RATIONAL USE OF ADVANCED COMPOSITES IN CONCRETE
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ABSTRACT: Knowledge of the properties of advanced composites can lead to conclusions
about the most logical ways in which they can be used. The paper considers the elastic
properties, the bond properties and the lack of ductility, and concludes that structures should
be designed as over-reinforced, with partially bonded internal tendons, and resin-free external
tendons. It also concludes that enhancement of the compression zone is possible by fibre-
reinforcing or confining the concrete, and that requirements for shear need to be totally
reworked in the absence of plasticity. It also considers the economic justification of advanced
composites in concrete, and concludes that commercial innovation is now required.
KEYWORDS: Advanced composites, design principles, economic development.

1 INTRODUCTION

The use of advanced composites in various forms has been developing over the course of
the last 15 years, during which time knowledge of their properties has been improving. It is
now possible to review that knowledge and consider how these materials might most sensibly
be used.

This paper looks at the generic properties of advanced composites and considers how
these properties lead to conclusions that differ from conventional thinking on reinforced and
prestressed concrete. The implication is that if these materials are to be used successfully, the
type of structure into which they are placed must be reconsidered.

The three materials with which virtually all this work has been carried out are glass, aramid
and carbon fibres; they have been selected because they possess a combination of strength,
stiffness, resistance to creep, resistance to corrosion and cost which lead to the view that they
are sensible engineering materials. But along the way, mistakes have been made, and indeed,
are still being made, because they are seen as replacements for steel. There has thus been a
considerable amount of work trying to make FRP bars that look like reinforcing or
prestressing steel by giving them a surface texture, with a view to replacing one material with

another. Instead, however, consideration should be given to how they might best be used in
their own right.
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1.1 REVIEW OF PROPERTIES

The new materials are all available in the form of fibres, with strengths of the order of a
few grams each. They are elastic, with no yield before failure, and they are all highly
oriented. Their transverse properties are markedly inferior to those in the axial direction.
They have to be aggregated together to form useful components, without inducing high
stresses. The mechanics of production, and the mechanisms for getting force into the fibre,
raise very different problems from those present in steel.

All the materials suffer, to some degree, from stress-rupture problems, in that they can
creep to failure. There is a widespread perception that this is associated with “deterioration
with time”, which would imply that the short-term strength is reduced. This is not true, but
the amount of data available at present makes it difficult to counteract this view convincingly.
In fact, the strength retention of materials is good, and the effect on prestressing tendons will
not be too severe; the virtually constant pretensioning load will be governed by stress-rupture,
while the ultimate strength of the tendon for short-term load excursions will remain at the
initial strength level.

The thermal behaviour of composites also needs to be assessed properly. There is some
Justification for thinking that the response to fire needs to be reconsidered, and the difference
between the thermal expansion of composites, and that of concrete, needs to be taken into
account. The very low thermal conductivity of composites by comparison with steel is also a
significant factor.

The cost of fibres and resins is high, particularly when considered in terms of small-scale
production.

1.2 CURRENT STATUS

Despite the fact that there are still a few gaps in the properties of the materials, research in
Japan, Europe and North America has shown that composites made in various forms have the
structural capacity to act as reinforcement or prestressing tendons in concrete. Sufficient
information has been obtained to allow some conclusions to be drawn about the way
structures should be designed. If the new technology is applied inappropriately it will fail,
either structurally, or economically, which would have the effect of preventing even the most
appropriate uses if the materials got a bad name. The remainder of this paper attempts to
draw together many ideas to see where composites might most effectively be used.

The paper presents the author’s personal views on the most logical uses of composites,
and a few illustrations will be drawn from his own work and that of his colleagues. It is not
an attempt to encompass all other work, so the number of references to other papers is
relatively few. The paper does not consider applications in the area of retrofitting, where very
different conclusions would apply.



2 REINFORCE OR PRESTRESS?

One of the first decisions to be made is whether it is sensible to use advanced composites
as reinforcement. It is fairly clear that this is unlikely to be a major structural use. A simple
study of the relative strain capacities shows why. Table 1 shows the typical strain capacities
at the working load, of various materials, together with their ultimate strain capacities. Some
of these figures are approximate; there has not been much benefit hitherto in increasing the
capacity of concrete, but as will be argued below, that may change.

