand pier as the various cables are stressed. When all
the cables are stressed, there will be a hogging moment at mid span and
a sagging moment over the pier.

The short dashed lines show the variation in moment, assurning that the
beam is supported only on its bearings. Clearly, there is a linear variation
from the unprestressed case, when the beam is loaded only by its dead
weight, up to the fully prestressed condition.

When we look at the case of a beam on a 10 mm support, with displaced
bearings (solid lines), the beam starts with zero moment in its unprestressed
configuration, and for a while there is a linear variation of moment as
successive cables are stressed. This is to be expected, since the beam is acting
as though it is on a true Winkler support and behaves linearly. When the
beam starts to lift off the falsework, however, the line becomes non-linear;
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Fig 16. Three-span beam: moment at (wo locations

hand pier

as more of the beam lifts off, the line becomes asymptotic to the
unsupported case, since the influence of the support stiffness is reduced.

This behaviour is more marked when the stiffer | mm support is
considered (long dashed lines). The moments induced before lift off are
negligible, and the subsequent response becomes asymptotic to the
unsupported case much more rapidly.

The final case, that of a beam on a 10 mm support with undisplaced
bearings, starts off with some moment, behaves linearly until lift-off, and
then exhibits a very marked transition to unsupported behaviour.

From these results, we can clearly see that the falsework stiffness can
have a marked effect on the response of the beam to the prestressing forces.
Although the final response is not altered, since the falsework will be
completely removed eventually, the moment in the beam at the time each
individual cable is anchored can be varied quite considerably.

Beam loading falsework
Another problem that is difficult to analyse by classical methods is the case
where the beam causes significant changes to the falsework loads,
particularly when beam movements ‘pinch’ the falsework over short lengths.
We consider an example where a viaduct is being built on a span-by-
span basis, with a significant overhang into the next span. This is commonly
done to induce some dead load hogging moment over the pier and reduce
the sagging moment in the middle of the recently completed span. Consider
the beam shown in Fig 17; the cross-section and section properties will be
the same as for the last example. A single span of 50 m with a 12 m overhang
into the adjacent span will be considered, although the same phenomena

will occur at each stage of the construction process.

The cable profile shown is typical of that provided during a first-stage
stressing operation. It provides reasonable stresses throughout the beam
when the falsework has been removed, allowing construction to proceed
with the next span. Additional cables would probably be provided
subsequently to carry permanent loads, but they do not concern us here.

‘The effect of stressing the cables is to lift the main span upwards, but
this causes rotation of the beam at the pier, so the cantilever moves
downwards. When the beam is analysed for its unsupported condition (i.e.
when the falsework has been removed), the deflection at the tip of the
cantilever is 9-6 mm downwards. It is reasonable to suppose that, when
the cables are stressed, there will be some additional load on the falsework
in the cantilever; it might also seem reasonable that, since the peak
downward deflection in the unsupported beam is at the tip, a stiffer prop
provided there would relieve the intermediate falsework of the additional
foad.

The beam has been analysed for two of the support conditions considered
earlier for the three-span beam; Fig 18 shows the reactions in the falsework .
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For the 10 mm support, with the bearing displaced so that the
unprestressed beam is not loaded, the support reaction drops off fairly
rapidly at the left-hand end from the dead load value of 1S0kN/m, as is
to be expected. The beam is free of the falsework over the central 20m
or so of the main span, and then comes into contact with the falsework
again, over the support and right up to the tip of the cantilever. The peak
reaction on the falsework occurs about 6 m into the cantilever, with a
magnitude of 173kIN/m, which represents an increase of about 12 % over
the dead load value for which the falsework was presumably designed. At
the end of the cantilever, the reaction is considerably reduced (149kN/m).

A more significant effect is observed for the 1 mm support with deflected
bearings. The beam lifts off the shutter over a larger length, but the peak
intensity of the reaction on the falsework is much higher (231kN/m or
54 % over the dead load value) and is concentrated much closer to the
bearing. This additional support serves also to cause the cantilever to bend
upwards. Indeed, the tip of the cantilever now lifts off the falsework, so
any additional propping provided at that point would not carry any load
and would not relieve the falsework elsewhere.

