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1 INTRODUCTION 
 
 The shift, provoked perhaps by a world war involving air raids, away from a linear elastic 
idealisation of material performance in structural analytical methods to one of perfect plasticity inspired 
research in many countries but the pioneering research in Cambridge and Copenhagen continues to 
stand out as a landmark.  Such methods have been embraced by the designer for reasons of 
simplicity and verisimilitude when the strength and safety of a structure is the issue.  With the 
introduction of plasticity the mathematical modelling of a postulated structure became free of the need 
to satisfy simultaneously both statical and kinematical laws. Although an approximation, plasticity 
provided information hitherto unavailable on behaviour and load paths at and near collapse.  The 
methods were attractive and, despite the natural conservatism within the profession, they became the 
unquestioned norm for strength calculations in structures. 
 Furthermore, the methods of plasticity are very much more akin to the thinking patterns of a 
designer.  Designers have the inescapable responsibility of anticipating every possible mode of failure.  
This includes consideration of appropriateness and suitability for intended use, the implications of 
manufacture, visual suitability and environmental responsibility and fitness for the structural life; all 
being commensurate with economic resource and value.  The power of imagination applied to the 
visualisation of collapse mechanisms is an intimate part of the designer’s cerebral equipment. 
 Graphical methods have always been a useful tool for the designer and the recognition of scale 
and proportion enables engineers not only to make appropriate assessments on stress magnitudes 
but also to assess whether or not the results they receive from a computer are within the right area.  
Historically graphics were used with appropriate precision for the modelling of vectors in for example 
member force identification in pin-jointed frameworks (Clarke-Maxwell’s reciprocal diagrams) and their 
deflections (Williot/Mohr).  They were also used for tensor transformations (Mohr) of stress and strain.  
New ideas in graphics continue with the example of Magnell’s presentation of a solution space for the 
section design in prestressed concrete which has recently been recalibrated for the convenient use of 
the designer (Calladine [1]). 
 As soon as yield involves a plurality of simultaneous stress states then a yield criterion becomes a 
geometric surface in the space of these stress states. Planes through such surfaces may provide 
useful practical information, in a visually acceptable two dimensional format, on the performance of 
structures using a language with which the designer is innately familiar. 
 Chris Morley has been at the focus of the use of yield criteria in better understanding the 
behaviour of the elements of reinforced concrete structures.  This paper considers two areas of his 
interest: membrane action in the yield line analysis of slabs; and shear failure of beams.  It reflects in 
particular on how visualisation of the yield criterion geometry provides information for intuitive use by 
the designer.  

 
2    MEMBRANE ACTION IN REINFORCED CONCRETE SLABS 

 
Membrane action in concrete slabs is a favourite field among researchers.  This interest reflects 

the well recognised existence of slab strengths in excess of those both calculable by convenient 
design methods and demonstrable where required in ‘job calculations’.  In addition to the lack of 
knowledge available to the designer on the magnitudes and effects of slab boundary restraints, giving 
rise to membrane enhanced strengths, the complexity of analysis and remoteness of the phenomenon 
allows only a very limited intuitive understanding.  This affects confidence and strongly inhibits the use 
of membrane action in routine calculations.  The researcher then needs to address the 
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conceptualisation issue as much as completing the knowledge base.   Since it will be required in any 
enhancement in slab strength, the yield condition of structural element sections under bending 
moment and membrane force is considered first. 

