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Design or analysis — elastic or plastic?
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We consider the relationship between elastic theory and plastic theory, design
methods and analysis methods, and the upper and lower bound theorems. These raise
various conflicts for engineers that can have important consequences.

Most engineers have been taught the fundamentals of plasticity theory. They know
how to perform a plastic collapse analysis of a frame, or carry out a yield line analysis
of a slab. They know that these give an upper bound on the collapse load and are thus
“unsafe”. They are aware that there is also a lower bound theorem, but circumstantial
evidence shows that most engineers cannot quote it and do not believe that they use it.
This is paradoxical, since they rely on it every time they design a structure.

This paradox is being thrown into relief as we spend more time assessing existing
structures, rather than designing new ones. The rise of computer methods of analysis
has allowed “exact” solutions to be obtained for structures that would have been far
too difficult to analyse only a few years ago.

To illustrate these various aspects, we consider a hypothetical reinforced concrete slab
structure.  We shall assume that the structure was designed 30 years ago using the
relevant methods of the day, and 1s now being assessed using current techniques. We
will consider what today’s engineers would recommend to the owners of that structure
in the light of the analysis.

The structure

The structure we take as our example is a a

rectangular slab made from reinforced concrete, k"_“‘"“ X
stimply supported on all sides. It has an aspect = —
ratio (u) of 2, with the shorter sides of length «.
It was designed to carry a uniformly distributed M,
load of intensity ¢. The geometry is shown in ua C
Figure 1, which matches the notation used in
Timoshenko [1] and other papers to which we M
shall refer [2-5]. It is assumed that the slab will
be designed with orthogonal reinforcement.
Steel in the bottom of the slab, parallel to the x-
axis, resists the sagging moment M,. Moments l

such as M, are expressed as moments per unit . Y

width and in  the plots will be non- Figure 1. Slab geometry
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dimensionalised by dividing by ¢ga”. No load factors will be applied to the structure —
these mask the principles that this paper is trying to uncover. It is assumed that the
structure, as with most reinforced concrete slabs, is under-reinforced.

The design

It is assumed that the structure was designed in 1970 by a bright young engineer fresh
out of college. Engineers would not have had access to calculators, let alone
computers, so complex calculations for a simple structure such as this would not have
been justified. Our designer would be assumed to know about the methods for the
elastic analysis of such slabs, such as the Fourier techniques used in the Navier
analysis, but would not have had the time to sum by hand the infinite series that the
solution required. But he (as it would almost certainly have been in those days)
would also have known about the Hillerborg strip method of design [6] which would
have been quite appealing. According to this theory, which 1s still taught today and
would still be regarded as a perfectly reasonable method of design, the slab is
imagined as a series of intersecting orthogonal strips. By apportioning the load
between the two sets of strips, and designing suitable reinforcement on the
assumption that the strips are simply supported beams, the designer has reduced an
infinitely indeterminate plate into two statically determinate beams. The only
question that our designer has to decide is the proportion of load to put onto each of
the two strips. He chooses to put a proportion of the load ¢ onto the short strips, and
the rest (1 - «)g onto the longer strips. He knows that whatever value of « he chooses
will satisfy the lower bound theorem, which states:-

If any stress distribution throughout the structure can be found which is everywhere
in equilibrium internally and balances certain external loads and at the same time
does not violate the yield condition, those loads will be carried safely by the structure.
(7]

The important word in this theorem 1s “any”. Whatever value of « he picks, the
solution will still be in equilibrium with the applied loads.

However, our engineer believes that

it 1s a “good thing” to make his value [] —oc]q
of « “reasonable”.
by saying that he will choose « such aq

that the deflections in the two strips )

that intersect at the centre of the slab pa
are equal (Fig. 2). This 1s likely to

mean that the two strips will deflect

together, which will in turn mean a

that there will be no premature

He achieves this

cracking. Figure 2. Choice of load distribution on
Hillerborg strips.



A simple elastic calculation for a simply supported beam shows that
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so that when u = 2.0, =0.941.

The engineer can then design the reinforcement in the two directions, and to be
economic, he curtails the reinforcement as soon as possible, so that the resistance
moment follows very closely the applied moment. He has thus satisfied the second
requirement of the lower bound theorem - that the applied moment nowhere exceeds
the moment of resistance.

Our designer knows that the moment field that he is designing for is not “correct”, but
he also knows that if the steel in one direction is overloaded, either that steel will
yield or the concrete will crack more extensively, which will shed any additional load
from the stiffer strips onto the less stiff loaded strips.  The structure 1s safe.

The moment capacity fields provided to the slab in this way are shown in Figures 3
and 4.
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History of the slab

We continue our scenario by assuming that the structure was built to the design, using
satisfactory materials and workmanship, and that it has suffered no exceptional events
during its life to date. The owner of the building now wishes to have the structure
checked, perhaps in preparation for a sale, or on the requirements of an insurance
company, so now another engineer is approached to carry out an assessment. In the
meantime, the original designers have ceased trading; the original calculations have
been lost, although a set of as-built drawings have survived in the client’s files. A
check of the structure shows no signs of corrosion.