Table 1 Typical Material Strain capacities

Material Working strain Maximum strain
Reinforcing steel 0.0012 0.1
Prestressing steel 0.0060 0.03

Glass fibres 0.02 0.045
Aramid fibres 0.012 0.025
Carbon fibres 0.008 0.015
Plain concrete 0.001 0.002

Confined concrete 0.0015 0.0035 — ?
Fibre reinforced concrete 0.0015 — 0.03?

Consider the strain distribution of sections reinforced with steel or advanced composites
(Figure 1). With steel reinforcement, the neutral axis is at about the mid-depth, while for the
section with composite reinforcement, the neutral axis is very near the compression face; the
compositely reinforced section has much lower moment capacity because of the reduced area
in compression (and hence will be uneconomic), and much higher curvatures (and hence will
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Figure 1. Strains in reinforced sections, at the maximum working load.



be unserviceable). A similar argument can be used to justify why prestressing steels are not
used as simple reinforcement.

Contrast this with a section which is prestressed. One of the justifications of prestressing
with steel is that it allows a smaller area of very high strength steel to be used at higher
strains, without inducing large curvatures. By taking out some of the excessive strain
capacity of the tendon, the full strength of the tendon can be used while still keeping a large
element of the concrete in compression - the result is high strength and high stiffness. An
exactly analogous argument applies to composites. By pre-stretching the tendon, a large
amount of its strain capacity is absorbed while preventing significant cracking in the concrete.
This is illustrated in Figure 2. The values in the figure for a compositely prestressed beam can
be varied significantly, with considerable impact on the moment capacity and curvature at the
working load. The curvatures at the ultimate load with composite prestressing will also be

large, and could be even larger if the concrete were confined, a topic to be addressed in detail
below.
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Figure 2. Strains in sections prestressed with steel or composite (here aramid), at the
maximum working load.

CONCLUSION 1 - to be economic, advanced composites will be used for prestressing
tendons, but not for reinforcement.

3 TO BOND OR NOT TO BOND?

Steel is bonded to concrete for a variety of reasons. The intimate contact with the
concrete ensures that the steel is passivated, thus preventing corrosion, at least in the short
term. It also ensures that the steel has the same strains as the concrete locally, as well as
globally. If a crack forms, the local strain will increase, leading to increased force in the steel.
So when advanced composites were developed, a considerable amount of work was carried
out in an attempt to show that advanced composites can bond to concrete; some of the results



show that very high bond strengths are possible. Transmission lengths of a few millimetres
have been reported, with bond strengths of the order of 20 N/mm”.

But 1s this a good thing? Steel is highly ductile, so increasing the strain in steel will push it
onto its yield plateau - maintaining its force while allowing large displacements. But this
cannot happen with advanced composites; if the strain is increased too much, the composite
can be pushed off the top of its stress-strain curve, leading to rupture of the tendon which can
be sudden and catastrophic. Experience with glass fibre reinforced concrete (GFRC) sections
used for cladding panels has shown that these become more brittle with age. Continuing
hydration leads to increased bond, which leads to strain concentrations at cracks. They can
then fail when subject to sudden shock loads, without warning. There is a direct analogy here
with the use of bonded advanced composites.

However, if too much bond is a problem, so too is absence of bond. Reinforcement must
be bonded, at least at its ends, and prestressing tendons must either be bonded at their ends or
provided with anchorages, which are themselves a potential source of weakness. In addition,
a beam with unbonded tendons will have a lower moment capacity than one with bonded
tendons, since the tendon will not pick up as much additional force in the failure zone.