 
2.1 The yield criterion 

Combined stress resultants on the mid-plane of a yielding section of a Tresca plate are shown 
inset in Figure 1(a).  (It is convenient in this paper to consider compressive aspects positive and to 
show compression abscissae to the left of the origin. Positive “sagging” bending moment ordinates 
shall be shown above the origin.)  The presence of a second stress resultant never improves the 
capacity of the yielding section in respect of the first (maximum and minimum occur under pure 
bending moment or pure in-plane stress).  When membrane action is invoked by a mechanism, 
strength gain is a second order geometric effect with increasing significance at rather advanced 
deflections.  The material assumption for the reinforcement in a concrete slab may also be that of a 
Tresca solid, but the concrete is assumed to be rigid-plastic in compression at a prescribed yield value 
(fc ) and to crack immediately on tensile straining (ε =0,  dε ≤ 0, ft =0).  In these circumstances the yield 
criterion for a section with a reference at the level of the reinforcement is shown in Figure 1(b).  In this 
case the pure stress resultants can be improved upon by combination with a second and a 
mechanism with invoked membrane action in a slab provides considerable extra strength as a first 
order effect in the mechanism’s early progress.  The yield criterion using the conventional mid-depth 
position has been shown before (e.g. Janas [2] and Braestrup [3] ).  Moving the point of reference 
from the reinforcement level to mid-depth produces a “rotation” of the yield criterion (an apparent 
rotation produced by rescaling the ordinates only) and the figure becomes antisymmetric.  The range 
of practical significance lies between point J and the maximum positive moment at point H. 
                                        

 

 
(a)  ductile metal                          
 
 
 
 
 
 
 
                                                           

(b)  singly reinforced concrete I 

(c)  singly reinforced concrete II 
 
                          Fig. 1  Criteria for yielding lines of plate elements under bending  
                                     moment and membrane stress resultants. 
 
2.2 The load-improvement – deflection relationship 

In 1967 Morley [4] implicitly made use of this region of the criterion in a rigid-plastic analysis of a 
regular polygonal slab, isotropically reinforced with symmetric hogging and sagging tension 
reinforcement.  A slab, rigidly restrained at its perimeter and subject to a transverse load, was shown 
to have a load-improvement deflection relationship of  
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Soon afterwards Janas [2] provided the equation for the one-way spanning strip with surface 
reinforcement but subsequently in Reference [5] refined the equation to 
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Equation 2 is a generalised form of Janas’ surface reinforced ‘sandwich’ slab to allow for a free choice 
of cover thickness to the reinforcement.  

In the above equations the load p is the normalised load p = P/Py where Py is the yield line theory 
upper bound load using pure moment slab properties, α and β are parameters defining the section as 
follows:  α is the ratio of the neutral axis level above section mid-depth to the lever arm and β is the 
ratio of the depth to the centroid of compression to the lever arm both during yield in pure flexure.  The 
deflection at its geometric maximum is wo but is expressed non-dimensionally here as  
δ=(( α/2β)+1)(wo/h) where h is the slab thickness. 

The above Equations 1 and 2 appear in a different form from the originals to use a non-
dimensionalization based on the stress block parameters α and β devised by Wood [6] in his 
formulation of the yield criterion shown in Figure 2(a).  The restrained one-way strip load-improvement 
deflection relationship, Equation 2, is shown in Figure 2(b).  The load curve is shown over its entire 
range of validity.  At zero deflection yield commences with the neutral axes at section mid-depth at the 
slab restraints and in the span.  Unloading takes place with deflection until (at pure flexure load) the 
neutral axes are all at their pure flexure levels within the section and the graph terminates at the point 
where the neutral axes coincide with the slab surface producing full depth cracks.   

  
(a) Wood’s yield criterion [6]                                        (b) Load-deflection curve for a rigidly restrained 

     one-way slab (Janas [2]). 
 

                                      Fig. 2  Yield criterion and load curves compared 
 
The non-dimensional bending moment m is the ratio of the moment capacity under membrane force to 
the pure flexure yield moment and the membrane force n is expressed as a multiple of the tensile yield 
force in the reinforcement per unit length of yield line. 