Such an increase in the falsework loads could have serious implications
for the falsework designer, given the lower factors of safety often used
when designing temporary works.

Fig 19 shows the variation in bending moment in the beam for the
different support conditions, under the action of dead load and prestress.
There are clear differences in the bending moments between the situation
when the falsework has been removed (for which the beam is presumably
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designed) and the cases when the falsework is still present (for which, in
all probability, it has not been designed). These variations are particularly
marked in the vicinity of the pier and may have a large effect on the stresses
in the beam.

The effects on the stress may be large encugh to consider a revision of
the construction process and should not be ignored. For example, they could
mean that the stressing operations may have to wait longer for the concrete
to reach the required strength, or that the cable profiles need to be altered
to eliminate tensile stresses which occur only at the intermediate stage when
the beam is stressed but still in contact with the falsework.

Conclusions

A method has been presented for the analysis of beams resting on supports
which provide reactions if the deflection is downwards, but not if the
deflection is reversed.

The method has been checked by comparison with some published
analytical solutions and been shown to give rapid convergence to the exact
solution.

Hlustrations have been given for cases where a post-tensioned beam peels
off its supporting falsework as the beam is stressed. It has been shown that
the stiffness of the falsework, and the exact nature of the support conditions,
have significant implications for the design of the beam itself, and also
for the temporary works design.

Possible extensions to the method
The method as outlined in this paper applies to beams simply supported
on a number of rigid bearings.

The quasi-Winkler support has a constant stiffness throughout the length
of the member, and the permanent bearings can all be displaced by the
same fixed amount. The applied loadings can consist of point loads,
uniformly distributed loads, and point couples.

The method could be extended to cope with additional boundary
conditions (such as fixed ends or lines of symmetry) or supports on springs
restraining either vertical displacement or rotation.

The quasi-Winkler support could be divided into zones, each of which
could have a different stiffness, to simulate falsework of different rigidity.
In this case, the end of each of these zones would have to form a boundary
between regions used in the analysis process, and allowance would have
to be made for the fact that alternate regions are not necessarily
unsupported.

An extension of the method to cover the case where the support stiffness
varied in a more complex way would not be easy, since this would change
the basic governing differential equation.

Additional loading cases (to cover, for example, trapezoidal lcad
distributions) would not be toe difficult to implement.

The method does not lend itself to beams of variable stiffness because
of the difficulty of performing integrals which involve terms of (//EI);
this is a disadvantage of Macauley’s method as well. Nor can its extension
to grillage-type structures be readily contemplated. However, the underlying
philosophy, in which the structure to be analysed is divided into those areas
in contact with the support and those separated from the support, and then
iterating until the regions chosen correspond to regions with positive or
negative displacement, should be applicable to a wider range of grillage
or finite element analysis programs.

Glossary

Suppori: refers to the medium that provides reactions throughout the length
of the beam

Bearing: the permanent bearings that provide reactions at discrete points
Winkler suppori: a support that resists positive and negative displacements
Quasi-Winkler support: a support that resists positive {(downwards)
deflections only, but does not affect negative deflections

Unsupported: indicates that the beam is not supported continuously; it does
not indicate that there are no bearings

10 mum support: indicates a support which deflects 10 mm under the action
of the beam’s own seif-weight

7 mum support: indicates a support which deflects 1 mm under the action
of the beam’s own self-weight

