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ABSTRACT

This paper describes a model for determining the short
term strength of parallel-lay ropes and bundles of paralled
elements by means of probability theory. Ropes of a
characteristic length are modelled from a knowledge of the
statistical properties of the constituent elements. The
model allows the analysis of parallel-lay ropes with a
non-linear stress-strain relationship and permits the study
of the variability effects due to the scatter in the elements’
cross-sectional areas, failure strains, stiffnesses and
random slack. The scatter in element cross-sectional area
increases the bundle (rope) strength slightly, albeit by an
insignificant amount. The variability in the stiffnesses
however has a profound effect on the bundle strength. The
results from the model are contrasted with classical
bundle theory. Using experimental yarn data from
parallel-lay ropes made of Kevlar-49 aramid and high
tenacity Terylene polyester yarns, the strength behaviour
of the ropes can be predicted accurately.

1, INTRODUCTION

Progress in the polymer industry over the last decades has
produced materials with desirable mechanical properties.
These materials have found applications in diverse areas
such as the aeronautical and civil engineering industries.

In the civil engineering industry, parallel-lay ropes made
from high strength synthetic fibres are being preferred for
use in many offshore and bridge structures. They are used
to replace high tensile steel tendons and strands in many
application areas due to their desirable properties,
particularly where low weight and corrosion resistance are
of prime concern!, Parallel-lay ropes have also been
identified for use in cable stayed and suspension bridges,
prestressed concrete structures, prestressed brickwork,
cable supgorted roofs, deep water platforms and retaining
walls1.2.3,

Of all the various types of rope construction, parallel-lay
ropes give the best conversion efficiency from the
properties of the elements to those of ropes?. The
individual elements (yarns) are arranged parallel to the
rope axis throughout the entire rope length, unlike in
twisted-lay (stranded) or braided rope construction where
helical or serpentine yarn paths are introduced, and the full
stiffness of the constituent yamns are therefore mobilized.

Parafil ropes are one such type of rope made from aramid
or polyester yarns4.

In this parallel construction, the ability of broken
elements to shed loads mainly to their near neighbours is
greatly reduced, something which is achieved in structured
ropes by friction between adjacent elements. There is
little interaction between the individual yarns, and the
Topes can be seen as an aggregate of separate elements.
However, the tensile strengths of the ropes are not
accurately predicted from the elements by simple
averaging rules. This is especially the case when the
clements are elastic, with high stiffness and a high
variability in strength, as is typical in high performance
ropes. A random sample of apparently identical elements
displays a high variability in strength and this has a
profound effect on the strength of the resulting bundle or
rope>. The tensile strength efficiency (the ratio of the
bundle strength to the mean strength of the elements) of
fibre bundles is a monotonicaly decreasing function of
the element coefficient of variation (ratio of the element
standard deviation to the mean strength)®. The variability
in the strength of the bundle elements is attributed to
flaws which are randomly distributed within the bulk of
the elements”. Thus, the failure event can be modelled as
a stochastic process and the probabilistic approach is
adopted here.

Daniels® used a stochastic process to study bundles of
threads made by parallel construction; this is now
generally referred to as the classical bundle theory.
Daniels developed an asymptotic result for such a rope,
but the model was simple in that it only applied to ropes
with linear elastic elements and the only variable
parameter was the strength of the constituent elements.
An application of Daniels' classical model to Parafil Type
G ropes by Chambers? proved inadequate in explaining
the rope behaviour,

Phoenix and co-workers!0-11.12 dealt with more realistic
models of parallel-lay ropes where the strain of the
clements, rather than the stress, was used as the the main
statistical parameter. They introduced random slack into
the model but kept the other parameters constant and
developed an asymptotic result. Their asymptotic result
gives a specific value for the rope strength, but it has
been observed by Guimardes!314 that there is a size
effect associated with Parafil Type G ropes.
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In the models described above, the area and the stiffness
of the elements were considered constant, but
experimental evidence shows that these do vary9'15. The
models also assume linear elastic materials with the same
stress-strain curve and cross-sectional area. However,
tensile tests of polymeric fibres show that fibres exhibit a
scatter in their cross-sectional areas!S. A fibre continuum
model of bundles of linear elastic elements with linearly
varying stiffnesses also shows that the variation in the
element stiffness has a profound effect on the strength of
bundles of parallel elements!®, Thus, the variability in
the stiffness of the bundle elements cannot be ignored.