 
The geometric similarity of these two curves was reported by Eyre & Kemp in 1983 [7].  The horizontal 
spacing of the points H, I and J of Fig 2 (a) is also that of points H’, I’ and the end of the curve of 
Figure 2(b) and the ordinates of H & I are the same as H’ and I’.  Reference [7] showed that when the 
two curves are superimposed the load-improvement – deflection curve is a simple ‘reflection’ about a 
line joining points H & I.  Figure 3(b) shows this graphical construction.  The word ‘reflection’ refers to 
the ordinates only of the two curves illustrated by the dimensions ‘y’ shown on the graph.  At point H 
the improvement in the load and that of the bending moment have the same value and at this point the 
membrane force is at a maximum, Fig 3(a), and the neutral axis is at mid-depth.  At the other point 
common to both curves, point I, membrane force is zero and the neutral axis is at its pure flexure level.  
The limit of this pattern of yield is achieved when the neutral axis is at the slab top surface.  Further to 
the description given in Reference [7], Figure 3 shows that this set of curves may be fitted to the 
section half depth and the line X-X traces the neutral axis position in all yielding sections during yield.  

The illustration that the load curve can be generated in this way is a valuable reminder that only 
the properties of the section affect the load-improvement.  The load expressed in this way is 
independent of span-depth ratio, of load distribution and of assumed mechanism.   

This construction applies to the special case of a slab reinforced with equal amounts of tension 
reinforcement at the support and within the span, so that γ = 1 where γ is the ratio of the reinforcement 
area at the support to that at the span.  For the general case Janas’ equation may be shown to be 
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where  α1 = (α/β+1-γ)/2  and γ1 is the ratio of the pure flexure yield moment at the support to that at 
the span.  The load curve construction procedure may be extended to cover the case of unequal 
reinforcement intensities as shown in Figure 4.  In this figure the curve for p’ is for the case of   γ = 1.0. 
The axis for the required load-improvement (p) in the case of any other value of γ is plotted in a new 
position a distance (1- γ )/2 to the left of the original axis (p’) and a new curve is plotted by scaling the 
ordinates such that 
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       Fig. 3  Graphical construction of the                                Fig. 4  The load curve for any γ 
                        load-deflection curve 
                                                     
 

It is therefore possible to construct the rigid-plastic load-deflection curve for any one-way spanning 
reinforced concrete slab.  These constructions may be used to visualize the effect of variations in the 
section parameters. 

 
 
2.3 Variations in section parameters 

The non-dimensional description of the reinforced concrete section requires two quantities.  
Wood’s selection of α and β were simply transformations of the more readily appreciated  Ф and h/d 
(in Morley’s case 2Ф and h/d), where Ф=0.5Asfy /(dfc) and d is the effective depth of the tension 
reinforcement.  Any variation of the reinforcement intensity expressed as Ф can be visualized by 
determining the pure flexure neutral axis position.  In reference [7] this has been illustrated by showing 
separate graphs for different reinforcement areas using the more practical deflection parameter wo/h.  
The deflection δ is proposed as a more convenient form for analysis and used here showing the 
different curves superimposed (Fig. 5).  The section half depth is used to define the complete 
deflection range and a parabola is drawn with its maximum at mid-depth within an enclosing rectangle 
defined by points H and J. 
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Fig. 5  Load-improvement for a range of Ф   
           (constant h/d) 

 

   
 
 
Fig. 6  The complete criterion construction from 
section parameters 

 
Five reinforcement intensities are shown and four of the cases are identified with a suffix where 

needed.  In each case the m axis is defined by the pure flexure neutral axis depth.  The load-
improvement curves shown as broken lines are determined using the reflection lines in each case.  
This provides a visualization of the effect of reinforcement intensity on load improvement.  It is known 
that lightly reinforced sections offer a greater potential for strength gain but this representation gives 
an impression of how much and the nature of the variation.  It is illustrated here that when sufficient 
tension reinforcement is provided to produce a pure flexure neutral axis at mid-depth the resulting load 
curve shows no immediate improvement only a gradual increase in load capacity resulting from 
tension membrane action. This is precisely the type of response for the ductile metal (Tresca) case. 