References

I. Winkler, E.: Die Lehre von Elastizitat und Festigkeit, (‘The teaching
of elasticity and stiffness’), Prague, 1867

2. Hetenyi, M.: Beams on elastic foundations, The University of

Michigan Press, 1946

37



Paper: Burgoyne/Aul

3. Vesic, A.B.: ‘Bending of beams resting on isotropic solid’.
J Eng.Mech.Div., ASCE, 87 (EM2), 1961, p35

4. Pavlovic, M.N., and Tsikkos, S.: ‘Beams on quasi-Winkler

foundations’, Eng.Struct., 4 April 1982, pli3

See, for example: Naaman A.: Prestressed concrete analysis and

design fundamentals® McGraw Hill, 1982, p360

6. Chiu, E.K.M.: unpublished MSc dissertation. Imperial College, 1985

7. Macauley, W.H.: ‘Note on the deflection of beams’. Messenger of
Mathematics, 48, 1919, p129

L

Appendix A. Details of analysis

This appendix presents details of the analysis procedure for a beam divided
into regions that are either on Winkler supports or are unsupported. The
beam may also be placed on bearings with fixed displacements. This analysis
forms the core of the method presented in this paper.

The analysis is performed in two stages. In the first, the values of the
primary unknowns are determined; in the second, these values are used
to calculate details of the deflected shape everywhere else in the beam.
Define a vector v, (i=1,2,3,4)

where v; = y deflection
vy, = Jslope
vy = M bending movement
vy = @ shear force
at a point {x) within the beam

In particular, define a vector v;, which are the values of the variables at
the start of a region, where x =0,

The general vector v(x) can be related to the initial vector by:

V=g

Vo + by AA2)
(We adopt the summation convention where repeated suffices imply
summation)

The coefficients a;; and b; are functions of x and can be found easily
from the expressions in Fig 3 and Fig 4; the @;; relate to the initial
conditions at the left-hand end of the region, and thc b; depend on any
loads and fixed bearings within the region.

Thus, once the v, values are determined, the general v quantities can
be determined easily.

We do not need to treat initial values at the start of every region as
unknowns (which is the essential element of Paviovic’s
use the fact th

work). Instead, we
at the values at the end of one region become the starting
values of the next region. We can then express the value of v anywhere
in the beam in terms of the four initial values at the extreme end of the
member, and the value of the reaction at fixed bearings.

o this number of parameters can be reduced further, since we can
specify that M, and O, are both zero at the start of the member. Ary load
applied at the end can be regarded as being applied infinitesimally adjacent
to the end without loss of generality, so
have {2+ n) unknowns.

ed to consider only two quantities
r. We start at the left-hand end, where v, and €3

From this point, until we reach the first support, anvy quantity
expressed in terms of these two unknowns. At the first bearing, the
displ
o

Between the

for a beam on n bearings, we shall

&
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%

s unknowns at any one time,
o are unknown.

can be

acement is fixed, so we can establish a relatio ween v, and

hich we use to eliminate y, as an independent v
first and second bearings, we can wmux E

terms of the two independent unknowns (3, and Ry {the r at the
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at the firsi.
stinues in this way until we reac
where our two independent unknowns
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We maintain a notional vector (f=1,2) of the two unknown
quantities. u, =t3 always, but u; contains successively y,, R, Ry. . . R,
The vector v, at the start of any region can be expressed in terms of the
current vector u; by

Vo=t 4y + K (A3)
For example, at the start of the beam we have
Yo 1 0 Yo 0
(‘)0 0 I ('?(} 0
M, =t 0 0 + 0 (A4
o, 0 0 0

The vectors £ and k; must be recomputed at the start of each region.
Elsewhere in each region, v can be found using eqn. (A.2).

Vo= oy Ve by
= @y {ty uy + k) + b
= Ay ) we + ey Ky + b))
= I u + K

AALS)
As we pass a fixed support, however, we have to change variables, since
we are eliminating one unknown and replacing it with another.

Thus, immediately to the left of a support

v = Gy kg (A6
But the displacement is specified, say o , so that

vy o= 0 o= u R (AT

This expression is stor
5 is calculated.

ed so that old values of 1, can be determined when

The values to the right of the support are related o those at the left of
the support, by
v v+ (0,0,0,R)7

fal

AAL8)
where R is the (as yety unknown reaction at the bearing which becomes
the new primary variable

can obtain a

By substituting egn. (A7) i

revised expression for v in t

nto the expression for Vi, We

the new unknowns, # and 3,

erms of
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This becomes the revised expression for v; a

nd defines the new v
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