In this paper a probabilistic model which predicts the
tensile strength of parallel-lay ropes and bundles of
parallel elements is presented. The cross-sectional area,
stiffness and breaking strain of the yarns or elements of
the rope, as well as slack, are assumed as random
variables. The restriction on the element stress-strain
behaviour is also relaxed so that a polynomial can be used
1o represent the stress-strain behaviour. This allows the
model to be applied to ropes with non-linear stress-strain
behaviour. To extend the model to large ropes, the
recently developed asymptotic result by Daniels!” is used
and the convergence is compared with Monte-Carlo
simulations. The strength behaviour of large ropes can
therefore be accurately predicted. The present model
allows the effect of variability in the stiffness and area of
the yarns on the rope strength to be studied.

2. STATISTICAL STRENGTH OF THE ROPES

2.1, Assumptions and formulation of the model

Consider a bundle of n parallel elements (members) of the
same type with varying cross-sectional areas and
stiffnesses. Assume that the bundle is clamped in such a
way that the elements have different slacks, and the load
is applied to the bundle by means of extension. Let the
force-strain relationship of each element be given by an
mth order polynomial. Thus the relationship between the
force, @, and the strain, A, of an element is given by

m

o(a,p' 1) =Y ap, ¥ )

k=1

where a is the element cross-sectional area and the vector

B’ =(B;.....B») represents the coefficients of the

polynomial.

Let Z(e) be the force in the i element at bundle

strain, €, and ©; the initial slack strain of the elements,
then

0 0<e<®,

a; B,'k(e—e,r)k 8,<e<8,+g, (2
2, ()={% @
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where G; is the failure strain of the element i.

Assurne that each of the entities: the fibre failure strains,
G1»---2Gn; slacks strains, 6,,...,8,; cross-sectional areas,

ay,....a,; and the coefficients of the polynomials,

[ﬁ, ... @_f‘- ; are independent identically distributed random

variables with the following density (df) and cumulative
density functions (cdf):

parameter & odf
5 h(c) H(g)
e 5(6) G(6)
a j(a) J(a)
p o) B(E)

The bundle load at bundle strain, ¢, is given by

L&)=Y () ®
i=]

and the bundle strength is S = L, / ny, where L, is

the maximum value achieved by L,(g), i.e.,

sup{L,(e); €20} and W, is the mean area of fibre. If
F(g,e,a,B‘) is the joint distribution function of the

parameters ¢;.9;,4;, i then the mean load at bundle
strain € is given by

n(e) = E[Z;(e)] = [ o[a.p' (e - 0)} aF(c.0.a8")
and the covariance function is expressed as
Ale.82)= E[Zi(al)zi(£2)] - n(e; Jufe,) ®

where E[x] is the expected value of the variable x.

For simplification purposes the following assumptions
are made:




(1) the distributions of the parameters S 6, a, and ﬁ'_
are independent;

(i) the coefficients of the polynomial, B', of each
element are dependent and are related by a multinormal
distribution.

The first assumption is made on the grounds that the
occurrences of the element characteristics are independent.
Although this assumption is made for simplification
purposes, it is expected to be realistic. It is also unlikely
that a joint distribution function for all the parameters
involved could be obtained. The second assumption is
made because it is unsatisfactory to consider the
coefficients of the polynomial of each element as
independent and because the multinormal distribution is
the most widely used multivariate distribution.

With the above assumptions, Equations (4) and (5) can be
written as 19

min{i-:,emu}
we)=pg

1S p-ovaly)

[1- H(e - 8)]dG(0)

0 (6)

min{g; .0, }
A(El ,82) =H2,4

f. J{gﬁi(al _ey}x

0

=1

M

where 1, is jazdj(a) and g, > ;.

Since the bundle strength is dictated by the maximum
value achieved by L,(¢), one would expect it to be

*
given as S, =sup{p(e)/ g e 20}, but this is not the
case. The process is complex and the mathematical
complexities and the subsequent numerical analysis
required to evaluate the strength of the bundles with small
and moderate number of elements, even for the "simple”
cases of the classical bundle and the fibre slack model, are
enormous and therefore impractical®:-10. Monte-Carlo
simulations are therefore used to study the behaviour of
small and moderately sized bundles, but there is the
drawback of having to specify the probabilistic

2866

S U e e el RE e  te |

{iﬁi(% - e)i}w(ﬁi)}[l ~ H(eg - 0)]dG(6) - p(er Jule)

distributions and the numerical values for the associated
parameters of the element characteristics. For bundles
with a large number of elements, the failure load is
deduced from a general Gaussian process superimposed
on a parabolic curve near the maximum of the process.
The results of Daniels!7 on a Gaussian process whose
mean path has a maximum is therefore employed.