Missing from the description so far is the identification of the positions of the origins on the vertical 
axes.  It may also be observed that so far only one of the section quantities, Ф, has been used.  
Different results may be furnished by different cover thicknesses provided to the reinforcement (i.e. 
different h/d ).  The horizontal axes drawn on Fig. 5 intersect with the m axes at points R1, R2 etc. and 
all points Ri lie on a common straight line through the yield criterion’s extreme point J.  The slope of 
the line through J may be determined in advance using the parameter h/d .  Fig. 6 shows the 
identification of point R.  R is plotted such that RF = FG on a vertical line positioned according to the 
depth of reinforcement within the section, making KF:FJ = a:b. 
       
     

             
 

 

  
                                 Fig. 7  The effect of variations in the cover parameter d/h 
 

The effect of a wider variation of the cover parameter is shown in Fig. 7.  As the depth to 
reinforcement (d) is reduced the load improvement p is increased.  The load capacity (P) however is 
reduced due to the falling pure flexure load (Py).  The figure shows the full range between the limits to 
practical cases. 
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The algebraic/numerical calculation of the load curve depends upon the calculation of numerical 
values for the parameters α and β, however a complete construction can be made graphically from the 
familiar reinforced concrete section properties of pure flexure neutral axis depth and cover to 
reinforcement.  The stages may briefly be summarized: 

(i) on a parabola whose horizontal length represents the concrete half depth the m 
axis is plotted at the pure flexure neutral axis depth (Ф dependent). 

(ii) the point R is identified noting the level of the reinforcement relative to the bottom 
quarter of the section (h/d dependent) and the n axis is drawn 

(iii) the load curve is drawn using the reflection axis HI. 
A fairly lengthy explanation was required to illustrate this construction.  This procedure is not 

necessarily being offered for use in practice, although it is imagined that there are engineers in 
practice who enjoy determining magnitudes by graphical means. The knowledge of this construction 
helps, through visualization, to have an intuitive conception of what potential capabilities exist in a slab 
and of the effect of variations in section design.  These are valuable notions for the designer long 
before attempts are made to put numerical calculations against the ideas. 

However the designer will be concerned with slabs in which elastic strains in the slab and supports 
together with shrinkage combine to reduce the strength below this rigid-plastic estimate.  Figure 8 
shows the effect of different lateral elastic stiffnesses of a surround and different in-plane stiffnesses of 
the slab upon the load-deflection curves for real slabs. 

 

 
 

Fig. 8  The effect of elastic strains 
 

 In these circumstances membrane action varies with increasing magnitude during the early 
stages of yield.  The motion along the yield criterion is toward the left on Fig.2(a) and the neutral axes 
move to reduce the length of the crack and introduce fresh concrete into the stress block.  Now the 
techniques utilizing a strain rate definition of the resultant strain vector and of the neutral axis become 
inappropriate and equations developed by Wood [6] and Kemp [8] (elemental method) and Park [9] 
(strip method) for two way slabs and Christiansen [10] and Roberts [11] for the elastically restrained 
one-way strip are valid. 

 All the curves of Fig. 8 vary between the limits shown for infinite and zero stiffness.  The rigid-
plastic strain-rate curve therefore provides an envelope for the real load-deflection performance and is 
therefore an immediate guide to the way in which the section parameters of pure flexure neutral axis 
depth and cover will affect the load improvement due to membrane action. 
 
3    SHEAR STRESS ANALYSIS 

 
Rajendran & Morley [12], Bræstrup [13] and Neilsen & Bræstrup [14] have made important 

contributions to the plastic analysis of shear in plain and reinforced concrete structures.  This was 
somewhat adventurous as concrete failing under shear does not behave in the ductile manner of 
lightly reinforced concrete slabs in bending nor does concrete actually fail in shear.  Under normal 
practical circumstances the material concrete subjected to either shear or compression fails in tensile 
strain.  Despite these two properties, the plastic analysis offered by the researchers into shear has 
provided valuable practical guidance and the geometric consequences of using different ‘yield’ criteria 
will be illustrated here. 
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3.1 Combined shear and compression in a defined line of weakness in a plane element 
An analysis has been provided by Jensen [15] of the joint in a slant shear test specimen using a 

plane strain consideration.  The subsequent plane stress modelling, Reference[16], provided an 
alternative view and is summarized here.  The slant shear test is a compression test on a laboratory 
prism made in two halves with a joint (plane of weakness) arranged at an angle to the direction of the 
applied load as shown in Fig. 9(a).  This exercise may be accepted as an analysis of a plane concrete 
material failing with a membrane yield line at an arbitrarily chosen angle within a monolithic material.   