Determination of the bond capacity of the tendons themselves can also be a problem. Lees
[1] has produced results, by inferring the shear stress-slip relationship from the measured pull-
in when prestress is released, which show that different FRP tendons have very different
behaviours. A braided rod seems to slip in the same manner as a steel tendon, with a shear
stress that increases as the tendons slips. On the other hand, a circular pultrusion with a
wrapping fibre appears to show very high initial bond strengths which then decrease as the
tendon slips (Figure 3).
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Figure 3. Bond stress/slip relationships for small aramid or steel tendons



When these stress-slip relationships are used to predict the shear stresses inside a
pretensioned beam, very different behaviour is observed for each of the three types of tendon.
(Figure 4). The braided rod transfers most of its force at the surface, the steel tendon has a
much more even distribution of force, while the wrapped tendon appears to lock against the

concrete a small distance into the beam. These differences must produce very different
structural responses.
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Figure 4. Shear stress in a pretensioning tendon against position in the beam.

The idea that some intermediate level of bond may be desirable has been backed up by
Lees’ results [2] which show that both high moment capacity and high rotation capacity can
be achieved by limiting the bond of the tendon away from the anchorage zone. This was
achieved either by applying a resin coating of known, low, shear strength, or by intermittently
anchoring the tendon (Figure 5.)

CONCLUSION 2 - much more attention must be given to the way in which FRP tendons are
bonded to the concrete - too much bond can be as bad as too little, and a greater
understanding of the interaction between the tendon and the concrete is required.

4 PRE-TENSION OR POST-TENSION?

The choice between pre- and post-tensioned systems is largely dictated by the end use of
the product. Pre-tensioned systems are most suitable for mass-production of relatively small
components, while post-tensioning is most suitable for in-situ construction of larger elements,
and for repair.
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Figure 5. Load-deflection response of bonded, unbonded and partially bonded beams
with aramid pretensioning tendons

The logical choice between the various types of advanced composites then relates to
anchorages; post-tensioned concrete relies on anchoring systems that will remain effective in
the long-term, while pre-tensioned concrete requires anchorages only for the stressing
operation. With most advanced composites, the forces have to be transmitted to the fibres
through the resin. Thus, the long-term integrity of the anchorage relies on the stability of the
resin over time and its resistance to heat and chemicals, which can be expected to be worst at
the anchorages. Resin-based systems are thus most suited for use as pre-tensioning tendons,
where anchorage, by bond, is distributed and the resin is protected by the surrounding
concrete, to a large degree, from heat and chemicals.

The only systems which do not require resins are those based on ropes, such as the
parallel-lay ropes, where there can be a direct physical connection between the anchor block
and the fibres themselves (Figure 6). These systems cannot, in general, be bonded to the
concrete. So they are a clear choice for use as unbonded post-tensioning tendons.

Is there any benefit in producing bonded, post-tensioned systems? The answer is
“probably not”. There is no need to provide corrosion protection to the tendon by means of
grout, and the uncertainties of grouts, combined with the arguments about bond given above,
mean that it is probably an undesirable combination.
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Figure 6. Physical anchorage for a parallel-lay rope [3]

CONCLUSION 3 - Pre-tensioning systems should be provided by advanced composite bar

systems involving resins, with temporary stressing anchorages and permanent anchorage
provided by bond.

CONCLUSION 4 - Post-tensioning systems should be provided by resin-free rope systems
with mechanical anchorages.

5 INTERNAL OR EXTERNAL TENDONS?

The justifications for internal prestressing and against external prestressing that apply to
systems prestressed with steel do not apply to composite systems. Composite tendons are not
generally affected by environmental conditions, but they can be affected by highly alkali
cements. By definition, externally prestressed systems must be post-tensioned, and since it
has been argued above that composite systems should not be bonded to the concrete, there is
no need to make them internal for structural purposes.

However, there are other justifications for putting these materials into the concrete, or
within some form of protection. These relate to fire protection, which is probably more of a
problem for advanced composites, or vandalism, which is certainly a more severe problem.
Thus, the use of external tendons inside box girders is eminently suitable. But not all the
protection needs to be by concrete. Various non-structural elements, which could also allow
access for inspection, may be considered more suitable. This opens the way to tendons which
penetrate the top or bottom flanges, to lie in slots on the surface, protected by access panels.
The use of external cover panels is also possible.