The assessment

The engineer who is checking the structure is also a recent college graduate. She
(since times have changed) is adept at using computer analysis packages, so she
carries out a finite element analysis. The slab 1s of uniform thickness and she has no
knowledge of its state of cracking, so she takes a uniform stiffness everywhere. She
takes Poisson’s ratio (v) for concrete as 0.2 and she ends up with results for three
different moments, M, M,, and M,,, as shown in Figs 5, 6 and 7. (The figures have
been derived from a Navier solution — they are what she would get if she did a finite
element analysis correctly.)

Navier Mament Mix)

Mavicr Warment Miy)

0.,

\\ \\\ 7
S \&\%\ T AL Iy
062 3 3 .‘ \‘ ‘.." " ) 002
AN A 0%
N \Q\: N

\ R \‘&\\@0.
R R A A R e

S
L
R
R
R
S
o
o
\ R

Q04

X< 000 -

008 BN

Figure 5. Elastic M, moments Figure 6. Elastic M, moments
N o 9
(max. 0.0997ga”) (max. 0.0382¢a”)

Navier Moment Mixy)

002 -,

SR
SR
001 }z\‘\"}ﬁ}‘g\\\\}\\\\

"-‘\-‘.N\‘\\

006 ..

008 .1

Figure 7. Elastic M,, moments
(max £0.0659 qal)

She uses the original drawings to determine the existing moment capacities of the
slab, which match those found by the original designer. The applied M, moments are
considerably less than the apparent moment capacity, but, disturbingly, the M,
moment capacities seem lower than the applied moments, and the maximum is not at
the centre. There are also the M, moments to deal with. The finite element package



can cope with this, however, since it has the Wood-Armer equations built-in, so she
can also determine the amount of steel that the designer ought to have used.

Wood-Armer equations

The Wood-Armer results for the bottom steel are shown in Figs 8 and 9, which should
be compared with Figs 3 and 4. The M, capacity required is still less than that
provided at the centre, but not at the corners; the M, capacity is insufficent almost
everywhere.
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Wood-Armer results
Figure 8. M, capacity required Figure 9. M, capacity required
(max. 0.0998¢ga’) (0.0401ga” at centre)

Figure 10 shows the load factor that should be applied to the external load so that the
bottom steel is sufficient to carry the applied moments. Values >1 are satisfactory,
but this occurs only in two small regions — elsewhere the moment capacity is clearly
imsufficient, and by a large margin. To make matters worse, the Wood-Armer
equations also show that top steel is required in the corner, to deal with the M.,
moments that are present, even though all of the M, and M, are sagging. The M,
results are shown in Figure 11.
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Our checker knows, however, that the Wood-Armer equations were intended for use
in design. By considering all possible failure orientations, Wood (for orthogonal
reinforcement), and Armer (for skew reinforcement) calculated the applied moment
about all possible failure orientations by simple equilibrium:-

M, =M cos’0+M sin®0—2M _sin0cos0

They then considered the moment of resistance about any possible axis (using
Johansen’s stepped yield criterion) in terms of the, as yet unknown, moments of
resistance provided by the steel M, and M, *.

M, 5=M *cos’0+M *sin”0
There are an infinity of possible solutions which ensure that the resistance 1s higher
than the applied moment for all orientations, but Wood added the additional
requirement that the minimum amount of steel be provided. This additional
requirement gives a unique solution for the required steel. A typical result is shown in
Figure 12.
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Figure 12. Moment capacity provided by the Wood-Armer equations.

Note that the capacity is always greater than the applied moment; the equations also
minimise the steel required in two specified directions (here 0 and 90 degrees).

Various special cases were identified to allow for situations where these equations
required moments of the wrong sign.

Denton’s equations

Denton [5] recognised that structures were failing assessments because of the
optimisation criterion imposed by Wood and Armer. It is of no concern to a checker
that the reinforcement is not optimal. Our assessor does not have to choose the
reinforcement, she only has to check whether the applied moment is less than the



resistance moment for all orientations. Denton published these equations in a form
that determines the limiting factor y by which the applied moments have to be
multiplied so that they lie below the resistance moment for all orientations.

So our checker applies these equations to find y everywhere, and plots the results as
shown in Fig. 13, which is in a similar format to Fig. 11. The results are better, but
still show that the slab is unsatisfactory in many areas, particularly in the corners of
the slab, where M., is high. 7y factors as low as about 0.20 are present, and even in the
middle of the slab, where M, 1s zero, y1s as low as 0.63.

These equations tell us nothing about the top steel, none of which was provided by
our designer.

Denton's equations

<

* y
Figure 13. “Safe” load factor by Denton’s equations
Our checker thus concludes that the slab 1s inadequate, and recommends significant
refurbishment, perhaps using glued-on carbon fibre strips.