             

               
 

                
               (a)  the prism           (b)  an enlargement  
                                                 of the plastic zone 
                       Fig. 9  The slant shear test                            Fig. 10  The square yield criterion 

 
Assuming that plastic flow takes place at the joint, a yield criterion may be chosen which would be 

a property of the joint and not necessarily of the materials of either of the two prism halves. The vector 
,shown at an arbitrary angle α’ to the joint (positive anticlockwise), has the two components: shear 

along the joint and direct strain rate normal to the joint.  The direct strain rate tangential to the joint is 
zero and therefore the principal strains will be of opposite sign (compression and tension) both 
functions of the direction α’.  Fig. 9(b) shows the treatment of the joint and as the yield proceeds the 
vector u represents the velocity of half A relative to half B.  Two different yield criteria were considered 
in Ref [16] both of which approximate observed results from tests on standard monolithic specimens.  
These are the square yield criterion and the plastic use of the Coulomb failure condition. 

u&

&

 
 3.2 The square yield criterion 

If yield is deemed to occur when a direct stress limit is reached then the criterion may be drawn in 
the two-dimensional principal direct stress space as shown in Fig. 10.  The convention of compression 
positive is continued and is drawn positive downwards and to the left of the origin. The material in this 
case has a compressive yield stress of fc and a ratio of tensile to compressive yield stress of r 
expressed as a positive value.  Nielsen’s consideration of a line in a monolithic material used r = 0.  

The stress state during yield comprising both tensile and compressive flow indicates that the 
system is operating at point X on the criterion (Fig. 10).  The equation of externally applied power to 
the rate of internal dissipation provides the applied loading in terms of the vector direction α’ and a 
stationary value of load furnishes the unfortunately implicit expression for the direction α’. 

                                                 'sin
1
1)''cos( ββα

r
r

+
−

−=+                                                          (5) 

Where β’ is the joint line inclination shown in Fig. 9(a).  A further algebraic step provides the least 
upper bound load, producing behavioural patterns depending on r as shown in Fig. 11. 
 The curious inquirer may want to know the vector directions (e.g. is there a component to the left 
or the right?, is it pure shear strain or is there a volume change in the plastic material?) and Equation 
5 is far from satisfactory in this regard.  The result, however, may be visualized if the representation of 
Fig. 12(a) is used.  Borrowing from Mohr a semicircle of horizontal diameter 1+r is drawn with an 
origin at unit distance from the left-hand end.  If the inclination of the yield line is superimposed and 
drawn through the origin the outward normal to the semicircle at its intersection with the superimposed 
line is at the required angle to the vertical. The angle α’ on Fig. 12 is clockwise positive. 
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                                   Fig. 11  Applied stress at yield for different joint angles 
 

     
  (a) Geometrical construction of the 
       of the vector direction    

               (b) visualisation for special cases of r 

                          
                                     (c) motion of the plain concrete beam mechanism 
 
                                            Fig. 12  Flow vector visualisation 
 
 Although the idea for this came from the normality rule for strains drawn on a yield surface care 
should be taken not to consider the diagram as a yield criterion.  The diagram at the moment can only 
be taken as the geometric expression of Equation 5.  Fig. 12(b) demonstrates the results of Equation 5 
showing the extremes of r = 1 and r = 0 and this may be readily observed from the semicircular 
representation. 
 For values of β’≤ 900 the construction may be used to visualize shear in a monolithic beam of this 
material Fig. 12 (c). The angle β’ is determined by the length of the shear span and for this case of 
r<1 the value of α’ is α’> ( 900- β’)  providing a resultant lengthening of the beam.  For r >1 the beam 
shortens and at r =1  there is no change in length during yield. 
  