2.2. Monte-Carlo study of the bundle strength

Complicated stochastic processes can be simulated by a
numerical method generally known as the Monte-Carlo
method, just as complex structural problems are amenable
to finite difference and finite element methods. The
outcome of a process of interest can be observed by
randomly assigning a value to an underlying variable or
vector. Such a practice is referred to as a Monte-Carlo
experiment. A Monte-Carlo procedure is then composed
of, say, n such independent experiments and by virtue of
the law of large numbers, observations made from a
sufficiently large number of the experiments will be a
good assessment of the statistical characteristics of the
process.

For the computer model adopted (Figure 1), there is the
need to specify the correlation coefficients associated with
the coefficients of the force-strain polynomials of the
elements. The mean and the variances of these coefficients
are also required. By specifying the numerical values for
the required parameters of the chosen statistical
distributions representing the failure strains, cross-
sectional areas and slack of the bundle elements, the

outcomes, G1»---:Gn, dpsend,, ©1,...,0,  and ﬁ,-n,%
are generated. Various methods for generating random
numbers have been discussed by Rubinstein 18, Equations
(2) and (3) are then applied to evaluate L, (¢), the bundle
load at strain, €, and the bundle strength,

S, =sup{L,(e)}/m1, is obtained. The process is

repeated to generate a large number of S: and the data is
used with standard statistical inferences about the
distribution of the bundle strength.

2.3 Asymptotic strength of the bundle

The covariance function, Equation (7), can be converted
to a statistical process given by1®

A(£1,€2)=A(EI»EO)[I-(SZ—EO)/d} ®)

By superimposing the process in Equation (8) on a curve
—n"2(e) which has its minimum at & where N(e)x0

and the first derivative 1)'(¢ )=0, and then by considering
the linear expansion of A(e1,e2) about € within the



Input the degree of the force-strain polynomial and the
correlations between the coefficients of the polynomial

vA

Input the mean and the standard deviation of the element
areas and the Weibull parameters of the element failure

strains
No
Are there initial
slacks ?
Input the
mean and
Yes the
Is slack distribution standard
deviation
for the
slack
distribution
Uniform slack distribution is

assumed. Input the parameters

Y

Set counter j= i

Y

Generate nrandom variates for
the slacks if needed

Y

Generate a set of n random variates each for the
areas, failure strains and the coefficients of the
force-strain polynomials of the elements

Y

Find the max of {Ln} = I*n and evaluate S'n

Increase j
by 1

Is j = number of
generations required.?

Find the statistical parameters of S'n

2867

Figure 1 A flow chart showing the
algorithm for the Monte-Carlo simulations of
the bundle strength

fange g-¢ =O(n'2/3), the bundle strength can be
deduced!”.

If n(e)=u(e)—p(e*) is chosen, the conditions for the

curve —n"2(e) are fulfilled. Here e* is the value at

which 11(g) achieves its maximum value. The strength of
the bundle is then asymptotically normally distributed

with expected value E[S,] and variance Var([S, ]
given as

E[S:] = u(g>+ An2/3 4273 [_u.,(g)]__ln
Var[$, ] = A(E’E)/nui

where € =e* and A=0.99615...is a constant17.

RE T

The results which follow are based on yarn data from tests
carried out on Keviar-49 aramid yarns and high tenacity
Terylene polyester yarns!®. Whereas the stress-strain
curve of the aramid yarns was best fitted by a third order
polynomial that of the polyester yarns was modelled with
a fifth order polynomial without the third and the fourth
coefficients!?. The bundles refer to parallel-lay ropes
known as Pardfil Type G and A ropes which have Kevlar-
49 aramid and polyester yarns as the core materials.
These ropes are manufactured by Linear Composites Ltd.
in the United Kingdom. A yarn is considered as the basic
element of the ropes.

Figure 2 shows the comparison of the bundle strength
estimates from the Monte-Carlo method and the
asymptotic results for Parafil Type G and A ropes. The
failure strains of the vyarns obey the Weibull
distribution1? and Table 1 shows the summary of the
results and the parameters used for the analysis. The sizes
of the ropes are extrapolated from the number of yarns
counted from 6 tonne Type G and 5 tonne Type A ropes.
There is an initial sharp decrease in the strength of the
bundle but this slows down as the bundle size increases.
The asymptotic strengths obtained are higher than those
of the Monte-Carlo method for all the sizes of the Type G
ropes considered, but the reverse is seen for the Type A
ropes. The differences in behaviour could be attributed to
the different stress-strain polynomials used. Nevertheless
the results are remarkably accurate with maximum
relative errors of 2% and 1% for Parafil Type G and A
ropes respectively. The asymptotic results can be used



even for a bundle with as few as 50 elements as seen from
the 1.5 tonne Type G rope.