CONCLUSION 5 - There is no justification for placing tendons inside concrete for structural
purposes, although some external protection is necessary.

6 UNDER-REINFORCED OR OVER-REINFORCED?

Failure of advanced composite tendons is undesirable - such failures are sudden,
catastrophic, and can release a lot of stored energy. It thus follows that structures should be
designed so that the concrete fails first. In conventional terms, structures must be over-
reinforced, rather than under-reinforced. All the concrete codes say that this is bad, since it



is axiomatic that failure of steel is ductile, while failure of concrete is brittle. Nevertheless,
with composites, it must be recognised that structures will be over-reinforced, and suitable
measures taken to add some ductility.

The distinction between under- and over-reinforcement has always been more apparent
than real; most laboratory tests are carried out by hydraulic loading systems which are, in
effect, displacement controlled. Most real structures are under load control, since the loads
are applied by gravity. Thus, even structures which have load deflection curves as shown in
Figure 7, which would be typical for under-reinforced structures reinforced or prestressed
with steel, are brittle under load control. The driver of a truck of weight A would be safe;
another of load B would be in the river. To the driver the structure is brittle.

CONCLUSION 6 - Structures must be designed as over-reinforced.

Load

Deflection

Figure 7. Load deflection behaviour of an “under-reinforced” section.

7 CONFINEMENT REINFORCEMENT

If structures are going to be over-reinforced (6 above), and are going to have high curvatures
at failure (2 above), then it follows that it is a good thing if the strain capacity of the concrete
in the compression zone is as high as possible. This has never been of major importance
hitherto, since with under-reinforced structures, the strain capacity of the concrete has been
adequate, and it has only minor influence on the failure load or the mode of failure.
Nevertheless, there is work which shows that the strain capacity of concrete in compression
can be considerably enhanced either by confining the concrete externally, by putting the
concrete in the compression zone into triaxial compression, or by fibre-reinforcing it.
Increasing the strain capacity by an order of magnitude is certainly feasible. Concrete-filled
steel tubes were used in the 1960s, but suffer from Poisson’s Ratio effects which reduce the
effectiveness of the confinement. The use of GFRP tubes, formed by filament winding with a
low helix angle, overcomes these problems, and allows very high strain capacity. However,
compression flanges in the form of circular tubes would be impracticable, but it is feasible to
include spirals of composite reinforcement. These can achieve significant strain capacity



increases, albeit of a lower order since the concrete between the spirals is not so effectively
confined. The use of fibres to achieve strain capacity increases is also feasible.

CONCLUSION 7 - The strain capacity of concrete in compression can be enhanced.

8 SHEAR REINFORCEMENT

The shear capacities of all types of reinforced concrete structures remain problematical,
even those with steel reinforcement. Understanding of the underlying mechanics is not good -
there are truss models, variable truss models, compression field theories, compression force
path models etc. The code rules are mostly based on a set of tests carried out in the 1950s
and the resulting empirical rules modified to suit the philosophy of the various code
committees. Structures are usually conservatively designed, and rely on plasticity theory for
safety. This can ensure that, if a set of internal forces exists which is in equilibrium with the
applied load, and since it is known that steel is ductile, the lower bound (or “Safe Load”)
theorem can be used assert that the structure is safe.

When advanced composites are used, however, the theoretical justification is much less
sound; many of the basic assumptions no longer hold. Composites are generally less stiff than
steel so, when the concrete cracks, a composite is carrying less force than steel would be.
Cracks will thus be wider, so there will be less concrete-concrete interaction across the crack;
there will thus be less “aggregate interlock”. Composites also delaminate when placed across
shear cracks, so “dowel action” will be lower. Finally, and most importantly, although
composites have high strain capacities, they do not behave plasticly, so the Safe Load
theorem cannot be used to hide the lack of knowledge about the deflections.