3.3 The modified Coulomb criterion 
 Reference [16] considers a second approximation of concrete material performance at failure, that 
of yield either (a) when Coulomb’s failure criterion is met 
 
                                                                  cn += φστ tan                                                                (6) 

 
where the shearing resistance, τ , of a surface is dependent upon a normal stress, σn , acting on that 
surface and φtan  and c define the gradient and intercept on the shear stress axis, or (b) when a 
direct tensile yield stress (ft) is achieved.  The definition is shown in shear and normal stress space in 
Fig. 13(a).  The locus of yield conditions in plane stress is shown in Fig. 13(b).  A more detailed 
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examination of the representation of Figs. 13(a) and 13(b) is provided in Reference 16.  Fig. 13(a) may 
be used in the way of Fig. 12(a).   
 
 

             
 
        (a) the criterion drawn in shear / direct stress space 

         
      (b) interpretation in 2-D principal stress space 

                                                 Fig. 13  The modified Coulomb criterion 
 
By superposition of the yield line at its given inclination to the horizontal axis the vector of plastic flow 
is given by the direction of the outward normal, Fig. 14.  The resultant loading at yield may be seen in 
Reference 16.   
 

                                            
                                    Fig. 14  Geometric presentation of vector directions 
 
 Of current interest is the yield geometry for different inclinations, β’, of the yield line and this may 
now be traced visually.  For high inclinations β’ ≤ 1350 - φ/2  yield takes place in plane strain with α’= 
φ for the range (135 0 - φ/2)≥ β’ ≥ β’1 .  As the inclination varies from a slope of β ≥ 1350 - φ/2 to the 
horizontal position the vector apparently changes from α’= φ  through to α’= 0  at β’= 1350 and on to   
α’= - 900  at β’=135 0.  However on Figure 14 the semicircle is only a representation of stresses on 
axes of changing orientation and not a statement of the yield conditions.  Within this range (β ≥ 1350 - 
φ/2) the material is yielding in shear at φ on the criterion but no longer confined to the σ1, σ2 plane.  
Under these circumstances yield takes place out of plane.  For example for β’≥ 1350  the vectors 
suggest a positive compressive strain rate and therefore a volumetric reduction.  However the 
condition controlling yield is Coulomb’s shear line with an associated dilation.  The full 3-dimensional 
consideration is required in which a plane stress condition allows out-of-plane strains. 
 As with the discussion of the graphical representation of membrane action in slabs the value of 
graphics is in the intuitive understanding of the performance of elements at yield.  This has greater 
value when considering shear in beams.   
 
3.4 Longitudinally reinforced concrete beams 
 Neilsen and Bræstrup [14] provided the matching upper and lower bound solutions for the shear 
strength of a reinforced concrete beam, devoid of shear reinforcement.  The concrete was assumed to 
be rigid-perfectly plastic with a square yield criterion defined by a compressive yield stress at some 
factor of the laboratory compressive strength (providing a value for fc) and zero tensile strength (r = 0).  
The longitudinal reinforcement intensity was expressed as a ratio of the tensile yield force in both top 
and bottom layers of reinforcement to the compressive yield force of the gross concrete section.  
Using fc  in lieu of Neilsen’s use of the compressive test strength (fcu ) the reinforcement intensity may 
be expressed as  
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where, for the reinforcement, fy , As and As’ are the yield stress and cross sectional areas of bottom 
and top layers respectively and b is the width of the beam.  The beam mechanism is that of Fig 12(c) 
and the upper bound assumes full plasticity in the concrete along the diagonal line at β’ to the beam’s 
longitudinal axis and in direct tension in all layers of reinforcement in their longitudinal direction (no 
dowel action).  The equation of virtual work rate provided the magnitude of the upper bound load in 
terms of the vector direction α’ and minimising with respect to α’ provided the solution 
   