Tensile tests on 6 tonne Parafil Type G and 5 tonne Type
A ropes?+19 give mean strengths of 2103 MPa and 821.6
MPa respectively. The corresponding values from the
model (asymptotic results) are 2023 MPa and 820.5 Mpa.
This result confirms the ability of the model to predict
the bundle strength from the constituent elements.
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Figure 2 Comparison of Monte-Carlo
simulations and asymptotic results

Figure 3 shows the relationship between the bundle
strength and the rope size as well as the results from the
classical bundle. The failure stresses of the ropes decrease
with increasing rope size and become asymptotic to the
failure stress of the classical bundle.
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The following Weibull parameters for
yarn failure strains were used:
** shape parameter=15.30
scale parameter=11.29%
values correspond to rope length of
259 mm; SD=standard devistion
+ NBL= Nominal breaking load in tonnes
UTS= Ultimate tensile stress

* shape parameter=18.72
scale parameter= 1.78%

Table 1 Summary of the results from
Monte-Carlo simulations and the asymptotic
results
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Figure 3 Size effects on parallel-lay ropes



In Figure 4 the effect of random slack on the bundle
strength is shown. A uniform slack distribution was used
for the analysis. Although other distributions can also be
used, the trend of the results will be essentially the same.
The variability in the element slack has a profound
reducing effect on the strength of the bundle (rope). For
instance, the introduction of a uniform slack distribution
with a maximum slack of a quarter of the strain Weibull
scale parameter reduces the bundle strength by about 6%.
The introduction of a constant slack, however, has no
effect on the bundle strength. This was also observed by

Phoenix!2 and is to be expected.
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Figure 4 Effect of slack on parallel-lay ropes

The effect of the variability or scatter in the element
cross-sectional area on the strength of parallel-lay ropes is
shown in Figure 5. At low variability (coefficient of
variation <10%) there is an insignificant effect on the
bundle strength, but there is a mild increase in bundle
strength as the scatter in the cross-sectional areas of the
elements increases. The resulting increase in the bundle
(rope) strength is less for large ropes. In fact, an
appreciable effect is observed only for small bundles with
very high coefficients of variation.

2869

1.010
o p
%wa—
3] 7 ity 6 tORTE rOPE
Ex.ooe— —— 30 tonne rope
= 4 = & — 60 tonne rope
%1.004—
5 1.002
9 4
21.000"
= E
0.998 IO O YOS AURE TN VOUS S S SO VU SN SN ST SHINT SO SO SN WO S JOUNY S S
0 20 40 60 80 100 120
COEFFICIENT OF VARIATION IN ELEMENT AREA (%)
(&) Parafil Type G ropes
1.010
o p
%1.008—
8] 71 ——a—0.5 tome rope
EI.OOG— e ) LOONE FOPE
o3 — 4 — 5 tonne rope
=} T - -~ --20 tonne rope
%14004—
£ 1.002
o
= 1T T e T el
21.000" """"""
m p
0.998 FIST WU DU S0 W N S ALY GRS NP S SO W SO TN S SO S S S

0 20 40 60 80 100 120
COEFFICIENT OF VARIATION IN ELEMENT AREA (%)

(b) Parafil Type A ropes

Figure 5 Effect of the variation in area on the
strength of parallel-lay ropes

Different effects of the variability in elements’ stiffnesses
are observed for the Type G and A ropes; whereas the
strength of Type G ropes increases with increasing scatter
in the element stiffness, the reverse is observed for Type
A ropes. This probably has something to do with the
order of the stress-strain polynomial used. The effect is
not negligible and therefore any calculation based on the
assumption that elements have constant stiffness may
grossly over or under-estimate the bundle strength.

4 NCLUSION

A model has been presented for the analysis of the short
term (tensile) strength of parallel-lay ropes and bundles of
parallel elements in general. The model allows the
analysis of parallel-lay ropes with non-linear stress-strain
relationships and permits the study of the variability
effects as a result of the scatier in the elements’ cross-
sectional areas, failure strains, stiffnesses and random




slacks. The following conclusions can be drawn from the
work described in this paper:

1. The present bundle theory or model predicts
reasonably well the strength of parallel-lay ropes.

2. The variabilities in the elements’ stiffnesses,
cross-sectional areas and random slacks affect the bundle
strength. The introduction of variable random slack
reduces the strength of the rope. The scatter in the
element cross-sectional area increases the bundle strength
slightly, however this increase is only significant at very
high variabilities and therefore the effect can be
considered to be practically insignificant. The scatter in
the stiffness (expressed through the coefficients of stress-
strain polynomial) has different effects on the ropes;
whereas Parafil Type G ropes gain strength, Type A ropes
lose strength with an increasing scatter in element
stiffness.
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