Taken together, these results mean that care must be taken about producing design
guidelines for shear in compositely reinforced structures. Various attempts are being made to
limit the strain in the reinforcement to safe load levels, and to use the corresponding forces in
a truss model (or a code formula derived from it) to get safe load capacities. But it must be
recognised that, although these models satisfy equilibrium, and do not violate the failure
criteria for the composites, they do not satisfy the compatibility condition (so may not give
the correct elastic distribution of force), nor can they rely on plasticity theories. Such rules
may serve as guidelines for experimental structures which will be tested or closely monitored,
but they should not be used for general structural design.

There is clearly much work to be done in this field - a model is required which satisfies all
three of the basic principles of structural mechanics - equilibrium, compatibility and the
material stress-strain behaviour.

CONCLUSION 8 - Fundamental work remains to be done on the shear behaviour of
compositely reinforced sections.



9 NOVEL FORMS OF REINFORCEMENT

Why is reinforcement the shape it is? Because it has been this way for 100 years. Steel
reinforcement is round since that is an easy shape to roll, and it doesn’t matter which way up
it is placed in a beam. It is easy to bend in any direction, so shear links and more complex
shapes can easily be produced. The surface can be indented to give better bond.

But do these properties apply to advanced composites? Clearly not. Composites can be
pultruded relatively easily, but they cannot then be bent to shape. It is possible to use
thermoplastic resins so that some bending flexibility can be provided when the bars are

heated, but the properties of the bundle of fibres in the bent region are very different from the
values elsewhere.

The textile industry, on the other hand, has been making three-dimensional structures from
fibres for a very long time, but generally on a much smaller scale. Machines exist, of varying
complexity, to knit, loop or generally intermingle fibres in a variety of ways. The product
would have to be scaled up from what is already made, and it must be given some structure
so that it can withstand the forces associated with pouring concrete, but various forms are
certainly feasible [4].

Some forms of textile reinforcement would probably be unsuitable, particularly those
involved in knotted structures, where the knots would act as stress concentrators for the
fibre. Many fibres are given coatings, however, which improve their resistance to looping or
knotting. Bespoke reinforcement arrangements, produced by robots, may also be suitable for
the large scale batch production of special products, where particular reinforcement layouts
can be designed that would not be possible using traditional pultrusions, and would also not
be feasible with steel due to the bending stiffness of bars.

The type of structure that could be produced might be ideally suited to shear reinforcement.
A large-scale, fully three-dimensional geometry, with relatively small yarn bundles at quite
close spacings, would have very different properties from steel links. They should prevent the
opening of large cracks, which should make the reinforcement act more effectively.

CONCLUSION 9 - Novel reinforcement layouts are possible and should not be ignored
simply because they are new.

10 ADVANCED BEAM TYPES

The arguments given above imply that novel types of beam could be envisaged. It will still
be desirable to have a compression flange as far away as practicable from the tension flange,
so I-beams are always going to be the primary option. But the internal structure of those
beams might be very different from what is built at present. The beams will be prestressed; if
suitable for precasting they will be pre-tensioned with partially bonded tendons, while if built
in-situ they will be post-tensioned with resin-free external ropes. They will have helical
reinforcement in the compression flange to improve the ductility of the structure if they fail in
an over-reinforced manner, and they are likely to have a novel form of three dimensional
composite reinforcement for shear.



A typical beam is shown in Figure 8. The overall dimensions will be worked out as for any
prestressed concrete beam, but probably without requirements for large amounts of cover

concrete to protect against corrosion. There are thus likely to be significant savings in weight
of concrete.

CONCLUSION 10 - Structures with composites will significantly differ from those with steel
reinforcement, particularly in their internal layout.
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Figure 8. Possible future beam structure.

11 COSTS

It must be accepted that the cost of advanced composites is several times higher than the
cost of steel; to ignore this aspect would mean a great deal of wasted effort. Depending on
how the calculations are carried out, the costs of AFRP seem to be about 3-4 times the cost
of basic prestressing strand, while CFRP is even dearer and GFRP is slightly cheaper, on the
basis of cost/unit-of-force-delivered [5]. The composites industry will not take off unless
these costs can be brought down by volume production; at the moment, most costs for
composites are based on the costs of small batch production, and the components are
manufactured by small companies with limited resources. The costs of steel are based on

large volume production by huge companies with very large resources, often backed by
national governments.