                                                       ββα sin)'21()''cos( Φ−−=+                                                    (8) 
 
The solution is very similar to the plain concrete case of Equation 5 and equally inconvenient.  
However the graphical interpretation is just as satisfactory and shown in Figure 15.  In this case a 
circle of unit diameter is used and the reinforcement intensity is marked thereon from the right hand 
end as a fraction of the diameter.  In this case there is a visual display of the relative velocities of the 
mechanism which depends singly on the reinforcement intensity.  The diagram shows the case of 
Ф’<0.5 in which case α’> 900 - β’ resulting in a lengthening of the beam during yield, for Ф’>0.5 the 
beam shortens and the reinforcement is in compression and at Ф’=0.5 there is no length change and 
no effect on the reinforcement during progress of the mechanism. 
 

                                    
                  Fig. 15  Geometric construction for the longitudinally reinforced concrete beam 
 
 It should be noted that this historical snap-shot predates further work involving rotations in the 
elements of the mechanism and non-straight yield lines in the shear span carried on by Müller [17], 
Marti [18], Jensen [19] and Kemp & Al-Safi [20].  Such work refines the magnitude of the upper bound 
solutions in special cases.  However the mechanisms arising from the described straight yield line and 
translational displacements allow this conceptual grasp of velocity and a guide to the likely benefits 
arising from beam end restraint.  
 
4 DISCUSSION 
  
 Two distinct areas of the application of plasticity to reinforced concrete elements have been 
considered: the collapse of slabs into flexural yield line mechanisms under membrane force and 
bending moment; and “shear” failure in elements under plane stress.  In both cases information is 
gained from the graphical display of the yield conditions and a superposition of a geometrical condition 
easily inferred from the failing structural system.  The information provided may not be complete.  For 
example these considerations are not a complete substitute for the use of calculation but, when 
considering the mental processes involved in the work of the designer, such a goal may not be of 
importance.  It is however important to identify the limitations in what has been presented. 
 In the case of membrane action in slabs the graphical analysis described in this paper provides no 
information on kinematics.  The focus is on variations in load capacity and the responsibility for 
identifying minimum load collapse mechanisms remains with the designer and the power of the 
imagination.  The results given here for load, p, are multipliers on the pure flexure load and are valid 
provided that the mechanisms (and the load distributions) for the pure flexure state and any stage 
under membrane action are identical.  Additionally loading magnitudes are provided only in the special 
case of infinite restraint to a mechanism of infinitely rigid elements.  This was referred to at the end of 
Section 2.3 where it was shown that the rigid-plastic parabola is an envelope to the set of curves for 
slabs of various stiffnesses associated with the elastic strains in the system.  Each of the curves 
displays a stationary load maximum and is subsequently tangential to the rigid-plastic envelope which 
occurs simultaneously with membrane force maximum.  This was demonstrated in Reference [21] 
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showing that, whilst the peaks of such curves are not conveniently found, the load at the tangent point 
is provided directly by a very convenient algebraic expression and may be taken as a reasonably 
reliable design value for the load somewhat less than the magnitude at the peak.  The factor of safety 
so provided is one which varies according to the nature of the load-deflection curve; the more 
catastrophic the behaviour the greater the factor of safety. 
 In the description of membrane action in this current paper, only the one-way strip has been used.  
The rigid-plastic parabolic unloading curve is modified for the two-way slab.  However for all rigid-
plastic systems the maximum load factor p at zero displacement is always the same and depends 
exclusively on the section parameters α, β and γ. The value to the designer is the development of a 
visual understanding of the effect on slab strength of variations in the parameters that are significant 
and the realisation of the properties of the system that have little or no effect.  A complete graphical 
construction of load capacity for more general cases of slab will require considerable effort which may 
not be worth the investment.  The required answers may be more conveniently given by hand or 
machine calculation depending on the stage in the design process.   But if suitably simple graphical 
interpretations can be found the advantages could be considerable. 
 The benefits of the graphical presentations of plastic lines in elements under plane stress including 
shear are associated with the mechanisms.  In these cases no information is given on the magnitudes 
of load capacity.  Also the progress of any mechanism in these elements is different from that of the 
flexural slab.  The yielding slab, in which the ductility in the yielding reinforcement and the capacity of 
compressed concrete to support a sustained stress as damage continues, experiences geometric 
changes and velocity variations during yield.  A robust system requiring a continued supply of energy 
is required for the mechanism to progress.  In the case of the above concrete elements under plane 
stress, the situation of tensile strain (ε<0) or incipient tensile strain ( ε& < 0 at ε = 0) means that the 
stress state is significantly altered as soon as the mechanism is mobilised.  It may be recognised that 
the presence of aggregate interlock militates against this but its presence defies quantification and will 
be significantly different for different mix designs, stress combinations, flow vector directions and for 
different positions on any one line.  In these circumstances ductility is lost and flow vectors, 
determined from the normality rule or from any consideration of the stress state, will not be 
experienced.  Failure is expected to be brittle and from the first occurrence of energy loss the material 
damage propagates in the manner described by fracture mechanics.  
 The value of plastic considerations of shear is therefore under question.  Calculations of plasticity 
however are still valuable as providing potential collapse mechanisms.  The results may be used to 
identify reserves of strength offered by restraints to such mechanisms, and provide an opportunity to 
visualise not only the pattern but also the vector directions of collapse mechanism.  Each of these are 
useful skills for the designer. 
 