The client

The client is dissatistfied. He is informed that the structure he has been using for 30
years, without any problems and without any indication of damage, has a strength that
is only a fraction of what it was designed for. He does not believe that a structure so
weak would have survived without problems especially since, without admitting it to
the engineers, he suspects he has been overloading 1t anyway. So he requests a
second opinion.

Yield line analysis

As a check on the assessment, a yield hne
analysis 1s carried out. This had not been done
before since our first checker knows that it is an
upper bound, and thus unsafe. The second
checker uses a simple yield line mechanism
(Figure 14), with a single pattern parameter,
which gives a load factor of 1.0 that 1s
independent of the actual value of the pattern
parameter. A more complex pattern (Figure 15), pattern

Figure 14. Simple yield-line



with a hogging hinge in the corner, which
ordinarily gives a lower collapse load, in this case
gives a higher one. Despite extensive searching,
no mechanism can be found with a collapse load
factor less than one. The structure is declared safe
and the client 1s happy, but the checking engineers
feel they have lost a fruitful contract to repair a
deficient structure.

Figure 15. More complex
yield-line pattern

Discussion

Some elements of this scenario would be familiar to most engineers working today.
The example is hypothetical, and to a certain extent unrealistic. No additional safety
factors have been applied which would have provided more reinforcement than was
actually required. Only a single load case was considered and the reinforcement was
curtailed more than would have taken place in practice. No code rules for minimum
steel were applied, which would certainly have led to a slab that was stronger at its
edges than is suggested here, and no suggestions for varying the proportion of load
carried in the edge strips and mid-span strips were applied.

We, the external observers, are blessed with perfect knowledge, whereas our
protagonists were not. Let us consider the roles of the various characters, and see
whether any can be faulted, with a view to seeing whether our own procedures should
be altered.

The original designer applied the logic of Hillerborg’s method correctly. He may be
accused of being a little simplistic in choosing a single distribution factor over the
whole slab, but his attempt to equate the deflections of the intersecting strips at the
centre the slab is reasonable.

Was the first checker at fault? Her reliance on computer analysis would be very
typical of the procedures today. Finite element programs are cheap and easy to use —
she probably spent less time setting up her analysis than the author of this paper did in
writing the Fourier series solution. Did she make a mistake in using the Wood-Armer
equations? Yes, but she corrected it by using Denton’s equations instead. Where she
was at fault was her reliance on what the plasticity community has come to call
“Navier’s straitjacket”[8].  This is a rigid belief that the solution produced by an
elastic analysis 1s the true answer. The finite element package she used was linear,
and had a uniform stiffness in all directions. She knew that the structure would crack,
which would shed loads from one direction to another, but it is very difficult to follow
the true load-deflection path since it depends so much on the history of the slab, on
the yield strength of the reinforcement, on the bond characteristics and the tensile
strength of the concrete, most of which are unknowable. Any elastic solution, such as
the finite element or the Fourier series, gives a set of moments that is in equilibrium
with the applied loads. Thus, even if it is not the correct solution, a linear elastic
analysis can be used as the basis of a lower bound solution, which 1s ideal for design.
That is the reason for the assertion at the beginning of the paper that most designers
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rely on the lower bound theorem every time they design a structure. They only need
to ensure that they have an equilibrium set of moments and the capacity to resist them.

Could the checker reasonably have done anything else? She could have presumed
that a lower bound method was used for design, but it would be difficult for her to
check; there are an infinity of different ways in which the distribution factor for the
loads could have been chosen. What is simple for the designer is very complex for
the assessor. Knowing the reinforcement but not knowing the details of the design
procedure, she could have broken the slab down into strips parallel to the
reinforcement.  She could have determined the loads that would just cause the
moment capacity to be reached everywhere in one set of strips, and then checked
whether the rest of the loads could be carried by the other set of strips. In a simple
case like the one being considered here, such an approach is feasible, but in more
complex cases it would be very difficult.

Should we be surprised that our upper bound method gave a load factor of 1?7 The
original design provided just sufficient reinforcement to cope with the applied loads.
Any increase in load would have caused the strips to yield all along their length in
both directions. So a simple yield line mechanism, which allows all the applied loads
to do positive work, and the whole of the slab to contribute to its resistance, is bound
to give a load factor of 1.0. The more extensive mechanisms, where there is a corner
slab in which the load does no work, are bound to give higher collapse loads. If a slab
has uniform moment of resistance, corner fans can reduce the collapse load by about
10%, but here the yield lines in the corner do very little work since the moment
capacity 1s so low.

What lessons can we learn as a profession when we are trying to make the most of our
existing structures.

1. Remember the underlying structural principles, especially of the lower-bound
theorem.

o

Remember that linear elastic solutions and lower bound techniques like
Hillerborg, are primarily useful for design.

3. Make our structures deformable, so that the redistributions inherent 1n
plasticity theory can take place.

4. It a structure 18 to fail it must have a collapse mechanism, whose collapse load
can be computed.

5. A computer analysis is only as accurate as the assumptions that underlie 1t.
Neatly printed garbage 1s still garbage.
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