Advanced composites hold out the potential for long-term cost savings, but calculation of
the net present value of those savings is fraught with difficulty. What discount rate to use? If
a discount rate of 8% is used, as in the UK, then savings in 30 years time have no value now.
Which costs get included in the analysis? If only the direct structural costs get included, then
the future saving is slight, whereas if the future traffic costs caused by delay and disruption
are included, then virtually any cost now can be justified. What proportion of steel reinforced
or prestressed bridges are likely to fail? Does data exist yet for the proportion of bridges that
have to be replaced due to corrosion after 20 years, 30 years, 40 years, etc.?



However, some immediate cost savings can be made. Structures should be designed to
make optimum use of the composites, rather than taking an existing design with steel and
replacing the steel with a supposedly equivalent composite, which is bound not to be cost-
effective. Even worse, there is a tendency for any real structure, other than a simple
demonstration project, to be designed with additional redundancy built-in. Provision is made
for spare tendons, or the addition at a later stage of steel tendons “just in case” there are
problems with the composites. Unless care is taken, such structures get penalised four ways;
too many composite tendons are provided, too much is paid for them, the economic benefits
elsewhere in the structure are not made, and there are additional costs of providing unused
steel anchorage positions.

CONCLUSION 11 - Estimates need to be made of the real cost of large scale production of
composites; the long-term costs of steel corrosion need to be quantified carefully, and design

procedures for compositely reinforced or prestressed structures need to be established from
first principles.

12 IMPLICATIONS FOR STRUCTURAL DESIGNERS

Various conclusions have been drawn above about the way structures behave and how
they should be designed. There is almost enough information to be confident of how this
industry will progress. It is now up to designers to look at the way existing structures have
been designed, and to say not “how do I replace steel with composites”, but “what would this
structure look like if I designed it with composites from the beginning”. This requires going
back to first principles, and asking why particular components are used and what job they are
doing. There will thus be a requirement for education of designers in the properties of
composites. It will also be important for designers who really understand structural principles
to be used for this work, as opposed to those who merely insert numbers into code formulae.

CONCLUSION 12 - Design firms should get a team of good designers to redesign their
products from first principles using composites, having first taught themselves what the
underlying material properties are.

13 IMPLICATIONS FOR THE COMPOSITES INDUSTRY

The composites industry must recognise the problems of the structural engineering
industry. They should appreciate that, although the market for advanced composites at the
moment is fairly small, it has the potential for very large sales. Although small-scale
prototype structures will be needed at first, and they will have costs associated with small
scale batch production, the true cost of large scale production should be determined, so that
realistic costs can be assigned when comparisons are being made.

The composites industry should also consider ways in which large scale novel structural
elements can be produced. Cutting and bending of straight pultruded bars is not a sensible
long-term solution, but what other methods of production are feasible? It is clear that the
surface characteristics of composites are of vital importance - how can this be controlled by
intelligent manufacturing techniques?



Fibre manufacturers should also consider their cost base fairly carefully. Most costs are
based on the production of a few kilograms of reinforcement - what would they charge if they
were selling 10,000 tonnes of fibre per year into this industry? What resins could be made
available if they were sold at the rate of a thousand tonnes per year?

CONCLUSION 13 - Composite manufacturers need to become aware of the real problems of

the civil engineering industry, and to see how their manufacturing techniques can be adopted
to suit.

14 OVERALL CONCLUSIONS

The use of advanced composites in concrete has been shown to be feasible from a
structural point of view. The flexural behaviour is well-understood, although shear still has
some problems because of the lack of plasticity, and the behaviour in concrete in compression
needs to be improved. The bond characteristics between the composite and concrete are
crucially important, and it is not always the case that more bond is better.

The emphasis must now move from the engineering to the commercial. Costs must be
looked at very carefully, and designs must be optimised to make the best use of composites
rather than simply replacing the steel. This requires education, of engineers about composites
and of the composites industry about engineering.

The stage has been reached where the civil engineering and composites industries must move

forward into the exploitation of the technology that has been developed over the last 15
years.
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