5 CONCLUSIONS 
 
 The application of plasticity to structural analysis has been welcomed by designers and the 
appropriate use of either the static or the kinematic theorems often enables design thinking and 
informed sketching unaided by laborious computation.   Prior to the development of machine 
calculation, graphical methods also provided a convenient and appropriately accurate method of hand 
analysis whilst drawing up designs. 
 This paper has identified where the two fields of plasticity and graphics may be combined in a way 
which assists the designer.  Two-dimensional constructions of yield criteria have been illustrated.  In 
the case of the inclusion of membrane action in the upper bound analysis of a reinforced concrete 
slab, the yield criterion in the space of bending moment and membrane force has been shown to 
generate the envelope to the slab’s load-deflection behaviour and also conveniently to show the 
effects of variations in section design.  This was achieved by the superposition onto the graph of the 
yield criterion a non-dimensional description of the concrete section given by the reinforcement 
intensity (Ф) and the cover (h/d).  Subsequently, for the case of concrete under plane stress, 
superposition provides information on the potential flow vectors in a shearing mechanism.  In this latter 
case use is made of the slope of a line in the mechanism and a geometric construction based on the 
material yield criterion. 
 In both cases the construction may be used with conventional hand drawing equipment to provide 
answers of sufficient accuracy for use in design.  However this suggestion is not on offer.  When 
analysis requires great accuracy, in say the refinement of a design, it is expected that automated 
analytical routines will be used. The value here would be the conceptual understanding of the 
automated processes being used.  In the early design stages decisions are being taken on structural 
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form and component thicknesses fairly repeatedly as different ideas are being tested by sketching.  
Currently the effect of boundary restraint on the performance of elements is ignored mainly owing to a 
lack of intuitive awareness.  A sufficiently sophisticated piece of software can always be employed, 
given the time, to provide some answers but a designer is more likely to bare in mind the extra 
benefits of mechanism constraint if there is some readily available conceptual understanding.  The 
diagrams of this paper may be drawn by hand using the designer’s eye to provide proportion and, in 
the process, give satisfactory ideas of scale when parameters are changed.  The work described in 
this paper, combining geometry and plasticity, is not complete but is offered as an aid to the intuitive 
understanding that is desirable at the conceptual design stage. 
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